Math 128: Lecture 11

April 17, 2014

Let V be a finite-dimensional simple g-module. Taking \mathfrak{sl}_2 as a model, we will classify V as follows:

- Step 1: Show that for any weight vector v, xv is also a weight vector for x a monomial in Un^+ .
- Step 2: Show the weights of xv are distinct (enough) so that there exists a $v^+ \in V$ with

$$\mathfrak{n}^+ v^+ = 0$$
 and $hv^+ = \mu(h)v^+$ for some $\mu \in \mathfrak{h}^*$.

Step 3: Show yv^+ is a weight vector for all monomials $y \in U\mathfrak{n}^-$. Step 4: Show $xyv^+ \in U\mathfrak{n}^-v^+$ so that $V = U\mathfrak{h}^-v^+$. Step 5: Find a good basis for V. Step 6: Classify V in terms of μ .

Fix a base $B = \{\beta_1, \dots, \beta_r\}$ and $R^+ = R \cap \mathbb{Z}_{\geq 0}B$. Let V be a finite-dimensional simple g-module.

Fix a base $B = \{\beta_1, \dots, \beta_r\}$ and $R^+ = R \cap \mathbb{Z}_{\geq 0}B$. Let V be a finite-dimensional simple g-module. Step 1: For $v \in V_\lambda$, $\alpha_i \in R$, $x_i \in \mathfrak{g}_{\alpha_i}$, and $h \in \mathfrak{h}$,

$$hx_1 \cdots x_m v = \left(\lambda(h) + \sum_{i=1}^m \alpha_i(h)\right) x_1 \cdots x_m v. \tag{*}$$

Fix a base $B = \{\beta_1, \dots, \beta_r\}$ and $R^+ = R \cap \mathbb{Z}_{\geq 0}B$. Let V be a finite-dimensional simple g-module. Step 1: For $v \in V_\lambda$, $\alpha_i \in R$, $x_i \in \mathfrak{g}_{\alpha_i}$, and $h \in \mathfrak{h}$,

$$hx_1 \cdots x_m v = \left(\lambda(h) + \sum_{i=1}^m \alpha_i(h)\right) x_1 \cdots x_m v. \tag{*}$$

Define $\Omega = \{\omega_1, \ldots, \omega_r\}$ by $\langle \beta_i, \omega_j \rangle = c_j \delta_{i,j}$ for some fixed $c_j \in \mathbb{R}_{>0}$. So for every $\alpha \in R^+$,

$$\langle \alpha, \omega_j \rangle = \sum_{i=1}^r z_i \langle \beta_i, \omega_j \rangle = z_j c_j \ge 0,$$

and there is some $\omega \in \Omega$ with $\langle \alpha, \omega \rangle > 0$.

Fix a base $B = \{\beta_1, \dots, \beta_r\}$ and $R^+ = R \cap \mathbb{Z}_{\geq 0}B$. Let V be a finite-dimensional simple g-module. Step 1: For $v \in V_\lambda$, $\alpha_i \in R$, $x_i \in \mathfrak{g}_{\alpha_i}$, and $h \in \mathfrak{h}$,

$$hx_1 \cdots x_m v = \left(\lambda(h) + \sum_{i=1}^m \alpha_i(h)\right) x_1 \cdots x_m v. \tag{*}$$

Define $\Omega = \{\omega_1, \ldots, \omega_r\}$ by $\langle \beta_i, \omega_j \rangle = c_j \delta_{i,j}$ for some fixed $c_j \in \mathbb{R}_{>0}$. So for every $\alpha \in R^+$,

$$\langle \alpha, \omega_j \rangle = \sum_{i=1}^r z_i \langle \beta_i, \omega_j \rangle = z_j c_j \ge 0,$$

and there is some $\omega \in \Omega$ with $\langle \alpha, \omega \rangle > 0$. So on the basis $\{h_{\omega} \mid \omega \in \Omega\}$, it is clear that $\lambda + \sum_{i=1}^{m} \alpha_i$ are distinct for distinct collections x_1, \ldots, x_m .

Fix a base $B = \{\beta_1, \dots, \beta_r\}$ and $R^+ = R \cap \mathbb{Z}_{\geq 0}B$. Let V be a finite-dimensional simple g-module. Step 1: For $v \in V_\lambda$, $\alpha_i \in R$, $x_i \in \mathfrak{g}_{\alpha_i}$, and $h \in \mathfrak{h}$,

$$hx_1 \cdots x_m v = \left(\lambda(h) + \sum_{i=1}^m \alpha_i(h)\right) x_1 \cdots x_m v. \tag{*}$$

Define $\Omega = \{\omega_1, \ldots, \omega_r\}$ by $\langle \beta_i, \omega_j \rangle = c_j \delta_{i,j}$ for some fixed $c_j \in \mathbb{R}_{>0}$. So for every $\alpha \in R^+$,

$$\langle \alpha, \omega_j \rangle = \sum_{i=1}^r z_i \langle \beta_i, \omega_j \rangle = z_j c_j \ge 0,$$

and there is some $\omega \in \Omega$ with $\langle \alpha, \omega \rangle > 0$. So on the basis $\{h_{\omega} \mid \omega \in \Omega\}$, it is clear that $\lambda + \sum_{i=1}^{m} \alpha_i$ are distinct for distinct collections x_1, \ldots, x_m .

Lemma (Step 2)

There is a highest weight vector $v^+ \in V$ satisfying

$$\mathfrak{n}^+v^+=0$$
 and $hv^+=\mu(h)v^+$ for some $\mu\in\mathfrak{h}^*$.

For $v \in V_{\lambda}$, $\alpha_i \in R$, $x_i \in \mathfrak{g}_{\alpha_i}$, and $h \in \mathfrak{h}$, $hx_1 \cdots x_m v = \left(\lambda(h) + \sum_{i=1}^m \alpha_i(h)\right) x_1 \cdots x_m v. \qquad (*)$

Lemma (Step 2)

There is a highest weight vector $v^+ \in V$ satisfying

$$\mathfrak{n}^+v^+=0$$
 and $hv^+=\mu(h)v^+$ for some $\mu\in\mathfrak{h}^*.$

For $v \in V_{\lambda}$, $\alpha_i \in R$, $x_i \in \mathfrak{g}_{\alpha_i}$, and $h \in \mathfrak{h}$, $hx_1 \cdots x_m v = \left(\lambda(h) + \sum_{i=1}^m \alpha_i(h)\right) x_1 \cdots x_m v. \qquad (*)$

Lemma (Step 2)

There is a highest weight vector $v^+ \in V$ satisfying

$$\mathfrak{n}^+v^+=0$$
 and $hv^+=\mu(h)v^+$ for some $\mu\in\mathfrak{h}^*.$

Step 3: Show yv^+ is a weight vector for all monomials y in $U\mathfrak{n}^-$.

For $v \in V_{\lambda}$, $\alpha_i \in R$, $x_i \in \mathfrak{g}_{\alpha_i}$, and $h \in \mathfrak{h}$, $hx_1 \cdots x_m v = \left(\lambda(h) + \sum_{i=1}^m \alpha_i(h)\right) x_1 \cdots x_m v. \qquad (*)$

Lemma (Step 2)

There is a highest weight vector $v^+ \in V$ satisfying

$$\mathfrak{n}^+v^+=0$$
 and $hv^+=\mu(h)v^+$ for some $\mu\in\mathfrak{h}^*.$

Step 3: Show yv^+ is a weight vector for all monomials y in $U\mathfrak{n}^-$. Step 4: Show $xyv^+ \in U\mathfrak{n}^-v^+$ for all $x \in \mathfrak{n}^+$ and mon'ls $y \in U\mathfrak{n}^-$. For $v \in V_{\lambda}$, $\alpha_i \in R$, $x_i \in \mathfrak{g}_{\alpha_i}$, and $h \in \mathfrak{h}$, $hx_1 \cdots x_m v = \left(\lambda(h) + \sum_{i=1}^m \alpha_i(h)\right) x_1 \cdots x_m v. \quad (*)$

Lemma (Step 2)

There is a highest weight vector $v^+ \in V$ satisfying

$$\mathfrak{n}^+v^+=0$$
 and $hv^+=\mu(h)v^+$ for some $\mu\in\mathfrak{h}^*.$

Step 3: Show yv^+ is a weight vector for all monomials y in $U\mathfrak{n}^-$. Step 4: Show $xyv^+ \in U\mathfrak{n}^-v^+$ for all $x \in \mathfrak{n}^+$ and mon'ls $y \in U\mathfrak{n}^-$.

Recall the Birkoff-Witt theorem: Let $B = \{\beta_1, \dots, \beta_r\}$ be a base of R with $R^+ = \{\alpha_1, \dots, \alpha_\ell\}$. Then there are bases $\begin{cases} y_1^{m_1} \cdots y_\ell^{m_\ell} \mid y_i \in \mathfrak{g}_{-\alpha_i}, m_i \in \mathbb{Z}_{\geq 0} \end{cases}$ of U^- , $\{h_{\beta_1}^{m_1} \cdots h_{\beta_r}^{m_r} \mid m_i \in \mathbb{Z}_{\geq 0} \}$ of U^0 , and $\{x_1^{m_1} \cdots x_\ell^{m_\ell} \mid x_i \in \mathfrak{g}_{\alpha_i}, m_i \in \mathbb{Z}_{\geq 0} \}$ of U^+ .

Lemma

Let V be a simple finite-dimensional g-module. (a) There is a highest weight vector $v^+ \in V$ satisfying

$$\begin{aligned} hv^+ &= \mu(h)v^+ \text{ for some } \mu \in \mathfrak{h}^*, \\ \mathfrak{n}^+v^+ &= 0, \quad \text{and} \quad U\mathfrak{n}^-v^+ = V. \end{aligned}$$

(b) V is spanned by weight vectors

$$\{y_1^{m_1}\cdots y_{\ell}^{m_{\ell}}v^+ \mid m_i \in \mathbb{Z}_{\geq 0}\} \quad \text{ with } \quad \begin{array}{l} R^+ = \{\alpha_1, \ldots, \alpha_{\ell}\}, \text{ and} \\ y_i \in \mathfrak{g}_{-\alpha_i}, \end{array}$$

and $hyv^+ = (\mu - \sum_i m_i \alpha_i) (h)yv^+$ for $y = y_1^{m_1} \cdots y_\ell^{m_\ell}$. (c) The weight spaces of V are

$$V_{\lambda}$$
 with $\lambda = \mu - \sum_{i=1}^{r} \ell_i \beta_i$, $\ell_i \in \mathbb{Z}_{\geq 0}$,

where $B = \{\beta_1, \ldots, \beta_r\}$ is a base for the roots of g. In particular, dim $(V_{\mu}) = 1$.

Structure of highest weight representations

When are highest weight modules simple? When are they isomorphic?

We say an element v_{μ} of a g-module M is a *primitive* element or highest weight vector (of weight $\mu \in \mathfrak{h}^*$) if

$$hv_{\mu} = \mu(h)v_{\mu}$$
 and $\mathfrak{n}^+v_{\mu} = 0.$

We call any module generated by a primitive v_{μ} a *highest weight* module (of weight μ).

Structure of highest weight representations

When are highest weight modules simple? When are they isomorphic?

We say an element v_{μ} of a g-module M is a *primitive* element or highest weight vector (of weight $\mu \in \mathfrak{h}^*$) if

$$hv_{\mu} = \mu(h)v_{\mu}$$
 and $\mathfrak{n}^+v_{\mu} = 0.$

We call any module generated by a primitive v_{μ} a *highest weight* module (of weight μ).

Lemma

Let M be generated by primitive v_{μ} .

(M is not a priori simple or finite-dimensional)

(1) Parts (a)–(c) from the previous lemma hold.

- (2) M is indecomposable, and therefore simple.
- (3) There is a unique (up to scaling) primitive element of V.
- (4) Two modules $M^{(\mu)}$ and $M^{(\lambda)}$ generated by primitive elements v_{μ} and v_{λ} , respectively, are isomorphic if and only if $\mu = \lambda$.