Math 128: Lecture 11

April 17, 2014

Last time:

Let V be a finite-dimensional simple \mathfrak{g}-module. Taking $\mathfrak{s l}_{2}$ as a model, we will classify V as follows:
Step 1: Show that for any weight vector $v, x v$ is also a weight vector for x a monomial in $U \mathfrak{n}^{+}$.
Step 2: Show the weights of $x v$ are distinct (enough) so that there exists a $v^{+} \in V$ with

$$
\mathfrak{n}^{+} v^{+}=0 \quad \text { and } h v^{+}=\mu(h) v^{+} \text {for some } \mu \in \mathfrak{h}^{*} .
$$

Step 3: Show $y v^{+}$is a weight vector for all monomials $y \in U \mathfrak{n}^{-}$.
Step 4: Show $x y v^{+} \in U \mathfrak{n}^{-} v^{+}$so that $V=U \mathfrak{h}^{-} v^{+}$.
Step 5: Find a good basis for V.
Step 6: Classify V in terms of μ.

Last time:

Fix a base $B=\left\{\beta_{1}, \ldots, \beta_{r}\right\}$ and $R^{+}=R \cap \mathbb{Z}_{\geq 0} B$. Let V be a finite-dimensional simple \mathfrak{g}-module.

Last time:

Fix a base $B=\left\{\beta_{1}, \ldots, \beta_{r}\right\}$ and $R^{+}=R \cap \mathbb{Z}_{\geq 0} B$.
Let V be a finite-dimensional simple \mathfrak{g}-module.
Step 1: For $v \in V_{\lambda}, \alpha_{i} \in R, x_{i} \in \mathfrak{g}_{\alpha_{i}}$, and $h \in \mathfrak{h}$,

$$
\begin{equation*}
h x_{1} \cdots x_{m} v=\left(\lambda(h)+\sum_{i=1}^{m} \alpha_{i}(h)\right) x_{1} \cdots x_{m} v . \tag{*}
\end{equation*}
$$

Last time:

Fix a base $B=\left\{\beta_{1}, \ldots, \beta_{r}\right\}$ and $R^{+}=R \cap \mathbb{Z}_{\geq 0} B$.
Let V be a finite-dimensional simple \mathfrak{g}-module.
Step 1: For $v \in V_{\lambda}, \alpha_{i} \in R, x_{i} \in \mathfrak{g}_{\alpha_{i}}$, and $h \in \mathfrak{h}$,

$$
\begin{equation*}
h x_{1} \cdots x_{m} v=\left(\lambda(h)+\sum_{i=1}^{m} \alpha_{i}(h)\right) x_{1} \cdots x_{m} v \tag{*}
\end{equation*}
$$

Define $\Omega=\left\{\omega_{1}, \ldots, \omega_{r}\right\}$ by $\left\langle\beta_{i}, \omega_{j}\right\rangle=c_{j} \delta_{i, j}$ for some fixed $c_{j} \in \mathbb{R}_{>0}$. So for every $\alpha \in R^{+}$,

$$
\left\langle\alpha, \omega_{j}\right\rangle=\sum_{i=1}^{r} z_{i}\left\langle\beta_{i}, \omega_{j}\right\rangle=z_{j} c_{j} \geq 0
$$

and there is some $\omega \in \Omega$ with $\langle\alpha, \omega\rangle>0$.

Last time:

Fix a base $B=\left\{\beta_{1}, \ldots, \beta_{r}\right\}$ and $R^{+}=R \cap \mathbb{Z}_{\geq 0} B$.
Let V be a finite-dimensional simple \mathfrak{g}-module.
Step 1: For $v \in V_{\lambda}, \alpha_{i} \in R, x_{i} \in \mathfrak{g}_{\alpha_{i}}$, and $h \in \mathfrak{h}$,

$$
\begin{equation*}
h x_{1} \cdots x_{m} v=\left(\lambda(h)+\sum_{i=1}^{m} \alpha_{i}(h)\right) x_{1} \cdots x_{m} v \tag{*}
\end{equation*}
$$

Define $\Omega=\left\{\omega_{1}, \ldots, \omega_{r}\right\}$ by $\left\langle\beta_{i}, \omega_{j}\right\rangle=c_{j} \delta_{i, j}$ for some fixed $c_{j} \in \mathbb{R}_{>0}$. So for every $\alpha \in R^{+}$,

$$
\left\langle\alpha, \omega_{j}\right\rangle=\sum_{i=1}^{r} z_{i}\left\langle\beta_{i}, \omega_{j}\right\rangle=z_{j} c_{j} \geq 0
$$

and there is some $\omega \in \Omega$ with $\langle\alpha, \omega\rangle>0$. So on the basis $\left\{h_{\omega} \mid \omega \in \Omega\right\}$, it is clear that $\lambda+\sum_{i=1}^{m} \alpha_{i}$ are distinct for distinct collections x_{1}, \ldots, x_{m}.

Last time:

Fix a base $B=\left\{\beta_{1}, \ldots, \beta_{r}\right\}$ and $R^{+}=R \cap \mathbb{Z}_{\geq 0} B$.
Let V be a finite-dimensional simple \mathfrak{g}-module.
Step 1: For $v \in V_{\lambda}, \alpha_{i} \in R, x_{i} \in \mathfrak{g}_{\alpha_{i}}$, and $h \in \mathfrak{h}$,

$$
\begin{equation*}
h x_{1} \cdots x_{m} v=\left(\lambda(h)+\sum_{i=1}^{m} \alpha_{i}(h)\right) x_{1} \cdots x_{m} v \tag{*}
\end{equation*}
$$

Define $\Omega=\left\{\omega_{1}, \ldots, \omega_{r}\right\}$ by $\left\langle\beta_{i}, \omega_{j}\right\rangle=c_{j} \delta_{i, j}$ for some fixed $c_{j} \in \mathbb{R}_{>0}$. So for every $\alpha \in R^{+}$,

$$
\left\langle\alpha, \omega_{j}\right\rangle=\sum_{i=1}^{r} z_{i}\left\langle\beta_{i}, \omega_{j}\right\rangle=z_{j} c_{j} \geq 0
$$

and there is some $\omega \in \Omega$ with $\langle\alpha, \omega\rangle>0$. So on the basis $\left\{h_{\omega} \mid \omega \in \Omega\right\}$, it is clear that $\lambda+\sum_{i=1}^{m} \alpha_{i}$ are distinct for distinct collections x_{1}, \ldots, x_{m}.
Lemma (Step 2)
There is a highest weight vector $v^{+} \in V$ satisfying

$$
\mathfrak{n}^{+} v^{+}=0 \quad \text { and } \quad h v^{+}=\mu(h) v^{+} \text {for some } \mu \in \mathfrak{h}^{*}
$$

For $v \in V_{\lambda}, \alpha_{i} \in R, x_{i} \in \mathfrak{g}_{\alpha_{i}}$, and $h \in \mathfrak{h}$,

$$
\begin{equation*}
h x_{1} \cdots x_{m} v=\left(\lambda(h)+\sum_{i=1}^{m} \alpha_{i}(h)\right) x_{1} \cdots x_{m} v \tag{*}
\end{equation*}
$$

Lemma (Step 2)
There is a highest weight vector $v^{+} \in V$ satisfying

$$
\mathfrak{n}^{+} v^{+}=0 \quad \text { and } \quad h v^{+}=\mu(h) v^{+} \text {for some } \mu \in \mathfrak{h}^{*} .
$$

For $v \in V_{\lambda}, \alpha_{i} \in R, x_{i} \in \mathfrak{g}_{\alpha_{i}}$, and $h \in \mathfrak{h}$,

$$
\begin{equation*}
h x_{1} \cdots x_{m} v=\left(\lambda(h)+\sum_{i=1}^{m} \alpha_{i}(h)\right) x_{1} \cdots x_{m} v \tag{*}
\end{equation*}
$$

Lemma (Step 2)
There is a highest weight vector $v^{+} \in V$ satisfying

$$
\mathfrak{n}^{+} v^{+}=0 \quad \text { and } \quad h v^{+}=\mu(h) v^{+} \text {for some } \mu \in \mathfrak{h}^{*} .
$$

Step 3: Show $y v^{+}$is a weight vector for all monomials y in $U \mathfrak{n}^{-}$.

For $v \in V_{\lambda}, \alpha_{i} \in R, x_{i} \in \mathfrak{g}_{\alpha_{i}}$, and $h \in \mathfrak{h}$,

$$
\begin{equation*}
h x_{1} \cdots x_{m} v=\left(\lambda(h)+\sum_{i=1}^{m} \alpha_{i}(h)\right) x_{1} \cdots x_{m} v \tag{*}
\end{equation*}
$$

Lemma (Step 2)
There is a highest weight vector $v^{+} \in V$ satisfying

$$
\mathfrak{n}^{+} v^{+}=0 \quad \text { and } \quad h v^{+}=\mu(h) v^{+} \text {for some } \mu \in \mathfrak{h}^{*} .
$$

Step 3: Show $y v^{+}$is a weight vector for all monomials y in $U \mathfrak{n}^{-}$. Step 4: Show $x y v^{+} \in U \mathfrak{n}^{-} v^{+}$for all $x \in \mathfrak{n}^{+}$and mon'ls $y \in U \mathfrak{n}^{-}$.

For $v \in V_{\lambda}, \alpha_{i} \in R, x_{i} \in \mathfrak{g}_{\alpha_{i}}$, and $h \in \mathfrak{h}$,

$$
\begin{equation*}
h x_{1} \cdots x_{m} v=\left(\lambda(h)+\sum_{i=1}^{m} \alpha_{i}(h)\right) x_{1} \cdots x_{m} v \tag{*}
\end{equation*}
$$

Lemma (Step 2)
There is a highest weight vector $v^{+} \in V$ satisfying

$$
\mathfrak{n}^{+} v^{+}=0 \quad \text { and } \quad h v^{+}=\mu(h) v^{+} \text {for some } \mu \in \mathfrak{h}^{*} .
$$

Step 3: Show $y v^{+}$is a weight vector for all monomials y in $U \mathfrak{n}^{-}$. Step 4: Show $x y v^{+} \in U \mathfrak{n}^{-} v^{+}$for all $x \in \mathfrak{n}^{+}$and mon'ls $y \in U \mathfrak{n}^{-}$.

Recall the Birkoff-Witt theorem:
Let $B=\left\{\beta_{1}, \ldots, \beta_{r}\right\}$ be a base of R with $R^{+}=\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$. Then there are bases

$$
\begin{aligned}
\left\{y_{1}^{m_{1}} \cdots y_{\ell}^{m_{\ell}} \mid y_{i} \in \mathfrak{g}_{-\alpha_{i}}, m_{i} \in \mathbb{Z}_{\geq 0}\right\} & \text { of } U^{-}, \\
\left\{h_{\beta_{1}}^{m_{1}} \cdots h_{\beta_{r}}^{m_{r}} \mid m_{i} \in \mathbb{Z}_{\geq 0}\right\} & \text { of } U^{0}, \text { and } \\
\left\{x_{1}^{m_{1}} \cdots x_{\ell}^{m_{\ell}} \mid x_{i} \in \mathfrak{g}_{\alpha_{i}}, m_{i} \in \mathbb{Z}_{\geq 0}\right\} & \text { of } U^{+} .
\end{aligned}
$$

Lemma

Let V be a simple finite-dimensional \mathfrak{g}-module.
(a) There is a highest weight vector $v^{+} \in V$ satisfying

$$
\begin{gathered}
h v^{+}=\mu(h) v^{+} \text {for some } \mu \in \mathfrak{h}^{*}, \\
\mathfrak{n}^{+} v^{+}=0, \quad \text { and } \quad U \mathfrak{n}^{-} v^{+}=V
\end{gathered}
$$

(b) V is spanned by weight vectors

$$
\left\{y_{1}^{m_{1}} \cdots y_{\ell}^{m_{\ell}} v^{+} \mid m_{i} \in \mathbb{Z}_{\geq 0}\right\} \quad \text { with } \quad \begin{aligned}
& R^{+}=\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}, \text { and } \\
& \\
& y_{i} \in \mathfrak{g}_{-\alpha_{i}},
\end{aligned}
$$

$$
\text { and } h y v^{+}=\left(\mu-\sum_{i} m_{i} \alpha_{i}\right)(h) y v^{+} \text {for } y=y_{1}^{m_{1}} \cdots y_{\ell}^{m_{\ell}} .
$$

(c) The weight spaces of V are

$$
V_{\lambda} \quad \text { with } \lambda=\mu-\sum_{i=1}^{r} \ell_{i} \beta_{i}, \quad \ell_{i} \in \mathbb{Z}_{\geq 0}
$$

where $B=\left\{\beta_{1}, \ldots, \beta_{r}\right\}$ is a base for the roots of \mathfrak{g}. In particular, $\operatorname{dim}\left(V_{\mu}\right)=1$.

Structure of highest weight representations

When are highest weight modules simple? When are they isomorphic?
We say an element v_{μ} of a \mathfrak{g}-module M is a primitive element or highest weight vector (of weight $\mu \in \mathfrak{h}^{*}$) if

$$
h v_{\mu}=\mu(h) v_{\mu} \quad \text { and } \quad \mathfrak{n}^{+} v_{\mu}=0
$$

We call any module generated by a primitive v_{μ} a highest weight module (of weight μ).

Structure of highest weight representations

When are highest weight modules simple? When are they isomorphic?
We say an element v_{μ} of a \mathfrak{g}-module M is a primitive element or highest weight vector (of weight $\mu \in \mathfrak{h}^{*}$) if

$$
h v_{\mu}=\mu(h) v_{\mu} \quad \text { and } \quad \mathfrak{n}^{+} v_{\mu}=0 .
$$

We call any module generated by a primitive v_{μ} a highest weight module (of weight μ).
Lemma
Let M be generated by primitive v_{μ}.
(M is not a priori simple or finite-dimensional)
(1) Parts (a)-(c) from the previous lemma hold.
(2) M is indecomposable, and therefore simple.
(3) There is a unique (up to scaling) primitive element of V.
(4) Two modules $M^{(\mu)}$ and $M^{(\lambda)}$ generated by primitive elements v_{μ} and v_{λ}, respectively, are isomorphic if and only if $\mu=\lambda$.

