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Last time:
For any basis B of h∗ consisting of roots, the spaces

h∗Q = QB and h∗R = R⊗Q h∗Q

are Euclidean with inner product given by the Killing form (or any
positive rational/real scaling thereof).

Let hα be the hyperplane in h∗R given by

hα = {λ ∈ h∗R | 〈λ, α〉 = 0}.

Let σα : h∗R → h∗R, given by

σα : λ 7→ λ− 2
〈α, λ〉
〈α, α〉

α,

be the reflection of weights across the hyperplane hα. This map
sends roots to roots.

The group W generated by {σα | α ∈ R+} is called the Weyl
group associated to g.
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Example: g = sl3
Let B = {β1, β2} and R+ = {β1, β2, β1 + β2} with βi = εi − εi+1

,
and let s1 = σβ1 and s2 = σβ2 .
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The positive side of a hyperplane hα is the side corresponding to whichever of
±α is in R+. The fundamental chamber is the region of h∗R that is on the
positive side of every hα, α ∈ R. Every element of h∗R is in the W -orbit of the
closure of the fundamental chamber.
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Recall classifying finite-dimensional simple sl2(C)-modules V :

(1) h has at least one weight vector v ∈ V . Use hx = xh+ [h, x] to
show that {x`v+ | ` ∈ Z≥0} are also w.v.’s with distinct weights.

(2) Since the weights of h on the x`v’s are distinct, the non-zero x`v’s
are distinct. So since V is f.d., there must be 0 6= v+ ∈ V with

xv+ = 0 and hv+ = µv+ for some µ ∈ C.

The vector v+ is called primitive or a highest weight vector.

(3) Use hy = yh+ [h, y] to show that {y`v+ | ` ∈ Z≥0} are also weight
vectors with distinct weights. So again, since V is finite-dimensional,
there must be some d ∈ Z≥0 with ydv+ 6= 0 and yd+1v+ = 0.

(4) Use xy = yx+ h to show xy`v+ = `(µ− (`− 1)), so that
V = {y`v+ | ` = 0, 1, . . . , d}.

(5) Looking at the (d+1, d+1) entry of h, use [x, y] = h to show µ = d.



Finite dimensional representations of g
New strategy:
Replace x with n+, y with n−, and h with h.
Let V be a finite-dimensional g-module.

Look for a highest weight vector (a primitive element), i.e. v+

satisfying
hv+ = λ(h)v+ and xv+ = 0

for some λ ∈ h∗ and all h ∈ h, x ∈ n+.
Show V = Un−v+.
Classify λ and the resulting structure.

A base B for a set of roots R is a subset of R forming a basis of
h∗ which additionally satisfies

α = ±
∑
β∈B

zββ with zβ ∈ Z≥0 for all α ∈ R.

Given a base B, let R+ = R ∩ Z≥0B. (We will prove the existence of a

base for R later, but we take existence for granted for now.)
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Finite dimensional representations of g

Let V be a finite-dimensional g-module.
Let h be a Cartan subalgebra of g, so that the elements of h are
simultaneously diagonalizable.

So as a h-module,

V =
⊕
λ∈h∗

Vλ where Vλ = {v ∈ V | hv = λ(h)v}.

For v ∈ Vλ, h ∈ h, and x ∈ gα for some α ∈ R,

hxv = (xh+ [h, x])v = (λ(h) + α(h))xv.

So for αi ∈ R and xi ∈ gαi ,

hx1 · · ·xmv =

(
λ(h) +

m∑
i=1

αi(h)

)
x1 · · ·xmv. (∗)

Goal 1: Establish xv = 0 for all but finitely many words
x = x1 · · ·xm with αi ∈ R+.
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