Math 128: Lecture 10

April 16, 2014

Last time:

For any basis B of \mathfrak{h}^* consisting of roots, the spaces

$$\mathfrak{h}^*_{\mathbb{O}} = \mathbb{Q}B$$
 and $\mathfrak{h}^*_{\mathbb{R}} = \mathbb{R} \otimes_{\mathbb{Q}} \mathfrak{h}^*_{\mathbb{O}}$

are Euclidean with inner product given by the Killing form (or any positive rational/real scaling thereof).

Last time:

For any basis B of \mathfrak{h}^* consisting of roots, the spaces

$$\mathfrak{h}^*_{\mathbb{O}} = \mathbb{Q}B$$
 and $\mathfrak{h}^*_{\mathbb{R}} = \mathbb{R} \otimes_{\mathbb{Q}} \mathfrak{h}^*_{\mathbb{O}}$

are Euclidean with inner product given by the Killing form (or any positive rational/real scaling thereof).

Let \mathfrak{h}_{α} be the hyperplane in $\mathfrak{h}_{\mathbb{R}}^{*}$ given by

$$\mathfrak{h}_{\alpha} = \{ \lambda \in \mathfrak{h}_{\mathbb{R}}^* \mid \langle \lambda, \alpha \rangle = 0 \}.$$

Let $\sigma_{\alpha}:\mathfrak{h}_{\mathbb{R}}^{*}\to\mathfrak{h}_{\mathbb{R}}^{*}$, given by

$$\sigma_{\alpha}: \lambda \mapsto \lambda - 2 \frac{\langle \alpha, \lambda \rangle}{\langle \alpha, \alpha \rangle} \alpha,$$

be the reflection of weights across the hyperplane \mathfrak{h}_{α} . This map sends roots to roots.

Last time:

For any basis B of \mathfrak{h}^* consisting of roots, the spaces

$$\mathfrak{h}^*_{\mathbb{O}} = \mathbb{Q}B$$
 and $\mathfrak{h}^*_{\mathbb{R}} = \mathbb{R} \otimes_{\mathbb{Q}} \mathfrak{h}^*_{\mathbb{O}}$

are Euclidean with inner product given by the Killing form (or any positive rational/real scaling thereof).

Let \mathfrak{h}_{α} be the hyperplane in $\mathfrak{h}_{\mathbb{R}}^{*}$ given by

$$\mathfrak{h}_{\alpha} = \{ \lambda \in \mathfrak{h}_{\mathbb{R}}^* \mid \langle \lambda, \alpha \rangle = 0 \}.$$

Let $\sigma_{\alpha}:\mathfrak{h}_{\mathbb{R}}^{*}\to\mathfrak{h}_{\mathbb{R}}^{*}$, given by

$$\sigma_{\alpha}: \lambda \mapsto \lambda - 2 \frac{\langle \alpha, \lambda \rangle}{\langle \alpha, \alpha \rangle} \alpha,$$

be the reflection of weights across the hyperplane \mathfrak{h}_{α} . This map sends roots to roots.

The group W generated by $\{\sigma_{\alpha} \mid \alpha \in R^+\}$ is called the *Weyl* group associated to \mathfrak{g} .

Let $B = \{\beta_1, \beta_2\}$ and $R^+ = \{\beta_1, \beta_2, \beta_1 + \beta_2\}$ with $\beta_i = \varepsilon_i - \varepsilon_{i+1}$

Let $B = \{\beta_1, \beta_2\}$ and $R^+ = \{\beta_1, \beta_2, \beta_1 + \beta_2\}$ with $\beta_i = \varepsilon_i - \varepsilon_{i+1}$, and let $s_1 = \sigma_{\beta_1}$ and $s_2 = \sigma_{\beta_2}$.

Let $B = \{\beta_1, \beta_2\}$ and $R^+ = \{\beta_1, \beta_2, \beta_1 + \beta_2\}$ with $\beta_i = \varepsilon_i - \varepsilon_{i+1}$, and let $s_1 = \sigma_{\beta_1}$ and $s_2 = \sigma_{\beta_2}$.

Let $B = \{\beta_1, \beta_2\}$ and $R^+ = \{\beta_1, \beta_2, \beta_1 + \beta_2\}$ with $\beta_i = \varepsilon_i - \varepsilon_{i+1}$, and let $s_1 = \sigma_{\beta_1}$ and $s_2 = \sigma_{\beta_2}$.

Let $B = \{\beta_1, \beta_2\}$ and $R^+ = \{\beta_1, \beta_2, \beta_1 + \beta_2\}$ with $\beta_i = \varepsilon_i - \varepsilon_{i+1}$, and let $s_1 = \sigma_{\beta_1}$ and $s_2 = \sigma_{\beta_2}$.

Let $B = \{\beta_1, \beta_2\}$ and $R^+ = \{\beta_1, \beta_2, \beta_1 + \beta_2\}$ with $\beta_i = \varepsilon_i - \varepsilon_{i+1}$, and let $s_1 = \sigma_{\beta_1}$ and $s_2 = \sigma_{\beta_2}$.

Let $B = \{\beta_1, \beta_2\}$ and $R^+ = \{\beta_1, \beta_2, \beta_1 + \beta_2\}$ with $\beta_i = \varepsilon_i - \varepsilon_{i+1}$, and let $s_1 = \sigma_{\beta_1}$ and $s_2 = \sigma_{\beta_2}$.

Let $B = \{\beta_1, \beta_2\}$ and $R^+ = \{\beta_1, \beta_2, \beta_1 + \beta_2\}$ with $\beta_i = \varepsilon_i - \varepsilon_{i+1}$, and let $s_1 = \sigma_{\beta_1}$ and $s_2 = \sigma_{\beta_2}$.

Let $B = \{\beta_1, \beta_2\}$ and $R^+ = \{\beta_1, \beta_2, \beta_1 + \beta_2\}$ with $\beta_i = \varepsilon_i - \varepsilon_{i+1}$, and let $s_1 = \sigma_{\beta_1}$ and $s_2 = \sigma_{\beta_2}$.

Let $B = \{\beta_1, \beta_2\}$ and $R^+ = \{\beta_1, \beta_2, \beta_1 + \beta_2\}$ with $\beta_i = \varepsilon_i - \varepsilon_{i+1}$, and let $s_1 = \sigma_{\beta_1}$ and $s_2 = \sigma_{\beta_2}$.

The *positive* side of a hyperplane \mathfrak{h}_{α} is the side corresponding to whichever of $\pm \alpha$ is in \mathbb{R}^+ . The *fundamental chamber* is the region of $\mathfrak{h}_{\mathbb{R}}^*$ that is on the positive side of every \mathfrak{h}_{α} , $\alpha \in \mathbb{R}$. Every element of $\mathfrak{h}_{\mathbb{R}}^*$ is in the *W*-orbit of the closure of the fundamental chamber.

Recall classifying finite-dimensional simple $\mathfrak{sl}_2(\mathbb{C})$ -modules V:

- (1) h has at least one weight vector $v \in V$. Use hx = xh + [h, x] to show that $\{x^{\ell}v^+ \mid \ell \in \mathbb{Z}_{\geq 0}\}$ are also w.v.'s with distinct weights.
- (2) Since the weights of h on the $x^{\ell}v$'s are distinct, the non-zero $x^{\ell}v$'s are distinct. So since V is f.d., there must be $0 \neq v^+ \in V$ with

$$xv^+ = 0$$
 and $hv^+ = \mu v^+$ for some $\mu \in \mathbb{C}$.

The vector v^+ is called primitive or a highest weight vector.

- (3) Use hy = yh + [h, y] to show that $\{y^{\ell}v^+ \mid \ell \in \mathbb{Z}_{\geq 0}\}$ are also weight vectors with distinct weights. So again, since V is finite-dimensional, there must be some $d \in \mathbb{Z}_{>0}$ with $y^dv^+ \neq 0$ and $y^{d+1}v^+ = 0$.
- (4) Use xy = yx + h to show $xy^{\ell}v^{+} = \ell(\mu (\ell 1))$, so that $V = \{y^{\ell}v^{+} \mid \ell = 0, 1, \dots, d\}.$
- (5) Looking at the (d+1, d+1) entry of h, use [x, y] = h to show $\mu = d$.

New strategy:

Replace x with n^+ , y with n^- , and h with \mathfrak{h} . Let V be a finite-dimensional \mathfrak{g} -module.

New strategy:

Replace x with n^+ , y with n^- , and h with \mathfrak{h} .

Let V be a finite-dimensional g-module.

Look for a highest weight vector (a primitive element), i.e. \boldsymbol{v}^+ satisfying

$$hv^+ = \lambda(h)v^+$$
 and $xv^+ = 0$

for some $\lambda \in \mathfrak{h}^*$ and all $h \in \mathfrak{h}$, $x \in \mathfrak{n}^+$.

New strategy:

Replace x with n^+ , y with n^- , and h with \mathfrak{h} .

Let V be a finite-dimensional g-module.

Look for a highest weight vector (a primitive element), i.e. \boldsymbol{v}^+ satisfying

$$hv^+ = \lambda(h)v^+$$
 and $xv^+ = 0$

for some $\lambda \in \mathfrak{h}^*$ and all $h \in \mathfrak{h}$, $x \in \mathfrak{n}^+$. Show $V = U\mathfrak{n}^-v^+$.

New strategy:

Replace x with n^+ , y with n^- , and h with \mathfrak{h} .

Let V be a finite-dimensional g-module.

Look for a highest weight vector (a primitive element), i.e. \boldsymbol{v}^+ satisfying

$$hv^+ = \lambda(h)v^+$$
 and $xv^+ = 0$

for some $\lambda \in \mathfrak{h}^*$ and all $h \in \mathfrak{h}$, $x \in \mathfrak{n}^+$. Show $V = U\mathfrak{n}^-v^+$.

Classify λ and the resulting structure.

New strategy:

Replace x with n^+ , y with n^- , and h with \mathfrak{h} .

Let V be a finite-dimensional g-module.

Look for a highest weight vector (a primitive element), i.e. \boldsymbol{v}^+ satisfying

$$hv^+ = \lambda(h)v^+$$
 and $xv^+ = 0$

for some $\lambda \in \mathfrak{h}^*$ and all $h \in \mathfrak{h}$, $x \in \mathfrak{n}^+$. Show $V = U\mathfrak{n}^-v^+$. Classify λ and the resulting structure.

A base B for a set of roots R is a subset of R forming a basis of \mathfrak{h}^* which additionally satisfies

$$\alpha = \pm \sum_{\beta \in B} z_{\beta}\beta \text{ with } z_{\beta} \in \mathbb{Z}_{\geq 0} \quad \text{ for all } \alpha \in R.$$

Given a base B, let $R^+ = R \cap \mathbb{Z}_{\geq 0}B$. (We will prove the existence of a base for R later, but we take existence for granted for now.)

Let V be a finite-dimensional \mathfrak{g} -module.

Let $\mathfrak h$ be a Cartan subalgebra of $\mathfrak g,$ so that the elements of $\mathfrak h$ are simultaneously diagonalizable.

Let V be a finite-dimensional g-module.

Let $\mathfrak h$ be a Cartan subalgebra of $\mathfrak g,$ so that the elements of $\mathfrak h$ are simultaneously diagonalizable.So as a $\mathfrak h\text{-module},$

$$V = \bigoplus_{\lambda \in \mathfrak{h}^*} V_{\lambda} \quad \text{where} \quad V_{\lambda} = \{ v \in V \mid hv = \lambda(h)v \}.$$

Let V be a finite-dimensional \mathfrak{g} -module.

Let $\mathfrak h$ be a Cartan subalgebra of $\mathfrak g,$ so that the elements of $\mathfrak h$ are simultaneously diagonalizable.So as a $\mathfrak h\text{-module},$

$$V = \bigoplus_{\lambda \in \mathfrak{h}^*} V_{\lambda} \quad \text{where} \quad V_{\lambda} = \{ v \in V \mid hv = \lambda(h)v \}.$$

For $v \in V_{\lambda}$, $h \in \mathfrak{h}$, and $x \in \mathfrak{g}_{\alpha}$ for some $\alpha \in R$,

$$hxv = (xh + [h, x])v = (\lambda(h) + \alpha(h))xv.$$

Let V be a finite-dimensional \mathfrak{g} -module.

Let $\mathfrak h$ be a Cartan subalgebra of $\mathfrak g,$ so that the elements of $\mathfrak h$ are simultaneously diagonalizable.So as a $\mathfrak h\text{-module},$

$$V = \bigoplus_{\lambda \in \mathfrak{h}^*} V_{\lambda} \quad \text{where} \quad V_{\lambda} = \{ v \in V \mid hv = \lambda(h)v \}.$$

For $v \in V_{\lambda}$, $h \in \mathfrak{h}$, and $x \in \mathfrak{g}_{\alpha}$ for some $\alpha \in R$,

$$hxv = (xh + [h, x])v = (\lambda(h) + \alpha(h))xv.$$

So for $\alpha_i \in R$ and $x_i \in \mathfrak{g}_{\alpha_i}$,

$$hx_1 \cdots x_m v = \left(\lambda(h) + \sum_{i=1}^m \alpha_i(h)\right) x_1 \cdots x_m v. \qquad (*)$$

Let V be a finite-dimensional g-module.

Let $\mathfrak h$ be a Cartan subalgebra of $\mathfrak g,$ so that the elements of $\mathfrak h$ are simultaneously diagonalizable.So as a $\mathfrak h\text{-module},$

$$V = \bigoplus_{\lambda \in \mathfrak{h}^*} V_{\lambda} \quad \text{where} \quad V_{\lambda} = \{ v \in V \mid hv = \lambda(h)v \}.$$

For $v \in V_{\lambda}$, $h \in \mathfrak{h}$, and $x \in \mathfrak{g}_{\alpha}$ for some $\alpha \in R$,

$$hxv = (xh + [h, x])v = (\lambda(h) + \alpha(h))xv.$$

So for $\alpha_i \in R$ and $x_i \in \mathfrak{g}_{\alpha_i}$,

$$hx_1 \cdots x_m v = \left(\lambda(h) + \sum_{i=1}^m \alpha_i(h)\right) x_1 \cdots x_m v. \tag{*}$$

Goal 1: Establish xv = 0 for all but finitely many words $x = x_1 \cdots x_m$ with $\alpha_i \in \mathbb{R}^+$.