Math 128: Lecture 10

April 16, 2014

Last time:

For any basis B of \mathfrak{h}^{*} consisting of roots, the spaces

$$
\mathfrak{h}_{\mathbb{Q}}^{*}=\mathbb{Q} B \quad \text { and } \quad \mathfrak{h}_{\mathbb{R}}^{*}=\mathbb{R} \otimes_{\mathbb{Q}} \mathfrak{h}_{\mathbb{Q}}^{*}
$$

are Euclidean with inner product given by the Killing form (or any positive rational/real scaling thereof).

Last time:

For any basis B of \mathfrak{h}^{*} consisting of roots, the spaces

$$
\mathfrak{h}_{\mathbb{Q}}^{*}=\mathbb{Q} B \quad \text { and } \quad \mathfrak{h}_{\mathbb{R}}^{*}=\mathbb{R} \otimes_{\mathbb{Q}} \mathfrak{h}_{\mathbb{Q}}^{*}
$$

are Euclidean with inner product given by the Killing form (or any positive rational/real scaling thereof).

Let \mathfrak{h}_{α} be the hyperplane in $\mathfrak{h}_{\mathbb{R}}^{*}$ given by

$$
\mathfrak{h}_{\alpha}=\left\{\lambda \in \mathfrak{h}_{\mathbb{R}}^{*} \mid\langle\lambda, \alpha\rangle=0\right\} .
$$

Let $\sigma_{\alpha}: \mathfrak{h}_{\mathbb{R}}^{*} \rightarrow \mathfrak{h}_{\mathbb{R}}^{*}$, given by

$$
\sigma_{\alpha}: \lambda \mapsto \lambda-2 \frac{\langle\alpha, \lambda\rangle}{\langle\alpha, \alpha\rangle} \alpha,
$$

be the reflection of weights across the hyperplane \mathfrak{h}_{α}. This map sends roots to roots.

Last time:

For any basis B of \mathfrak{h}^{*} consisting of roots, the spaces

$$
\mathfrak{h}_{\mathbb{Q}}^{*}=\mathbb{Q} B \quad \text { and } \quad \mathfrak{h}_{\mathbb{R}}^{*}=\mathbb{R} \otimes_{\mathbb{Q}} \mathfrak{h}_{\mathbb{Q}}^{*}
$$

are Euclidean with inner product given by the Killing form (or any positive rational/real scaling thereof).

Let \mathfrak{h}_{α} be the hyperplane in $\mathfrak{h}_{\mathbb{R}}^{*}$ given by

$$
\mathfrak{h}_{\alpha}=\left\{\lambda \in \mathfrak{h}_{\mathbb{R}}^{*} \mid\langle\lambda, \alpha\rangle=0\right\} .
$$

Let $\sigma_{\alpha}: \mathfrak{h}_{\mathbb{R}}^{*} \rightarrow \mathfrak{h}_{\mathbb{R}}^{*}$, given by

$$
\sigma_{\alpha}: \lambda \mapsto \lambda-2 \frac{\langle\alpha, \lambda\rangle}{\langle\alpha, \alpha\rangle} \alpha,
$$

be the reflection of weights across the hyperplane \mathfrak{h}_{α}. This map sends roots to roots.

The group W generated by $\left\{\sigma_{\alpha} \mid \alpha \in R^{+}\right\}$is called the Weyl group associated to \mathfrak{g}.

Example: $\mathfrak{g}=\mathfrak{s l}_{3}$

Let $B=\left\{\beta_{1}, \beta_{2}\right\}$ and $R^{+}=\left\{\beta_{1}, \beta_{2}, \beta_{1}+\beta_{2}\right\}$ with $\beta_{i}=\varepsilon_{i}-\varepsilon_{i+1}$

Example: $\mathfrak{g}=\mathfrak{s l}_{3}$

Let $B=\left\{\beta_{1}, \beta_{2}\right\}$ and $R^{+}=\left\{\beta_{1}, \beta_{2}, \beta_{1}+\beta_{2}\right\}$ with $\beta_{i}=\varepsilon_{i}-\varepsilon_{i+1}$

Example: $\mathfrak{g}=\mathfrak{s l}_{3}$

Let $B=\left\{\beta_{1}, \beta_{2}\right\}$ and $R^{+}=\left\{\beta_{1}, \beta_{2}, \beta_{1}+\beta_{2}\right\}$ with $\beta_{i}=\varepsilon_{i}-\varepsilon_{i+1}$

Example: $\mathfrak{g}=\mathfrak{s l}_{3}$

Let $B=\left\{\beta_{1}, \beta_{2}\right\}$ and $R^{+}=\left\{\beta_{1}, \beta_{2}, \beta_{1}+\beta_{2}\right\}$ with $\beta_{i}=\varepsilon_{i}-\varepsilon_{i+1}$

Example: $\mathfrak{g}=\mathfrak{s l}_{3}$

Let $B=\left\{\beta_{1}, \beta_{2}\right\}$ and $R^{+}=\left\{\beta_{1}, \beta_{2}, \beta_{1}+\beta_{2}\right\}$ with $\beta_{i}=\varepsilon_{i}-\varepsilon_{i+1}$

The positive side of a hyperplane \mathfrak{h}_{α} is the side corresponding to whichever of $\pm \alpha$ is in R^{+}.

Example: $\mathfrak{g}=\mathfrak{s l}_{3}$

Let $B=\left\{\beta_{1}, \beta_{2}\right\}$ and $R^{+}=\left\{\beta_{1}, \beta_{2}, \beta_{1}+\beta_{2}\right\}$ with $\beta_{i}=\varepsilon_{i}-\varepsilon_{i+1}$, and let $s_{1}=\sigma_{\beta_{1}}$ and $s_{2}=\sigma_{\beta_{2}}$.

The positive side of a hyperplane \mathfrak{h}_{α} is the side corresponding to whichever of $\pm \alpha$ is in R^{+}.

Example: $\mathfrak{g}=\mathfrak{s l}_{3}$

Let $B=\left\{\beta_{1}, \beta_{2}\right\}$ and $R^{+}=\left\{\beta_{1}, \beta_{2}, \beta_{1}+\beta_{2}\right\}$ with $\beta_{i}=\varepsilon_{i}-\varepsilon_{i+1}$, and let $s_{1}=\sigma_{\beta_{1}}$ and $s_{2}=\sigma_{\beta_{2}}$.

The positive side of a hyperplane \mathfrak{h}_{α} is the side corresponding to whichever of $\pm \alpha$ is in R^{+}.

Example: $\mathfrak{g}=\mathfrak{s l}_{3}$

Let $B=\left\{\beta_{1}, \beta_{2}\right\}$ and $R^{+}=\left\{\beta_{1}, \beta_{2}, \beta_{1}+\beta_{2}\right\}$ with $\beta_{i}=\varepsilon_{i}-\varepsilon_{i+1}$, and let $s_{1}=\sigma_{\beta_{1}}$ and $s_{2}=\sigma_{\beta_{2}}$.

The positive side of a hyperplane \mathfrak{h}_{α} is the side corresponding to whichever of $\pm \alpha$ is in R^{+}.

Example: $\mathfrak{g}=\mathfrak{s l}_{3}$

Let $B=\left\{\beta_{1}, \beta_{2}\right\}$ and $R^{+}=\left\{\beta_{1}, \beta_{2}, \beta_{1}+\beta_{2}\right\}$ with $\beta_{i}=\varepsilon_{i}-\varepsilon_{i+1}$, and let $s_{1}=\sigma_{\beta_{1}}$ and $s_{2}=\sigma_{\beta_{2}}$.

The positive side of a hyperplane \mathfrak{h}_{α} is the side corresponding to whichever of $\pm \alpha$ is in R^{+}.

Example: $\mathfrak{g}=\mathfrak{s l}_{3}$

Let $B=\left\{\beta_{1}, \beta_{2}\right\}$ and $R^{+}=\left\{\beta_{1}, \beta_{2}, \beta_{1}+\beta_{2}\right\}$ with $\beta_{i}=\varepsilon_{i}-\varepsilon_{i+1}$, and let $s_{1}=\sigma_{\beta_{1}}$ and $s_{2}=\sigma_{\beta_{2}}$.

The positive side of a hyperplane \mathfrak{h}_{α} is the side corresponding to whichever of $\pm \alpha$ is in R^{+}.

Example: $\mathfrak{g}=\mathfrak{s l}_{3}$

Let $B=\left\{\beta_{1}, \beta_{2}\right\}$ and $R^{+}=\left\{\beta_{1}, \beta_{2}, \beta_{1}+\beta_{2}\right\}$ with $\beta_{i}=\varepsilon_{i}-\varepsilon_{i+1}$, and let $s_{1}=\sigma_{\beta_{1}}$ and $s_{2}=\sigma_{\beta_{2}}$.

The positive side of a hyperplane \mathfrak{h}_{α} is the side corresponding to whichever of $\pm \alpha$ is in R^{+}.

Example: $\mathfrak{g}=\mathfrak{s l}_{3}$

Let $B=\left\{\beta_{1}, \beta_{2}\right\}$ and $R^{+}=\left\{\beta_{1}, \beta_{2}, \beta_{1}+\beta_{2}\right\}$ with $\beta_{i}=\varepsilon_{i}-\varepsilon_{i+1}$, and let $s_{1}=\sigma_{\beta_{1}}$ and $s_{2}=\sigma_{\beta_{2}}$.

The positive side of a hyperplane \mathfrak{h}_{α} is the side corresponding to whichever of $\pm \alpha$ is in R^{+}.

Example: $\mathfrak{g}=\mathfrak{s l}_{3}$

Let $B=\left\{\beta_{1}, \beta_{2}\right\}$ and $R^{+}=\left\{\beta_{1}, \beta_{2}, \beta_{1}+\beta_{2}\right\}$ with $\beta_{i}=\varepsilon_{i}-\varepsilon_{i+1}$, and let $s_{1}=\sigma_{\beta_{1}}$ and $s_{2}=\sigma_{\beta_{2}}$.

The positive side of a hyperplane \mathfrak{h}_{α} is the side corresponding to whichever of $\pm \alpha$ is in R^{+}.

Example: $\mathfrak{g}=\mathfrak{s l}_{3}$

Let $B=\left\{\beta_{1}, \beta_{2}\right\}$ and $R^{+}=\left\{\beta_{1}, \beta_{2}, \beta_{1}+\beta_{2}\right\}$ with $\beta_{i}=\varepsilon_{i}-\varepsilon_{i+1}$, and let $s_{1}=\sigma_{\beta_{1}}$ and $s_{2}=\sigma_{\beta_{2}}$.

The positive side of a hyperplane \mathfrak{h}_{α} is the side corresponding to whichever of $\pm \alpha$ is in R^{+}. The fundamental chamber is the region of $\mathfrak{h}_{\mathbb{R}}^{*}$ that is on the positive side of every $\mathfrak{h}_{\alpha}, \alpha \in R$. Every element of $\mathfrak{h}_{\mathbb{R}}^{*}$ is in the W-orbit of the closure of the fundamental chamber.

Recall classifying finite-dimensional simple $\mathfrak{s l}_{2}(\mathbb{C})$-modules V :
(1) h has at least one weight vector $v \in V$. Use $h x=x h+[h, x]$ to show that $\left\{x^{\ell} v^{+} \mid \ell \in \mathbb{Z}_{\geq 0}\right\}$ are also w.v.'s with distinct weights.
(2) Since the weights of h on the $x^{\ell} v^{\prime}$'s are distinct, the non-zero $x^{\ell} v^{\prime}$ s are distinct. So since V is f.d., there must be $0 \neq v^{+} \in V$ with

$$
x v^{+}=0 \quad \text { and } \quad h v^{+}=\mu v^{+} \text {for some } \mu \in \mathbb{C}
$$

The vector v^{+}is called primitive or a highest weight vector.
(3) Use $h y=y h+[h, y]$ to show that $\left\{y^{\ell} v^{+} \mid \ell \in \mathbb{Z}_{\geq 0}\right\}$ are also weight vectors with distinct weights. So again, since V is finite-dimensional, there must be some $d \in \mathbb{Z}_{\geq 0}$ with $y^{d} v^{+} \neq 0$ and $y^{d+1} v^{+}=0$.
(4) Use $x y=y x+h$ to show $x y^{\ell} v^{+}=\ell(\mu-(\ell-1))$, so that $V=\left\{y^{\ell} v^{+} \mid \ell=0,1, \ldots, d\right\}$.
(5) Looking at the $(d+1, d+1)$ entry of h, use $[x, y]=h$ to show $\mu=d$.

Finite dimensional representations of \mathfrak{g}

New strategy:
Replace x with \mathfrak{n}^{+}, y with \mathfrak{n}^{-}, and h with \mathfrak{h}.
Let V be a finite-dimensional \mathfrak{g}-module.

Finite dimensional representations of \mathfrak{g}

New strategy:
Replace x with \mathfrak{n}^{+}, y with \mathfrak{n}^{-}, and h with \mathfrak{h}.
Let V be a finite-dimensional \mathfrak{g}-module.
Look for a highest weight vector (a primitive element), i.e. v^{+} satisfying

$$
h v^{+}=\lambda(h) v^{+} \quad \text { and } \quad x v^{+}=0
$$

for some $\lambda \in \mathfrak{h}^{*}$ and all $h \in \mathfrak{h}, x \in \mathfrak{n}^{+}$.

Finite dimensional representations of \mathfrak{g}

New strategy:

Replace x with \mathfrak{n}^{+}, y with \mathfrak{n}^{-}, and h with \mathfrak{h}.
Let V be a finite-dimensional \mathfrak{g}-module.
Look for a highest weight vector (a primitive element), i.e. v^{+} satisfying

$$
h v^{+}=\lambda(h) v^{+} \quad \text { and } \quad x v^{+}=0
$$

for some $\lambda \in \mathfrak{h}^{*}$ and all $h \in \mathfrak{h}, x \in \mathfrak{n}^{+}$.
Show $V=U \mathfrak{n}^{-} v^{+}$.

Finite dimensional representations of \mathfrak{g}

New strategy:

Replace x with \mathfrak{n}^{+}, y with \mathfrak{n}^{-}, and h with \mathfrak{h}.
Let V be a finite-dimensional \mathfrak{g}-module.
Look for a highest weight vector (a primitive element), i.e. v^{+} satisfying

$$
h v^{+}=\lambda(h) v^{+} \quad \text { and } \quad x v^{+}=0
$$

for some $\lambda \in \mathfrak{h}^{*}$ and all $h \in \mathfrak{h}, x \in \mathfrak{n}^{+}$.
Show $V=U \mathfrak{n}^{-} v^{+}$.
Classify λ and the resulting structure.

Finite dimensional representations of \mathfrak{g}

New strategy:
Replace x with \mathfrak{n}^{+}, y with \mathfrak{n}^{-}, and h with \mathfrak{h}.
Let V be a finite-dimensional \mathfrak{g}-module.
Look for a highest weight vector (a primitive element), i.e. v^{+} satisfying

$$
h v^{+}=\lambda(h) v^{+} \quad \text { and } \quad x v^{+}=0
$$

for some $\lambda \in \mathfrak{h}^{*}$ and all $h \in \mathfrak{h}, x \in \mathfrak{n}^{+}$.
Show $V=U \mathfrak{n}^{-} v^{+}$.
Classify λ and the resulting structure.
A base B for a set of roots R is a subset of R forming a basis of \mathfrak{h}^{*} which additionally satisfies

$$
\alpha= \pm \sum_{\beta \in B} z_{\beta} \beta \text { with } z_{\beta} \in \mathbb{Z}_{\geq 0} \quad \text { for all } \alpha \in R .
$$

Given a base B, let $R^{+}=R \cap \mathbb{Z}_{\geq 0} B$. (We will prove the existence of a base for R later, but we take existence for granted for now.)

Finite dimensional representations of \mathfrak{g}

Let V be a finite-dimensional \mathfrak{g}-module.
Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g}, so that the elements of \mathfrak{h} are simultaneously diagonalizable.

Finite dimensional representations of \mathfrak{g}

Let V be a finite-dimensional \mathfrak{g}-module.
Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g}, so that the elements of \mathfrak{h} are simultaneously diagonalizable.So as a \mathfrak{h}-module,

$$
V=\bigoplus_{\lambda \in \mathfrak{h}^{*}} V_{\lambda} \quad \text { where } \quad V_{\lambda}=\{v \in V \mid h v=\lambda(h) v\} .
$$

Finite dimensional representations of \mathfrak{g}

Let V be a finite-dimensional \mathfrak{g}-module.
Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g}, so that the elements of \mathfrak{h} are simultaneously diagonalizable.So as a \mathfrak{h}-module,

$$
V=\bigoplus_{\lambda \in \mathfrak{h}^{*}} V_{\lambda} \quad \text { where } \quad V_{\lambda}=\{v \in V \mid h v=\lambda(h) v\} .
$$

For $v \in V_{\lambda}, h \in \mathfrak{h}$, and $x \in \mathfrak{g}_{\alpha}$ for some $\alpha \in R$,

$$
h x v=(x h+[h, x]) v=(\lambda(h)+\alpha(h)) x v .
$$

Finite dimensional representations of \mathfrak{g}

Let V be a finite-dimensional \mathfrak{g}-module.
Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g}, so that the elements of \mathfrak{h} are simultaneously diagonalizable.So as a \mathfrak{h}-module,

$$
V=\bigoplus_{\lambda \in \mathfrak{h}^{*}} V_{\lambda} \quad \text { where } \quad V_{\lambda}=\{v \in V \mid h v=\lambda(h) v\}
$$

For $v \in V_{\lambda}, h \in \mathfrak{h}$, and $x \in \mathfrak{g}_{\alpha}$ for some $\alpha \in R$,

$$
h x v=(x h+[h, x]) v=(\lambda(h)+\alpha(h)) x v .
$$

So for $\alpha_{i} \in R$ and $x_{i} \in \mathfrak{g}_{\alpha_{i}}$,

$$
\begin{equation*}
h x_{1} \cdots x_{m} v=\left(\lambda(h)+\sum_{i=1}^{m} \alpha_{i}(h)\right) x_{1} \cdots x_{m} v \tag{*}
\end{equation*}
$$

Finite dimensional representations of \mathfrak{g}

Let V be a finite-dimensional \mathfrak{g}-module.
Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g}, so that the elements of \mathfrak{h} are simultaneously diagonalizable.So as a \mathfrak{h}-module,

$$
V=\bigoplus_{\lambda \in \mathfrak{h}^{*}} V_{\lambda} \quad \text { where } \quad V_{\lambda}=\{v \in V \mid h v=\lambda(h) v\}
$$

For $v \in V_{\lambda}, h \in \mathfrak{h}$, and $x \in \mathfrak{g}_{\alpha}$ for some $\alpha \in R$,

$$
h x v=(x h+[h, x]) v=(\lambda(h)+\alpha(h)) x v .
$$

So for $\alpha_{i} \in R$ and $x_{i} \in \mathfrak{g}_{\alpha_{i}}$,

$$
\begin{equation*}
h x_{1} \cdots x_{m} v=\left(\lambda(h)+\sum_{i=1}^{m} \alpha_{i}(h)\right) x_{1} \cdots x_{m} v \tag{*}
\end{equation*}
$$

Goal 1: Establish $x v=0$ for all but finitely many words $x=x_{1} \cdots x_{m}$ with $\alpha_{i} \in R^{+}$.

