
Math 128: Combinatorial representation theory
of complex Lie algebras and related topics



Recommended reading

For the first while:

1. N. Bourbaki, Elements of Mathematics: Lie Groups and
Algebras.

2. W. Fulton, J. Harris, Representation Theory: A first course.

3. J. E. Humphreys, Introduction to Lie Algebras and
Representation Theory.

4. J. J. Serre, Complex Semisimple Lie Algebras.

Later:

5. H. Barcelo, A. Ram, Combinatorial Representation Theory.

...among others



The poster child of CRT: the symmetric group

Combinatorial representation theory is the study of representations
of algebraic objects, using combinatorics to keep track of the
relevant information.

What are the algebraicic objects?

Let F be your favorite field of characteristic 0. (Really, fix F = C.)
Recall that an algebra A over F is a vector space over F with an
associative multiplication

A⊗A→ A

(tensor product over F just means the multiplication is bilinear).

Favorite examples:

1. Group algebras (today)

2. Enveloping algebras of Lie algebras (next)
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Representations

A homomorphism is a structure-preserving map.
A representation of an F -algebra A is a vector space V over F ,
together with a homomorphism

ρ : A→ End(V ) = { F -linear maps V → V }.

The map (equipped with the vector space) is the representation;
the vector space (equipped with the map) is called an A-module.

Example

The permutation representation of the symmetric group Sn is
V = Ck = C{v1, . . . , vk} together with

ρ : Sk → GLk(C) by ρ(σ)vi = vσ(i).

A simple module is a module with no nontrivial invariant
subspaces.
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Permutation representation of S3

On the basis {v1, v2, v3}:

1 7→

1 0 0
0 1 0
0 0 1

 (12) 7→

0 1 0
1 0 0
0 0 1

 (23) 7→

1 0 0
0 0 1
0 1 0



(123) 7→

0 0 1
1 0 0
0 1 0

 (132) 7→

0 1 0
0 0 1
1 0 0

 (13) 7→

0 0 1
0 1 0
1 0 0



On the basis {v, w2, w3}:

1 7→

 1 0 0

0 1 0

0 0 1

 (12) 7→

 1 0 0

0 -1 0

0 0 1

 (23) 7→

 1 0 0

0 0 1

0 1 0



(123) 7→

 1 0 0

0 -1 -1

0 1 0

 (132) 7→

 1 0 0

0 0 1

0 -1 -1

 (13) 7→

 1 0 0

0 1 0

0 -1 -1


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An algebra is semisimple if all of its modules decompose into the
sum of simple modules. We like these because their isomorphic to
a sum of their simple modules.

Example

The group algebra of a group G over a field F is semisimple iff
char(F ) does not divide |G|. So group algebras over C are all
semisimple.

Theorem
For a finite group G, the simple G-modules are in bijection with
conjugacy classes of G.

Proof.
Use (A) class sums, or (B) character theory.

Either way, this is not a particularly satisfying bijection, since it
doesn’t say “given representation X, here’s conjugacy class Y , and
vice versa.”
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Character theory

A character χ of a group G corresponding to a representation ρ is
a homomorphism

χρ : G→ C defined by χρ : g → tr(ρ(g)).

Nice facts about characters:

(1) They’re class functions.

(2) They satisfy nice relations like

χρ⊕ψ = χρ + χψ

χρ⊗ψ = χρχψ

(3) The simple characters form an orthonormal basis for the class
functions on G.
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Simple symmetric group modules

Conjugacy classes of the symmetric group are given by cycle type.

Example: S4

(a)(b)(c)(d) (ab)(c)(d) (ab)(cd) (abc)(d) (abcd)

(1, 1, 1, 1) (2, 1, 1) (2, 2) (3, 1) (4)

Cycle types of permutations of k are in bijection with partitions
λ ` k:

λ = (λ1, λ2, . . . ) with λ1 ≥ λ2 ≥ . . . , λi ∈ Z≥0

and λ1 + λ2 + · · · = k.

(Pictures are up-left justified arrangements of boxes with λi boxes
in the ith row.)
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More representation theory of Sk
Some combinatorial facts: (without proof)

(1) If Sλ is the module indexed by λ, then

Ind
Sk+1

Sk
(Sλ) =

⊕
µ`k+1

µ∈λ+

Sµ and ResSkSk−1
(Sλ) =

⊕
µ`k−1

λ∈µ+

Sµ

where λ+ is the set of partitions that look like λ plus a box.

(2) The basis for Sλ is indexed by downward-moving paths from ∅
to λ.

(3) The matrix entries for ρλ are functions of contents of added
boxes: the content of a box b in row i and column j of a
partition as

c(b) = j − i, the diagonal number of b.

(The matrix entries for the transposition (i i+ 1) are functions
of the values on the edges between levels i− 1, i, and i+ 1.)
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Ŝ1:
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Ŝ5:

0
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3 -1 2 0 -2 1 -3
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