Math 128: Combinatorial representation theory of complex Lie algebras and related topics

Recommended reading

For the first while:

1. N. Bourbaki, Elements of Mathematics: Lie Groups and Algebras.
2. W. Fulton, J. Harris, Representation Theory: A first course.
3. J. E. Humphreys, Introduction to Lie Algebras and Representation Theory.
4. J. J. Serre, Complex Semisimple Lie Algebras.

Later:
5. H. Barcelo, A. Ram, Combinatorial Representation Theory.
...among others

The poster child of CRT: the symmetric group

Combinatorial representation theory is the study of representations of algebraic objects, using combinatorics to keep track of the relevant information.

The poster child of CRT: the symmetric group

Combinatorial representation theory is the study of representations of algebraic objects, using combinatorics to keep track of the relevant information.

What are the algebraicic objects?
Let F be your favorite field of characteristic 0 . (Really, fix $F=\mathbb{C}$.) Recall that an algebra A over F is a vector space over F with an associative multiplication

$$
A \otimes A \rightarrow A
$$

(tensor product over F just means the multiplication is bilinear).

The poster child of CRT: the symmetric group

Combinatorial representation theory is the study of representations of algebraic objects, using combinatorics to keep track of the relevant information.

What are the algebraicic objects?
Let F be your favorite field of characteristic 0 . (Really, fix $F=\mathbb{C}$.) Recall that an algebra A over F is a vector space over F with an associative multiplication

$$
A \otimes A \rightarrow A
$$

(tensor product over F just means the multiplication is bilinear).
Favorite examples:

1. Group algebras (today)
2. Enveloping algebras of Lie algebras (next)

Representations

A homomorphism is a structure-preserving map.
A representation of an F-algebra A is a vector space V over F, together with a homomorphism

$$
\rho: A \rightarrow \operatorname{End}(V)=\{F \text {-linear maps } V \rightarrow V\}
$$

The map (equipped with the vector space) is the representation; the vector space (equipped with the map) is called an A-module.

Representations

A homomorphism is a structure-preserving map.
A representation of an F-algebra A is a vector space V over F, together with a homomorphism

$$
\rho: A \rightarrow \operatorname{End}(V)=\{F \text {-linear maps } V \rightarrow V\}
$$

The map (equipped with the vector space) is the representation; the vector space (equipped with the map) is called an A-module.

Example

The permutation representation of the symmetric group S_{n} is $V=\mathbb{C}^{k}=\mathbb{C}\left\{v_{1}, \ldots, v_{k}\right\}$ together with

$$
\rho: S_{k} \rightarrow \mathrm{GL}_{k}(\mathbb{C}) \quad \text { by } \quad \rho(\sigma) v_{i}=v_{\sigma(i)}
$$

Representations

A homomorphism is a structure-preserving map.
A representation of an F-algebra A is a vector space V over F, together with a homomorphism

$$
\rho: A \rightarrow \operatorname{End}(V)=\{F \text {-linear maps } V \rightarrow V\}
$$

The map (equipped with the vector space) is the representation; the vector space (equipped with the map) is called an A-module.

Example

The permutation representation of the symmetric group S_{n} is $V=\mathbb{C}^{k}=\mathbb{C}\left\{v_{1}, \ldots, v_{k}\right\}$ together with

$$
\rho: S_{k} \rightarrow \operatorname{GL}_{k}(\mathbb{C}) \quad \text { by } \quad \rho(\sigma) v_{i}=v_{\sigma(i)}
$$

A simple module is a module with no nontrivial invariant subspaces.

Permutation representation of S_{3}

On the basis $\left\{v_{1}, v_{2}, v_{3}\right\}$:
$1 \mapsto\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
$(12) \mapsto\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$
$(23) \mapsto\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$
$(123) \mapsto\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$
$(132) \mapsto\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$
$(13) \mapsto\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$

Permutation representation of S_{3}

On the basis $\left\{v_{1}, v_{2}, v_{3}\right\}$:
$1 \mapsto\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
$(12) \mapsto\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$
$(23) \mapsto\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$
$(123) \mapsto\left(\begin{array}{ccc}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$
$(132) \mapsto\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$
$(13) \mapsto\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$

On the basis $\left\{v, w_{2}, w_{3}\right\}$:

$$
\begin{array}{ccc}
1 \mapsto\left(\begin{array}{ccc}
\begin{array}{|ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\hline
\end{array}
\end{array}\right) & (12) \mapsto\left(\begin{array}{ccc}
\begin{array}{|ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1 \\
\hline
\end{array}
\end{array}\right) & (23) \mapsto\left(\begin{array}{|ccc|}
\hline 1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
\hline
\end{array}\right) \\
(123) \mapsto\left(\begin{array}{|ccc|}
\hline 1 & 0 & 0 \\
0 & -1 & -1 \\
0 & 1 & 0 \\
\hline
\end{array}\right) & (132) \mapsto\left(\begin{array}{|ccc|}
\hline 1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & -1 \\
\hline
\end{array}\right) & (13) \mapsto\left(\begin{array}{|ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & -1 \\
\hline
\end{array}\right)
\end{array}
$$

An algebra is semisimple if all of its modules decompose into the sum of simple modules. We like these because their isomorphic to a sum of their simple modules.

An algebra is semisimple if all of its modules decompose into the sum of simple modules. We like these because their isomorphic to a sum of their simple modules.

Example

The group algebra of a group G over a field F is semisimple iff $\operatorname{char}(F)$ does not divide $|G|$. So group algebras over \mathbb{C} are all semisimple.

An algebra is semisimple if all of its modules decompose into the sum of simple modules. We like these because their isomorphic to a sum of their simple modules.

Example

The group algebra of a group G over a field F is semisimple iff $\operatorname{char}(F)$ does not divide $|G|$. So group algebras over \mathbb{C} are all semisimple.

Theorem
For a finite group G, the simple G-modules are in bijection with conjugacy classes of G.

An algebra is semisimple if all of its modules decompose into the sum of simple modules. We like these because their isomorphic to a sum of their simple modules.

Example

The group algebra of a group G over a field F is semisimple iff $\operatorname{char}(F)$ does not divide $|G|$. So group algebras over \mathbb{C} are all semisimple.

Theorem
For a finite group G, the simple G-modules are in bijection with conjugacy classes of G.

Proof.
Use (A) class sums, or (B) character theory.

An algebra is semisimple if all of its modules decompose into the sum of simple modules. We like these because their isomorphic to a sum of their simple modules.

Example

The group algebra of a group G over a field F is semisimple iff $\operatorname{char}(F)$ does not divide $|G|$. So group algebras over \mathbb{C} are all semisimple.

Theorem
For a finite group G, the simple G-modules are in bijection with conjugacy classes of G.

Proof.
Use (A) class sums, or (B) character theory.
Either way, this is not a particularly satisfying bijection, since it doesn't say "given representation X, here's conjugacy class Y, and vice versa."

Character theory

A character χ of a group G corresponding to a representation ρ is a homomorphism

$$
\chi_{\rho}: G \rightarrow \mathbb{C} \quad \text { defined by } \quad \chi_{\rho}: g \rightarrow \operatorname{tr}(\rho(g)) .
$$

Character theory

A character χ of a group G corresponding to a representation ρ is a homomorphism

$$
\chi_{\rho}: G \rightarrow \mathbb{C} \quad \text { defined by } \quad \chi_{\rho}: g \rightarrow \operatorname{tr}(\rho(g)) .
$$

Nice facts about characters:
(1) They're class functions.

Character theory

A character χ of a group G corresponding to a representation ρ is a homomorphism

$$
\chi_{\rho}: G \rightarrow \mathbb{C} \quad \text { defined by } \quad \chi_{\rho}: g \rightarrow \operatorname{tr}(\rho(g)) .
$$

Nice facts about characters:
(1) They're class functions.
(2) They satisfy nice relations like

$$
\begin{aligned}
& \chi_{\rho \oplus \psi}=\chi_{\rho}+\chi_{\psi} \\
& \chi_{\rho \otimes \psi}=\chi_{\rho} \chi_{\psi}
\end{aligned}
$$

Character theory

A character χ of a group G corresponding to a representation ρ is a homomorphism

$$
\chi_{\rho}: G \rightarrow \mathbb{C} \quad \text { defined by } \quad \chi_{\rho}: g \rightarrow \operatorname{tr}(\rho(g)) .
$$

Nice facts about characters:
(1) They're class functions.
(2) They satisfy nice relations like

$$
\begin{aligned}
& \chi_{\rho \oplus \psi}=\chi_{\rho}+\chi_{\psi} \\
& \chi_{\rho \otimes \psi}=\chi_{\rho} \chi_{\psi}
\end{aligned}
$$

(3) The simple characters form an orthonormal basis for the class functions on G.

Simple symmetric group modules

Conjugacy classes of the symmetric group are given by cycle type.
Example: S_{4}
$(a)(b)(c)(d)$
$(a b)(c)(d)$
$(a b)(c d) \quad(a b c)(d)$
(abcd)

Simple symmetric group modules

Conjugacy classes of the symmetric group are given by cycle type.
Example: S_{4}

$$
(a)(b)(c)(d) \quad(a b)(c)(d) \quad(a b)(c d) \quad(a b c)(d) \quad(a b c d)
$$

Cycle types of permutations of k are in bijection with partitions $\lambda \vdash k$:

$$
\begin{array}{ll}
\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right) & \text { with } \lambda_{1} \geq \lambda_{2} \geq \ldots, \quad \lambda_{i} \in \mathbb{Z}_{\geq 0} \\
& \text { and } \lambda_{1}+\lambda_{2}+\cdots=k .
\end{array}
$$

Simple symmetric group modules

Conjugacy classes of the symmetric group are given by cycle type.
Example: S_{4}
$(a)(b)(c)(d)$
$(a b)(c)(d)$
$(a b)(c d)$
$(a b c)(d)$
(abcd)
$(1,1,1,1) \quad(2,1,1)$
$(2,2)$
$(3,1)$

Cycle types of permutations of k are in bijection with partitions $\lambda \vdash k$:

$$
\begin{array}{ll}
\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right) & \text { with } \lambda_{1} \geq \lambda_{2} \geq \ldots, \quad \lambda_{i} \in \mathbb{Z}_{\geq 0} \\
& \text { and } \lambda_{1}+\lambda_{2}+\cdots=k .
\end{array}
$$

Simple symmetric group modules

Conjugacy classes of the symmetric group are given by cycle type. Example: S_{4}
$(a)(b)(c)$
$(1,1,1$
θ
$(a b)(c)(d)$
$(2,1,1)$
$(a b)(c d) \quad(a b c)(d)$
(abcd)

Cycle types of permutations of k are in bijection with partitions $\lambda \vdash k$:

$$
\begin{array}{ll}
\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right) & \text { with } \lambda_{1} \geq \lambda_{2} \geq \ldots, \quad \lambda_{i} \in \mathbb{Z}_{\geq 0} \\
& \text { and } \lambda_{1}+\lambda_{2}+\cdots=k .
\end{array}
$$

(Pictures are up-left justified arrangements of boxes with λ_{i} boxes in the i th row.)

More representation theory of S_{k}
Some combinatorial facts: (without proof)

More representation theory of S_{k}

Some combinatorial facts: (without proof)
(1) If S^{λ} is the module indexed by λ, then

$$
\operatorname{Ind}_{S_{k}}^{S_{k+1}}\left(S^{\lambda}\right)=\bigoplus_{\substack{\mu \vdash k+1 \\ \mu \in \lambda^{+}}} S^{\mu} \quad \text { and } \operatorname{Res}_{S_{k-1}}^{S_{k}}\left(S^{\lambda}\right)=\bigoplus_{\substack{\mu \vdash k-1 \\ \lambda \in \mu^{+}}} S^{\mu}
$$

where λ^{+}is the set of partitions that look like λ plus a box.

More representation theory of S_{k}

Some combinatorial facts: (without proof)
(1) If S^{λ} is the module indexed by λ, then

$$
\operatorname{Ind}_{S_{k}}^{S_{k+1}}\left(S^{\lambda}\right)=\bigoplus_{\substack{\mu \vdash k+1 \\ \mu \in \lambda+}} S^{\mu} \quad \text { and } \operatorname{Res}_{S_{k-1}}^{S_{k}}\left(S^{\lambda}\right)=\bigoplus_{\substack{\mu \vdash-k-1 \\ \lambda \in \mu+}} S^{\mu}
$$

where λ^{+}is the set of partitions that look like λ plus a box.
(2) The basis for S^{λ} is indexed by downward-moving paths from \emptyset to λ.

More representation theory of S_{k}

Some combinatorial facts: (without proof)
(1) If S^{λ} is the module indexed by λ, then

$$
\operatorname{Ind}_{S_{k}}^{S_{k+1}}\left(S^{\lambda}\right)=\bigoplus_{\substack{\mu \vdash k+1 \\ \mu \in \lambda+}} S^{\mu} \quad \text { and } \operatorname{Res}_{S_{k-1}}^{S_{k}}\left(S^{\lambda}\right)=\bigoplus_{\substack{\mu \vdash-k-1 \\ \lambda \in \mu+}} S^{\mu}
$$

where λ^{+}is the set of partitions that look like λ plus a box.
(2) The basis for S^{λ} is indexed by downward-moving paths from \emptyset to λ.
(3) The matrix entries for ρ_{λ} are functions of contents of added boxes: the content of a box b in row i and column j of a partition as

$$
c(b)=j-i, \quad \text { the diagonal number of } b .
$$

(The matrix entries for the transposition $(i i+1)$ are functions of the values on the edges between levels $i-1, i$, and $i+1$.)

