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INTRODUCTION

Let G be one of the classical groups GL(N,C), O(N,C), Sp(N,C)
acting on the vector space U = C". The question of how the nth tensor
power of the representation U decomposes into irreducible summands
leads to studying the centralizer C(n, N) in End(U)®" of the image of the
group G. By the definition of the algebra C(n, N) we have the ascending
chain of subalgebras

C(1,N)cC(2,N)c --- cC(n,N).

Moreover, for the classical group G any irreducible representation of
C(n, N) appears at most once in the restriction of an irreducible repre-
sentation of C(n + 1, N). Therefore a canonical basis exists in any irre-
ducible representation V' of C(n, N). Its vectors are the eigenvectors for
the subalgebra X(n, N) in C(n, N) generated by all the central elements
in the members of the above chain.

For the group G = GL(N, C) the centralizer C(n, N) is generated by
the permutational action of the symmetric group S(»n) in U®". The action
of S(n) on the vectors of the canonical basis in IV was described for the
first time by A. Young [Y]. G. Murphy [Mp] rederived the formulas from
[Y] by using the properties of the subalgebra X(n, N).

Let us now suppose that G is the orthogonal group O(N,C). To
describe the corresponding centralizer algebra C(n, N) explicitly, R. Brauer
[Br] introduced a certain complex associative algebra B(n, N) along with a
homomorphism onto C(n, N). This homomorphism is injective if and only
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BRAUER’S CENTRALIZER ALGEBRAS 665
if N > n. There is also a chain of subalgebras
B(1,N) cB(2,N) c --- cB(n,N).

The group algebra C[S(n)] is contained in B(n, N) as a subalgebra. The
structure of the algebra B(n, N) was investigated by P. Hanlon and D.
Wales; see [HW] and references therein. In the present article we will also
work with B(n, N) and regard I as a representation of the latter algebra.

For N > n an explicit description of the action of the algebra B(n, N)
on the vectors of the canonical basis in 1V was given by J. Murakami in
[MK]. His description was based on the results of [JMO]. In the present
article for any N we give a new description of this action based entirely on
the properties of the commutative subalgebra X(n, N) in C(n, N). The
case G = Sp(N, C) is quite similar and will be considered elsewhere.

In Section 2 we introduce a remarkable family of pairwise commuting
elements x,,..., x, of the algebra B(n, N). For every n the element x, . ;
belongs to the centralizer of the subalgebra B(n, N) in B(n + 1, N). The
elements x,,..., x, are the analogues of the pairwise commuting elements
of C[S(n)] which were used in [Ju, Mp]. Their images in C(n, N) belong to
the subalgebra X(n, N). The vectors of the canonical basis in 7 are
eigenvectors of the elements x,,...,x, and we evaluate the respective
eigenvalues; see Theorem 2.6.

There is a natural projection map B(n + 1, N) — B(n, N) commuting
with both left and right multiplication by the elements from B(n, N); this
map has been already used by H. Wenzl in [W]. The images of powers of
the element x,, , with respect to this map are certain central elements of
the algebra B(n, N). We evaluate the eigenvalues of these central ele-
ments in every irreducible representation I; see Theorem 3.9.

The algebra B(n, N) comes with family of generators s;,..., s,_;
S1,...,8,_4. The elements s,,...,s,_, are the standard generators of the
symmetric group S(n). Moreover, the quotient of the algebra B(n, N) with
respect to the ideal generated by 5,,...,5,_, is isomorphic to C[S(n)]. We
point out certain relations between the elements x,,...,x, and the
generators of B(n, N); see Proposition 2.3. By using Proposition 2.3 and
Theorems 2.6, 3.9 we describe the action of these generators on the
vectors of the canonical basis in every representation V. For the represen-
tations which factorize through C[S(n)] our formulas coincide with those
from [Y].

In Section 4 we use the results of Sections 2 and 3 as a motivation to
introduce a new algebra. This algebra is an analogue of the degenerate
affine Hecke algebra He(n) from [C1, C2, D]. We will denote the new
algebra by We(n, N) and call it the affine degenerate Wenzl algebra. The
algebra He(n) is a quotient of We(n, N); see Corollary 4.9. For each
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m=0,1,2,... the algebra We(n, N) admits a homomorphism to the
centralizer of the subalgebra B(m, N) in B(m + n, N). The kernels of all
these homomorphisms have the zero intersection; see Theorem 4.7. We
use these homomorphisms to construct a linear basis in the algebra
We(n, N); see Theorem 4.6.

1. BRAUER CENTRALIZER ALGEBRA

Let n be a positive integer and N be an arbitrary complex parameter.
Denote by £(n) the set of all graphs with 2n vertices and n edges such
that each vertex is incident with an edge. We will enumerate the vertices
by 1,...,n, 1,...,7. In other words, £(n) consists of all partitions of the
set{1,...,n,1,..., 7} into pairs. We will define the Brauer algebra B(n, N)
as an associative algebra over C with the basic elements b(y), v € &(n).

To describe the product b(y)b(y') in B(n, N) consider the graph
obtained by identifying the vertices 1,...,7 of y with the vertices 1,...,n
of y’, respectively. Let g be the number of loops in this graph. Remove all
the loops and replace the remaining connected components by single
edges, retaining the numbers of the terminal vertices. Denote by y oy’ the
resulting graph, then by definition

b(y)b(y') =NT-b(ye°v'). (1.1)

Evidently, the dimension of B(n, N) is equal to 1-3-5-----(2n — 1).
The algebra B(n, N) contains the group algebra of the symmetric group
S(n); one can identify an element s of S(n) with b(y), where the edges of
y are {s(1),1},...,{s(n), 7}.

An edge of the form {k,k} will be called vertical. We will regard
B(n — 1, N) as a subalgebra of B(n, N) with the basic elements b(y),
where y contains the vertical edge {r, n}. Along with a transposition (k, [)
in S(n) we will consider the element (k, )= b(y) of B(n, N), where the
only non-vertical edges of y are {k, I} and {k, i}.

We will sometimes write s, and §, instead of (k, k + 1) and (k, k + 1),
respectively. The elements s,,...,s,_;§,,...,5,_,; generate the algebra
B(n, N). One can directly verify the following relations for these elements:

sE=1;  SE=N5; 855 =55 =5, (1.2)

SkSk+15k = Sk+ 15k Sk+ 1 SiSk+15k = Sk Sk 15kSke1 = Seens (1.3)
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SiSk+ 15k = Sk+ 15k Sk+15kSk+1 = Sk+15ks (1.4)

SeS; =88, 5e8; = 8,5, 5.5, = 5,5, lk —1>1. (1.5)

ProrosITION 1.1. The relations (1.2) to (1.5) are defining relations for
B(n, N).

For the proof of this proposition see [BW, Sect. 5]. Now suppose that N
is a positive integer. Consider the nth tensor power of the representation
U = CV of the orthogonal group G = O(N, C). Let u(1),...,u(N) be the
standard orthogonal basis in U; let us denote by u(i; --- i,) the vector
u(i;) ® ---®u(i,) in U®". Consider now the centralizer algebra C(n, N) =
End,(U®").

ProposITION 1.2. (@) There is a homomorphism B(n, N) - C(n, N),
where the actions of (k,1) and (k,l) in U®" for k < are defined by

(kD) ~u(iy iy iy e i) = u(iy iy iy e 1), (1.6)

W'M(il ETES PIRTRN MRTE in) = S(ikil) . ;1”(’.1 N AT R in)‘

(b) This homomorphism is surjective for any positive integer N.
(¢) This homomorphism is injective if and only if N > n.

Proof. The actions of the elements (k,/) and (k,[) in U®" evidently
commute with the action of the orthogonal group G. The parts (a) and (b)
are results of [Br, Sect. 5]. The part (c) follows from [B2, Theorem 7A]. 1

The algebra C(n, N) is semisimple by its definition; the irreducible
representations of C(n, N) are parametrized [Wy, Theorem 5.7.F] by
Young diagrams with at most N boxes in the first two columns and with
n — 2r boxes altogether, where r = 0,1,...,[n/2]. Denote the set of all
such diagrams by @(n, N). Let V(A, n) be the representation of C(n, N)
corresponding to a diagram A € @(n, N). The next proposition is con-
tained in [L, Theorem I]; see also [Ki, Sect. 3].

ProPosITION 1.3.  The restriction of V(A, n) to C(n — 1, N) decomposes
into the direct sum @®, V(u,n — 1), where p ranges over all the diagrams
wedn—1,N) obtained from A by removing or adding a box.

COROLLARY 1.4. Each irreducible representation of C(n — 1, N) appears
at most once in the restriction onto C(n — 1, N) of an irreducible representa-
tion of C(n, N).
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2. JUCYS-MURPHY ELEMENTS FOR B(n, N)

By definition for any complex parameter N we have the chain of
subalgebras

B(1,N) cB(2,N) c --- cB(n,N). (2.1)

In this section we will introduce a remarkable family of pairwise commut-
ing elements in B(n, N) corresponding to this chain; cf. [Ju, Mp]. For
every k = 1,..., n consider the element of B(k, N)

v Y ey - (22)
=1

LEMMA 2.1. The element x,, commutes with any b € B(k — 1, N).

Proof. The right hand side of (2.2) is symmetric in [ =1,...,k — 1.
Therefore x, commutes with any element s of S(n — 1). To complete the
proof it suffices to check that x, commutes with §5,_,. The commutator
[5,_,, x,] equals

[(k=2k=1),(k—2,k) = (k= 2,k) + (k—1,k) — (k= 1,k)].

The latter commutator vanishes because

(k=2k=1)-(k—2,k)=(k—-2,k—=1)-(k—1,k),
(k=2 k-1 (k-2k)y=(k—2k—1)-(k—1,k),
(k=2,k)- (k=2k-1)=(k—1k)-(k—2,k—1),
(k=2k)y-(k—2,k—=1)=(k—1,k)-(k—2,k—1).

The last four equalities are verified directly by the definition (1.1). 1
COROLLARY 2.2. The elements x4, ..., x, of B(n, N) pairwise commute.

PropPosITION 2.3.  The following relations hold in the algebra B(n, N):

SEX; = X8, Sex; = x5, l#k, k+1, (2.3)
SEXp ~ XSk =8 — 1 SiXper — XS = 1 — 8 (2.4)
Se( X +x441) =0, (% +X411)5 = 0. (255)

Proof. The relations (2.3) for [ > k + 1 follow from Lemma 2.1 while
those for I < k follow directly from the definition (2.2). Also by this
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definition we have the equality
Xpp1 = SkXpSp = S — S,

which implies the relations (2.4). Again using (2.2) we obtain for any
[ =1,..., k — 1 the equalities

Kk+D)-(k)=(kk+1)-(k+1,D),
K k+1)- (kD) =(kk+D)-(k+11),

which together with

(k,k+1)-(k,k+1)=(k,k+1), (k,k+1)*=N-(kk+1)

imply the first relation in (2.5). The proof of the second relation is quite
similar. |

COROLLARY 2.4. The elements xi + - +)cf1 with i =1,3,... are central
in B(n, N).

Proof. Forany i=1,2,3,... the relations (2.4) imply that

i
P 1= _ i—j
SeXh =X 18+ 2 x[51(5 — )X
j=1

(2.6)

i
P i i-1(= _ i—j
SkXk+1 = XiSk Zxk (5, — V)xis
j=1

Combining (2.5) with (2.6) gives for odd i the equalities

P ] = J-le vimj _ o j-1g yi-j
[s60 %k +x4sq] = (xk+1skxk Xk Skxk+1)

i
j=

[

i

— 1) Y (s, i — x5, xiT) =
Y (-1 (xk Sk Xk xi5x ) =0.
j=1

Now it follows directly from (2.3) that for odd i the sum x| + --- +x!

n

commutes with s,. This sum then also commutes with 5, due to (2.5). |

It follows from the definition (1.1) that for any b € B(k, N) there is a
unique element b’ € B(k — 1, N) such that
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cf. [W, Proposition 2.2]. Moreover, the map b — b’ evidently commutes
with the left and right multiplication by elements from the subalgebra
B(k — 1, N) c B(k, N). In particular, due to Lemma 2.1 we have

5,xi5, =205, i=0,1,2,..., (2.8)

where z® =N and z{",z{®,... are central elements of the algebra
B(k — 1, N). In Section 4 we will provide explicit formulas for these
elements; see the equalities (3.3) to (3.5). Here we will point out only some
relations that the definition (2.8) implies.

LEMMA 2.5. We have the relations

i
—2z(0 ="V 4 Y (=1)z( U7V i=1,3,.... (2.9)
j=1

Proof. Let us multiply the relation (2.6) by 5, on the left and on the
right. Then due to (1.2) and (2.5) by the definition (2.8) we get

1
S R < Li-1(s _ i-js
SeXir 1S + 2 Sxf1(5 — ) x5,
j=1

.
25,

= (—1)'z05, + X (-1 H(2P7Vz{=h — 2~ Y)5,. (2.10)
j=1

The last equality with odd i implies (2.9). 1

From now on until the end of Section 3 we will assume that the
parameter N is a positive integer. We will then have the chain of
semisimple algebras

C(1,N) € C(2,N) c - c C(n, N). (2.11)

Consider the subalgebra X(n, N) in C(n, N) generated by all the central
elements of C(1, N),C(2,N),...,C(n, N). Each of the latter algebras is
semisimple. So it follows from Corollary 1.4 that the subalgebra X(n, N) is
maximal commutative.

There is a canonical basis in every representation space V(A,n) of
C(n, N) corresponding to the chain (2.11); it consists of the eigenvectors
of the subalgebra X(n, N). The basic vectors are parametrized by the
sequences

A= (AQ1),...,A(n)) € F(1,N) X - X &(n, N),
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where A(n) = A and each two neighbouring terms of the sequence differ
by exactly one box. Denote by (A, n) the set of all such sequences. Let
v(A) be the basic vector in V(A,n) corresponding to A € (A, n).
Up to a scalar multiplier, it is uniquely determined by the following
condition: v(A) € V(A(k), k) in the restriction of (A, n) to C(k, N) for
any k=1,...,n — 1.

We will regard (A, n) as a representation of the algebra B(n, N) also.
In the next section we will use the elements x,,...,x, € B(n, N) to
describe the action of the generators s,,...,s,_4;8;,...,5,_, of B(n, N)
on the vector v(A) € V(A, n). It follows from Corollary 1.4 and Lemma
2.1 that the images in C(n, N) of the elements x,,..., x, belong to the
subalgebra X(n, N). Denote by x,(A) the eigenvalue of x, corresponding
to the vector v(A). For any A € (A, n) we will define A(0) as the empty
partition.

THEOREM 2.6. Suppose that the diagrams A(k — 1) and A(k) differ by
the box occurring in the row i and the column j. Then

X (A) = i( +j—i), (2.12)

where the upper sign in + corresponds to the case A(k) D A(k — 1) while

the lower sign corresponds to A(k) ¢ A(k — 1).

Proof. 1If a box of the diagram A occurs in the row i and the column j
then the difference j — i is called the content of this box. Denote by n(\)
the number of the boxes in A and by c¢(A) the sum of their contents. Due
to Corollary 2.4 the element x, + --- +x, is central in B(n, N). We shall
prove that its eigenvalue in V(A, n) is

2

Applying this result to k£ and A(k), k — 1 and A(k — 1) instead of n and
A we shall then obtain the equality (2.12).

Consider U®" as a representation space of the algebra G X B(n, N).
Due to Proposition 1.2(b, c) we then have the decomposition

c(A,N) = n(A) +c(A).

Ue= @ U(AN)®V(An), (2.13)
re@(n,N)

where U(A, N) is an irreducible representation of the group G. Here
U(A, N) does not depend on n > n()); see [Wy, Theorem 5.7.F].
It suffices to demonstrate that for some vector w € U(A, N) ® V(A, n)

(xy + - +x,) - w=c(A, N)w.
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Suppose that n = n(A). Then due to [Wy, Theorem 5.7.F] any vector
w € U\, N) ® V(A n) is traceless: we have (k,l)-w =0 for all k <L
Thus (A, n) is irreducible as a representation of the group S(n); it is the
representation corresponding to the diagram A [Wy, Theorem 5.7.E].
Therefore due to [Ma, Examples 1.1.3, 1.7.7]

N-1
(x1+---+xn)-w=( 5 n+ ) (k,l))-w
l<k<l<n
N-1
=( n+c()\))w;

so that the eigenvalue of x; + --- +x, in V(A, n) for n = n(A) is equal to
c().
Now suppose that n — n(A) = 2r > 0. Then we will take w = w; ® wy’,
where
w, € UM N) ® V(A n(X)) cU®"™,

N
w, = ;lu(l) ® u(i) € U®2

Let E;; with /,j = 1,..., N be the standard generators of the Lie algebra
gl(N). By definitions (1.6) and (2.2) the action in U®" of the element
x; + -+ +x, € B(n, N) coincides with that of the Casimir element

1 N 2
C= T )y (El-j—E]-,-)
ij=1

of the universal enveloping algebra U(g) of the Lie algebra g = 30(N) C
gl(N). In particular,

C-w,=(x, +x,) w,=0.

But by the definition of the comultiplication of U(g) we have A(C) =
C®1+1® C. Therefore

(X, + - +x,) w=(C-w) @wS +w; ® (C-w3")
= ((xy + - +x,00) wy) ®ws =c(A, N)w. 1
COROLLARY 2.7. Suppose that N is odd or N > 2n — 1. Then:

(@) the images in C(n, N) of the elements x,...,x, generate the
algebra X(n, N);

(b) theimagesin C(n, N) of the elements xi + -+ +x’ withi = 1,3, ...
generate the centre of the algebra C(n, N).
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Proof. Let an arbitrary diagram A € @(n, N) be fixed. To prove the
part (a) we have to demonstrate that for all different A €.%2(A, n) the
collections of eigenvalues (x,(A), ..., x,(A)) are pairwise distinct. Suppose
that A, A’ € Z(n, N) are different; then A(k — 1) = A'(k — 1) and A(k)
# A'(k) for some k € {2,..., n}. Let A(k), A'(k) differ from A(k — 1) by
the boxes occurring in the rows i,i’ and the columns j, j', respectively. If
ACk), A'(k) > A(k — 1) or A(k), A'(k) c A(k — 1) then j —i#j —i
and x,(A) # x,(A"). Suppose A(k) D A(k —1) and A'(k) € Ak — 1),
then

(A) —x (A)=N—1+j+j —i—i

If j+j >3 then i+i" <N and x,(A) > x,(A). If j/=j=1 then
i"’=i—1and x,(A) —x.,(A’") # 0 for the odd N and for N > 2i — 2.
This proves (a).

Denote by #(A) the unordered collection of the contents of all the
boxes of the diagram A. Then A can be uniquely restored from () since
the boxes with the same content constitute the diagonals of A and the
lengths of the diagonals determine A. To prove the part (b) we will show
that the diagram A € @(n, N) can be uniquely restored from the collec-
tion of the eigenvalues of the elements x{ + -+ +x} with i = 1,3,... in
(A, n). Due to the equality of the formal power series in u~*

) . ) " u-+x
ep Y 2(xi+ - x)uizi= T £

i=1,3,... k=1 U — X

these eigenvalues determine the collection #(A, N) obtained from #(A)
by removing all the pairs of the contents j — i, j* — i’ such that

N-1 N-1
+j—i=—
2 2

+j—i.

The latter condition implies that j =j' =1 and i +i' = N + 1. More-
over, then i # i’ and there is only one box in each of the rows i, i’ of the
diagram A. If N> 2n — 1then i +i’ <N + 1 so that #(A) = €(A, N).

Now let N be odd. If the collection #(A, N) does not contain (1 — N) /2
then there are fewer than (N + 1)/2 rows in A and i +i' <N —2
for any two different rows i,i’. Then we have #(A) = (A, N) again.
Suppose that (A, N) does contain the number (1 — N)/2. Then this
number is minimal in the collection #(A, N) and occurs therein only once.
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Then #() is a disjoint union of #(A, N) and

{1—i,i—N|min(%()\,N)\{¥} >1-i> 1_2N}.

Thus the collection #(A) can be always restored from #(A, N). This
proves (b). 1

Remark. For N =2,4,...,2n — 2 the statements (a) and (b) of Corol-
lary 2.7 are no longer valid. However, the elements x,, ..., x, will suffice

to describe the action in V(A, n) of the generators s;,...,s,_4; S1,...,3
of B(n, N) for any positive integer N.

n—1

3. YOUNG ORTHOGONAL FORM FOR C(n, N)

In this section we will make explicit the matrix elements s,(A, A",
5.(A, A') of the generators s,,5, € B(n, N) in the canonical basis of the
representation V(A, n):

s v(A) = P sc(A A u(A),
AN eZ(\ n)

Sero(A) = X 5 (A A)u(A).
AN eZ(A\ n)

Note that each of the vectors v(A) € V(A, n) here is defined up to a scalar
multiplier. Before specifying these multipliers we will determine the diag-
onal matrix elements s, (A, A) and 5.(A,A) along with the products
s(A, A)s, (A, A) and 5,(A, A5 (A, A).

Let an index k € {1,...,n — 1} and a sequence A €.#(A, n) be fixed.
Denote by V(A, k) the subspace in V(A, n) spanned by the vectors v(A’)
such that A’'(l) = A(l) for any I # k. The action of s, and 5, in V(A, n)
preserves this subspace.

ProrosITION 3.1.  Suppose A(k — 1) # A(k + 1). Then 5, - v(A) = 0.

Proof. The diagrams A(k — 1) and A(k + 1) differ by two boxes; let
j—iand j' — i’ be the contents of these boxes. If x,(A) + x,,,(A) # 0
then by applying to v(A) the first of the relations (2.5) we obtain that
5. v(A) = 0.
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Now suppose that x,(A) + x,, (A) = 0. Then by Theorem 2.6 we have
j=j'=1and i +i =N + 1 Therefore either A(k — 1) c A(k + 1) or
A(k — 1) D A(k + 1). In both of these cases the action of the elements s,
and 5, in V(A, n) preserves the subspace C - v(A). Moreover, then we have
x(A) =3 and x,,,(A) = —3. Due to (1.2) by applying the first of the
relations (2.4) to the vector 5, - v(A) we obtain that (N — 2)5, - v(A) = 0.
This equality completes the proof for N # 2.

Let ¢ and ¢ denote respectively the empty diagram and the diagram
consisting of the two boxes in the first column. If N = 2 then

{A(k = 1), Ak + 1)} = {6, ¢}.

The representation U(y, 2) of the group G = O(2,C) is the determinant
representation and

U(A(k+1),2) =U(A(k—1),2) ® U(y,2).
Therefore the action of 5, in the space
Homy 1 o(V(A(k — 1),k = 1), V(A(k + 1),k + 1))
= Homg, g 1.2(U(A(k + 1),2) ® V(A(k = 1),k — 1), U°%*D)

Homg(U(A(k + 1),2), U(A(k — 1),2) ® U®?)

coincides with that of §, in V(y,2). This proves that 5, -v(A) =0 for
N=2 1

ProrosITION 3.2. Suppose that A(k — 1) # A(k + 1). Then we have
X (A) # x; (A and s, (A, A) = (xp, (A) — x, (AL

Proof. By applying to the vector v(A) the second of the relations (2.4)
we obtain that s, (A, A)Xx,,(A) —x,(A) =1 1

Observe that if A(k — 1) # A(k + 1) then the space V(A, k) has dimen-
sion at most two. Therefore due to the relation s? = 1 we get

CoROLLARY 3.3. Suppose A(k — 1)+ A(k + 1) and v(A') € V(A, k)
with A # A'. Then s, (A, A)s, (A", A)=1—(x,,,(A)—x,(A) 2.

Two Young diagrams are associated if the sum of the lengths of their
first columns equals N while the lengths of their other columns respec-
tively coincide. In particular, for even N a diagram is self-associated if its
first column consists of N /2 boxes.

LEMMA 3.4.  For any v(N') € V(A, k) we have x;(A) + x,(A") # 0 un-
less N is odd and A’ = A, where the diagrams A(k — 1), A(k) are associated.
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Proof. Let the diagrams A(k) and A'(k) differ from A(k — 1) by the
boxes with contents j — i and j' — i’, respectively. If

A(k) € A(k — 1) € A'(k) or A(k) > A(k — 1) D A’(k)
then j —i #j’ —i" and x,(A) + x,(A) # 0.
Assume now that A(k), A'(k) c A(k — 1) or A(k), A'(k) o Ak — D).
Then the condition x,(A) + x,(A’) = 0 takes the form
j—i+j —i'=1-N, (3.1)

which implies that j = j' = 1. Then { = i’ due to our assumption. Thus we
obtain from (3.1) that A = A’ and N = 2i + 1 so that the diagrams
A(k — 1), A(k) are associated. ||

Let us now consider the case A(k — 1) = A(k + 1). Due to Theorem 2.6
we then have x,(A") + x,,,(A") =0 for any v(A') € V(A, k). The next
two lemmas are contained in [RW, Theorem 2.4(b)]. We will include their
short proofs here.

LEMMA 3.5. Suppose that A(k — 1) = A(k + 1). Then
dimU(A(k), N)
dimU(A(k +1),N)’

5(AA) =

Proof. Let 7, denote the trace on the algebra C(n, N) induced by the
usual matrix trace on End(U®"). We will also regard 7, as a trace on the
algebra B(n, N). Then due to the definition (1.1)

Ter1(5:05,) = N - 7.(b), beB(k,N).
Let us apply this equality to an element b € B(k, N) such that for any
AN eZ(\n)
b-u(A) = v(A) if A’(l_) = A(l) forl <k,
0 otherwise.
Due to Proposition 3.1 we then obtain that
N-dimU(A(k +1),N)5.(A,A) =N-dimU(A(k),N). |

LEMMA 3.6.  Suppose that A(k — 1) = A(k + 1). Then the image of the
action of §, in the subspace V(A, k) is one-dimensional.

Proof. Due to the relation 52 = N5, any eigenvalue of the action of 5,
in the subspace V(A, k) is either N or zero. Lemma 3.5 along with the
decomposition

UAK+1),N)eU= @ UA(K),N)
v(A)EV(A, k)
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implies that the trace of this action is equal to N. Therefore the eigen-
value N of the action of 5, in V(A, k) has multiplicity one. |

COROLLARY 3.7. Suppose that A(k — 1) = A(k + 1) and the vector
o(A)) € V(A, k). Then 5, (A, A)5, (A", A) = 5,(A, A5 (A, A)).

There are well known explicit formulas for the dimension of the irre-
ducible representation U(A, N) of the orthogonal group G; see, for in-
stance, [EK, Sect. 3]. Due to Lemma 3.5 these formulas already provide
certain expressions for the matrix element 5,(A, A). In this section we will
employ the relations (2.4) and (2.8) to determine 5,(A, A) independently of
any explicit formula for dim U(A, N).

Suppose that A(k — 1) = A(k + 1) = u. Let [ be the number of pair-
wise distinct rows (or columns) in the diagram w. Then one can obtain
[ + 1 diagrams by adding a box to u and [ diagrams by removing a box
from u. Let ¢y,...,c;., and d,,...,d, be the contents of these boxes,
respectively. Denote by b,,..., b,,,; the numbers

(N=-1/2+cy,....,(N=1)/2 + ¢;,4,
(N =1)/2 —dyes, ~(N = 1)/2 ~ d,

taken in an arbitrary order. Introduce the formal power series in u !

] 21+1 ¢ 4+ p.
O(mw) = La(wyu' =TT —2 (32)
i>0 j=1 U =0

the coefficients g,(w), g,(w),... are the symmetric Schur g-functions in

by, by

Further, let m be the total number of boxes in the diagram u. Let
e, ..., e, be the contents of all these boxes. Denote by 4, ...,aq, the
numbers

(N=-1/2+e,....(N=-1)/2 +e,

taken in an any order. Then we have another expression for the series (3.2).

LEMMA 3.8. We have the equality

2 2
uta) —1(u—a)
u—aj)z—l(u+aj)2

u+ (N-1)y2 m
-1 U

O(m,u) =

~ |~
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Proof. Forany h € C and i > 0 we have the equality

I+1 l

Y(h+e)— X (h+d)

j=1 j=1

=h+

M=

l(h te+1) —2(h+e) + (h+e —1),

j
which can be verified by induction on m. Let us multiply each side of this

equality by 2u~'/i and take the sum over all odd i. Exponentiate the
resulting sums. When & = (N — 1)/2 we get the required statement. |

Denote by z{’(u) the eigenvalue in the representation V(u, k — 1) of
the central element z{” € B(k — 1, N) defined by (2.8). Introduce the
generating function

Z(pou) = X zi(mu.

i=0
THEOREM 3.9.  We have the equality
Z(pou) = (u+3) Q(pu) —u+ 3.

Proof. Consider the generating series

Zy(u) = Y z0u"" e B(k— 1, N)[[u"]]. (3.3)
i>0
Then determine the series Q,(u) € B(k — 1, N)[[u~*]] by the equality
Zo(u) =(u+3) Quu) —u+3. (3.4)

We have to prove that the eigenvalue of Q,(u) in V(u, k — 1) is exactly
O( u, u). Later on in a more general setting we shall prove the equality

u+(N-1)/2 .k‘l (u+x)" -1 (M_xz)z_
u—(N-1)/2 =i (u-x)" -1 (u+x)""

see Corollary 4.3. Due to (3.5) the required statement follows from
Theorem 2.6 and Lemma 3.8. ||

CoROLLARY 3.10. Suppose that Ak — 1) = Ak +1) =u and let
x,(A) = b. Then

Oy (u) = (3.5)

b+ b,

2b+ 1) [1 : ifb+# —1/2;
) b#b b —b;
S(AA) = b+ b,

b+b b —b;

ifb = —1/2.
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Proof.  Let us make use of the relation
S Z(wyut =5 (u _xk)_lgk' (36)

Any eigenvalue of x, in V(A, k) distinct from —3 has multiplicity one.
Moreover, it then appears only once in the collection b4, ..., b,,, ;. There-
fore if b = —% we get from (3.6)

+b;

_ b,'

here we use Theorem 3.9 and the inequality 5,(A, A) # 0 provided by
Lemma 3.5.

If b = —3 appears as an eigenvalue of x, in V(A, k) it has multiplicity
two. Then it appears twice in the collection b,,...,b,,, ;. Let x,(A) =
x(A) = —%, where v(A') € V(A, k) and A(k) # A’(k). Then the dia-
grams A(k) and A'(k) are associated. Representations U(A(k), N) and
U(A'(k), N) of G have the same dimension [Wy, Theorem 5.9.A]. So
5.(A,A) =5.(A’, A") # 0 by Lemma 3.5. Therefore

b + b
5.(A,A) = resZ(,u u)/2u = —bUb PR

J

Let 8(A, A’) be the Kronecker delta.

ProposITION 3.11. Suppose that A(k — 1) = A(k + 1) and the vector
v(A") € V(A, k). Then

se(A A) = (5u(AA) = 8(A, A))(x(A) +x (M) (37)

unless N is odd and N' = A, where the diagrams A(k), A(k — 1) are associ-
ated. In the latter case s, (A, A) = 1.

Proof. Due to the equality x,(A’) +x,.,(A’) =0 the first of the
relations (2.4) implies

st(A A (e (A) + (A7) = (5 (A A7) = 8(A, A)).

Thus when x,(A) + x,(A’) # 0 we obtain the equality (3.7).

Now assume that x,(A) + x,(A") = 0. Then by Lemma 3.4 the number
N is odd and A’ = A, where the diagrams A(k), A(k — 1) are associated.
Then 5.(A,A)=1 by Lemma 3.5 and x,(A)=0. Moreover, all the
eigenvalues of the element x, in V(A,k) are then pairwise distinct.
Consider the diagonal matrix element of the relation s, 5, = 5, in V(A, k)
corresponding to the vector v(A). By making use of the equality (3.7) and
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of Corollary 3.7 we obtain that

se(AVA) + 2 5 (A A) /x(A) =1, (3.8)
A" %A

where v(A”) € V(A, k). If x,(A") =b # 0 then
5.(A" A /x () = re%Z(M, u) /u?

while by Theorem 3.9 the residues of Z(u,u)/u? at u = 0, % equal zero.
Therefore

Y 5(A"A") /x (A7) = 0.
AN #A

By comparing this equality with (3.8) we complete the proof of Proposition
311, 1

Now let the index k run through the set {1,...,n — 1} while the
sequences A, A’ run through the set Z(A, n). If v(A') & V(A, k) then
s (A, A) =5,(A,A) =0.

Suppose that v(A’) € (A, k). As we have already mentioned, the
vectors v(A), v(A") € V(A, n) are defined up to scalar multipliers. Up to
the choice of these multipliers Proposition 3.1 and Corollaries 3.7, 3.10
describe the matrix element 5.(A, A’) while Propositions 3.2, 3.10 and
Corollary 3.3 describe the matrix element s,(A, A’). The following theo-
rem completes the description of these matrix elements.

THEOREM 3.12. Suppose that v(A') € V(A k) and A # A’'. Then one
can assume

se(ALA) = s, (A, A) >0 ifA(k—1) #A(k+1), (3.9)
5(A A =5, (A A) >0 ifA(k—1) = A(k+1). (3.10)

Proof.  Let us demonstrate first that for all £ and A, A" we can assume
the equalities

s (A, A) =5 (A A)  and 5 (A, A) =5(A,A). (3.11)

Consider the non-degenerate symmetric bilinear form F on U®" which is
the product of the standard forms on the factors U. The action of the
group G in U®" preserves F and the direct summands in (2.13) are
orthogonal with respect to F. The restriction of F onto the direct sum-
mand U(A, N) ® V(A, n) splits into the product of a G-invariant bilinear
symmetric form on U(A, N) and of a certain form on (A, N). The vectors
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v(A) € V(A, n) are orthogonal with respect to the latter form. The actions
of s, and 5, in U®" are self-adjoint with respect to F. Therefore the
vectors v(A) can be so chosen that the equalities (3.11) hold.

We will now assume that the equalities in (3.9) and (3.10) do hold. The
matrix elements in these equalities then belong to R\ {0} by Corollaries
3.3 and 3.7. We have to prove that the vectors v(A) can be so chosen that
the inequalities in (3.9) and (3.10) also hold. Let anindex k € {1,...,n — 2}
and a sequence A €.Z(A, n) be fixed. Denote by V(A,k, k+ 1) the
subspace in (A, n) spanned by the vectors v(A’) such that A'(1) = A(l)
for any [/ # k,k + 1. The action of s, s,,; and 5., §.,, in V(A n)
preserves this subspace.

Note that due to Proposition 1.1 the generators s,, s, of the algebra
B(n, N) are local in the sense [V1, V2]: the only relations between s, 5,
and s, 5, with |k — | > 1 are the commutation relations (1.5). Therefore it
suffices to only choose the vectors v(A’) € V(A, k, k + 1) so that for every
two distinct v(A"), v(A”) € V(A k, k + 1)

s(AVA) >0 ifA(k+1) = A(k+1) #A(k— 1), (3.12)

S d(ALATY >0 ifA(K) = AT(k) # A(k + 2); (3.13)
SN A >0 ifA(k+1) = A" (k+1) = A(k—1), (3.14)
S (AVATY >0 ifA(K) = A"(k) = A(k +2). (3.15)

The diagrams A(k — 1) and A(k + 2) may differ either by one or by
three boxes. Let us consider the latter case; cf. [Mo]. In this case we have
Ak +1)#= A(k—1) and A'(k) # A(k + 2) for any vector v(A’) from
V(A, k, k + 1). Furthermore, then dim (A, k, k + 1) € {1, 3,6}. We will
treat each of these possibilities separately.

(i) If dimV(A, k, kK + 1) =1 then we can choose the vector v(A)
arbitrarily.

(i) Suppose that dimV(A, k, k + 1) = 3. Initially let us make an
arbitrary choice of the basic vectors v(A), v(A"), v(A") € V(A k, k + 1).
We can assume that

A(k) # N'(k) =A"(k) and A'(k+1) #A(k+1) = A" (k +1).
Then it suffices to take instead of v(A’) and v(A”) respectively the vectors
v(A') -sign s (A, A")se, (A A7) and (A" -sign s (A, A”).

(iii) Suppose that dim V(A, k, k + 1) = 6. Initially let us again make
an arbitrary choice of the basic vectors in V(A, k, k + 1),

v(A), v(Q), v(Q), v(A"), v(A"), v(Q"). (3.16)
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We can assume that

A(k) = Q'(k), A'(k) = Q(k),
Ak+1)=Q(k+1), A(k+1)=0"(k+1),
A" (k) = Q" (k),

A (k+1) = Q' (k + 1).

By applying the first relation in (1.3) to the vector v(A) and taking the
coefficient at v(Q") we get the equality

Se (A, Q)5 1( A, Q)5 (A, Q") = 5, 1(A, Q)5 (A", Q)5 1(A”, Q).
Now it suffices to take instead of the vectors (3.16) respectively the vectors
v(A), v(Q) -sign s, (A, Q), v(Q') -sign s, (A, Q),
v(A") -sign s (A, Q)s, (A, Q),

v(A") -sign s, (A, Q) s (A", Q),

v(Q") -sign s (A, Q) s, (A, Q)s (A, Q).

Finally, let us consider the case when the diagrams A(k — 1) and
A(k + 2) differ by only one box. Since V(A k,k+ 1) = V(A" k, k+ 1)
for any A’ € Z(A, n) such that A(l) = A’'(l) with [ #k, k+ 1 we can
assume that

A(k) =A(k+2) and  A(k+1)=A(k—1). (3.17)

Let us make any choice of every basic vector v(A’) € V(A k, k + 1).
Consider any vector v(Q) € V(A, k, k + 1) such that

Q(k) = A(k) and Q(k+1) # A(k+1).
Then consider the vectors v(Q), v(Q") € V(A, k, k + 1) such that
O'(k) = A(k), 0" (k) = Q(k), Q'(k+1)=Q(k+1),
Q" (k+1)=A(k+1).

By applying the first relation in (1.4) to the vector v(A) and taking the
coefficient at v(Q) we get the equality

S(AA)S (A Q)5 (2, Q) =5, (A, Q") 5,,4(2, Q7).
Since §,(A, A) > 0 by Lemma 3.5, this equality implies that
sign 5, (A, Q) s.(Q, Q) =sign 5, (A, Q") s, (Q, Q).
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We will keep to the initial choice of the vector v(A) and replace each
v(Q) by

v(Q) -sign 5, (A, Q)5 (2, Q). (3.18)
For A" #+ A, where A'(k) = A(k) or A'(k + 1) = A(k + 1), we will re-
place v(A') by
v(A") -sign 5,(A,A) if A'(k+1) = A(k +1),
v(A") -sign 5., (A, A) if A'(k) = A(k).
Due to Corollary 3.7 the latter replacement will make all the matrix

elements of 5, in V(A, k) and 5,., in V(A, k + 1) positive. But for any
v(A) e V(A k,k+1)

A(k+1) = A(k — 1) = v(A') € V(A k),
AN(k) = A(k +2) = v(A') € V(A k + 1)

due to (3.17). So the inequalities (3.14), (3.15) in V(A, k, k + 1) will then
be satisfied. Further, for any two distinct v(A"), v(A”) € V(A k, k + 1)

A(k+1)=A"(k+1) # A(k— 1) = A'(k) = A(k) or
A" (k) = A(k),

A(k) = A"(k) # A(k +2) = A'(k + 1) = A(k + 1) or
A (k+1) = A(k +1).

So by the replacement of each v(Q) by the respective vector (3.18) the
inequalities (3.12), (3.13) in V(A, k, k + 1) will be satisfied. Theorem 3.12
is proved. |

4. DEGENERATE AFFINE WENZL ALGEBRA

In this section again we assume that N is an arbitrary complex number.
We will now use the results of Section 2 as a motivation to introduce a new
object. This is the complex associative algebra generated by the algebra
B(n, N) along with the pairwise commuting elements y,, ..., y, and cen-
tral elements w,,w,,... subjected to the following relations. We impose
the relations

SV = ViSks Sy = Y8 l+k, k+1; (4.1)

SkVk = Yk+1Sk = 5 — 1, SkVi+1 — VS =1 =55 (4.2)

Si(Ve + Yes1) =0, (Ve + Yi+1)5 = 0. (4.3)



684 MAXIM NAZAROV

Moreover, we impose the relations
5,Vi5, = w;5,; i=12,.... (4.4)

We will view this algebra as an analogue of the degenerate affine Hecke
algebra He(n) considered in [C1, C2, DJ; see Corollary 4.9 below. We will
denote the above introduced algebra by We(n, N) and call it the degener-
ate affine WenzI algebra in honour of H. Wenzl, who has used the maps

B(k,N) > B(k—1,N): bwb; k=12..n-1

defined by (2.7) to prove that the algebra B(n, N) is semisimple when N is
not an integer.

It is convenient to put w, = N. The equality (4.4) is then valid for i = 0
also. The assignments

Yie ™ Xk w; = zg)
define a homomorphism
7. We(n,N) - B(n,N) (4.5)

identical on B(n, N) by the relations (2.3) to (2.5) and (2.8). Moreover, in
the proofs of Corollary 2.4 and Lemma 2.5 we used not the definition (2.2)
of the elements x,, ..., x, but the latter relations. Therefore the relations
(4.1) to (4.4) imply that

—2w; =w,_, + Z( Vw,_wi_y; i=13,.... (4.6)
j=1

In particular, we have w, = N(N — 1) /2. Moreover, the following proposi-
tion holds.

PROPOSITION 4.1.  The elements y, + -+ +y! withi = 1,3,... are central
in the algebra We(n, N).

We have the ascending chain of algebras We(1, N) c We(2, N) C --- by
definition.

PrRoPOSITION 4.2. Foreach k = 1,2,... we have the equalities
5eyise = wi's,; i=0,1,2,..., (4.7)

where w(" is a central element of the algebra We(k — 1, N). The generating
series

We(u) = Ywu™

i>0



BRAUER’S CENTRALIZER ALGEBRAS 685

satisfy

Wer(u) +u—35  (u+y)° =1 (u—-y)’
Ww) +u=3  (u=-y)' -1 (u+y)"

(4.8)

Proof. We use the induction on k. The equalities (4.7) hold for k = 1
and w{? = w, by definition. Assume that the equalities (4.7) are valid for
k=1,...,n and that the corresponding series Wy(u),..., W, (u) satisfy
(4.8). Due to Proposition 4.1 it then suffices to verify the equalities (4.7)
and (4.8) for k =n + 1 and k = n, respectively. We will work with the
formal power series in u !

o u
YoyiuTt= ; k=n,n+ 1.
i>0 U=y

We will also use the following corollary to the first relation in (4.2) and the
second relation in (4.3) with k = n:

1 1 1 1 1
S, = s, + S, - .
u-—y, U= Vi1 u+yn u-—y, (u_yn)(u_yn+l)

(4.9)

By multiplying the equality (4.9) on the left by 5, and replacing u by —u
we get

1 1 W (u) 1
N s, =85, +5, -5, > (4.10)
u-—-y, u+yn u(u+yn) u-—y

n

S

by the inductive assumption. Let us now multiply the equality (4.9) on the
right by s, and use (4.9) once more along with (4.10). We then obtain

1 (u—y) -1 1 1
Sy Sp = 2 - Sn
U=">n (u_yn) (u_yn+l) U=>JY U=>Yn
1 1 1 1
+ § + 5

N
2 2%n
u =y, u-—y,

1 W(u) 1 1

sn
u+y, "u+y,

5 5 :
u+y, "u(u+y,) u+y, "u*-y?
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By multiplying the right-hand side of this equality by §,,, on the left and
right we get

(u—y)' -1 _ 1
'sn sn
(w=y)"  u—ya
W.(u) 2(1 -2u)y,
2sn+1 2 2 2 sn+1 (411)
u(u +yn) (bl _yn)

due to the relations 5,,,y, =¥,5,.1and §,,15,5,:1 = 5,115,541 = Su41-
On the other hand, since s,,,y,5,.1 =Y, We have by the inductive
assumption

1 W(u) _

sn+lsnu _yn SuSn+1 = u Sp+1-

By comparing the last expression with (4.11) we get

(u-y) -1 u_
(l't_yn)2 n+1u_yn+l et
(uty) -1 _ 2u(l = 2u)y, _
= 2 WS- — 5 S
(I/t +yn) (Lt _yn)

The latter equality implies that

u

Sp+1 T Spir = Woia(w)S, .1,
u yn+l

where the series W, ,(u) satisfies (4.8) for k = n. Proposition 4.2 is now
proved. |
Consider the series Z,(u) and Q,(u) defined by (3.3) and (3.4), respec-
tively. Since x, = (N — 1) /2 we have
u+(N-1)/2

Ql(u)=u_(N_1)/2'

Furthermore,

m W (u) = Z(u)
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for k =1,2,... by (4.7). Thus we obtain a corollary to Proposition 4.2.
COROLLARY 4.3. Forevery k = 1,2,... the equality (3.5) holds.

In the remaining part of this section will construct a linear basis in the
algebra We(n, N). Let us equip the algebra We(n, N) with an ascending
filtration by defining the degrees of its generators in the following way:

degs, =degs5, =0, degy,=1, degw® =0.

Denote by u, the image of the element y, € We(n, N) in the correspond-
ing graded algebra gr We(n, N). In the latter algebra by the relations (4.1)
to (4.3) we have

Sups Tt = Uy, s €8(n). (4.12)
These relations along with (4.1) and (4.3) imply that
(k,Du,, =u,(k,1), m # k,l; (4.13)

(k, 1) - (uy +u;) =0, (up +uy)-(k,1)=0; k+#1. (4.14)
Furthermore, due to the relations (4.4) and (4.12) we have
(k,Dui(k,1)=0; i=12,...;k#L (4.15)

By definition, the elements b(«y), where vy runs through the set of graphs
Z(n), constitute a linear basis in the algebra B(n, N). Any edge of a graph
v € £(n) of the form {k, I} or {k, I} will be called horizontal. If k < I then
the vertex k or k will be called the left end of the horizontal edge {k, [} or
{k, I}, respectively. The vertex [ or I will be then called the right end.

The number of horizontal edges in a graph v € £(n) is even. If
this number is 2r, the element b(y) € B(n, N) has the form
(kyoly) - (k,, 1) -s, where s € S(n) and all k,1,,...,k,, 1, are pairwise
distinct. The elements b(y), where the graph y has 2r horizontal edges or
more, span a two-sided ideal in B(n, N).

LEMMA 4.4. Let u be a monomial in uy, ..., u,. For any two graphs
v,v' € Z(n) we have the equality in the algebra gr We(n, N)
b(y)ub(y') = &-u'b(y)b(y")u", (4.16)
where € € {1,0, —1} and u',u" are certain monomials in u, ..., u,.

Proof. Let 2r and 2r’ be the numbers of horizontal edges in the graphs
v and vy’, respectively. We will employ the induction on the minimum of
r,r' and on the degree of u. If each of these two numbers is zero we have
nothing to prove.
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Suppose that r, 7’ > 1 and u # 1. By the relations (4.12) we can assume
that

b()’) = (kl’ll) (kr’lr) = b'
b(y') = (R 1) -+ (K. 1) = b,

where k,,I,,...,k, [, are pairwise distinct and so are ki,/;,..., k., 1.
Consider the monomial u = uf --- u’». Choose any index k € {1,...,n}
such that i, # 0. If

k& {ky by, k1) or k& {ky,l,.... k. 1}

rrtr

then respectively
bu's = u'b or ulsb' = b'ul

by (4.13). Then we obtain the equality (4.16) by the inductive assumption.
Now suppose that k = k; =k}, for some j and j'. Denote /; =/ and

[, =1I'". Let b" denote the product obtained from b’ by removing the

factor (k,I"). If [ =1’ then by the relations (4.13) to (4.15) we have

bub' = (=1)"buj - TT iy (kK T)b"
m#k,l
_ (_1)i1bu2’¢+i’(k,l)‘ 1_[ ui;?'b" = 0.

m#k,l

Suppose that I # I’. Then by the relations (4.13) and (4.14) we have

bub’ = (—1)"*buistiv - [T uiw-(k,[')b"

m#k,l’

= (—l)i"bmufk”l' - I1 wir-b.

m#k,l’

We have b(y") = b(k,I") for a certain graph y” € £(n). The number of
horizontal edges in the latter graph equals 2r. Thus we obtain the equality
(4.16) again by the inductive assumption. |

Consider any graph y € £(n) with exactly 2r horizontal edges. Let

ky,....k, ky,...,k. and  I,...,1

r L]

I,....I
be all the left ends and the right ends of the horizontal edges, respectively.

LeEmMmA 4.5.  For any two monomials u and u' in u,, ..., u, we have the
equality in the algebra gr We(n, N)

ub('y)ul = S'Ltil eee uil"b('y)u{l e ulj;”'
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where ¢ € {1,0, —1} and

ke{l,....l}) =i, =0, . #0=ke{l,... 1L} (4.17)

Proof. By (4.12) we can assume that b(y) = (ky,[;) -+ (k,,1,),
ki=ky,....k, =k and L=10,...1,=1.
The required statement follows then directly from the relations (4.13) and
“4.149. 1
Any product in the algebra We(n, N) of the form

ylll y:{.b(,y)y:{} yén .wgzwju (418)

will be called a regular monomial if the exponents i,,...,i, and j,,...,j,
satisfy the conditions (4.17). The two theorems below are the main results
of this section.

THEOREM 4.6. Al the regular monomials (4.18) constitute a basis in
We(n, N).

By the relations (2.3) to (2.5) and (2.8) for every m =0,1,2,... the
assignments
Sk Stk Sk ™ St Y Xtk wi =z
define a homomorphism
7, We(n,N) - B(m +n,N).

In particular, the homomorphism 7, coincides with (4.5). Furthermore, by
Lemma 2.1 the image of the homomorphism m, commutes with the
subalgebra B(m, N) in B(m + n, N).

THEOREM 4.7.  The kernels of m, 7y, 7,,... have zero intersection.

Due to Lemmas 4.4, 4.5 and to the equalities (4.6) every element of the
algebra We(n, N) can be expressed as a linear combination of regular
monomials. Thus Theorems 4.6 and 4.7 both follow from the next lemma;
cf. [0, Lemma 2.1.11]. Fix any finite set .7 of regular monomials (4.18). Let
m be the maximum of the sums

iy g+ i, ), 2k, + Ahy +

corresponding to the monomials from the set % Consider any linear
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combination F € We(n, N) of some monomials from % with non-zero
coefficients.

LEMMA 4.8. Suppose that m,(F) = 0. Then monomials on which the
maximum m is attained do not appear in F.

Proof. Due to Corollary 4.3 Q,,, ,(u) equals

exp Y 2[(N-1)7/2+ ¥ (x;+1) —2xi+ (x; - 1) |u /i
i=1,3,... j=1

Therefore for each i = 2,4,... by (3.4) the element z{”., € B(m, N) is a
symmetric polynomial in x,,..., x,, of the form

2i(xi7t + - +x;, ') + terms of smaller degrees.

Consider the subset %' c.# formed by all the monomials where the
maximum m is attained. Then consider the subset " .’ formed by the
monomials with the minimal number of horizontal edges in the corre-
sponding graphs . Let 2r be that minimum. It suffices to prove that the
monomials from " do not appear in F.

Choose any regular monomial (4.18) from the set .#. The image of this
monomial with respect to the homomorphism =, is a certain linear
combination f of elements b(I') € B(m + n, N), where T' € £(m + n).
Denote by £ the subset in £(m + n) consisting of those graphs which
have:

— exactly 2r horizontal edges;

- no vertical edges of the form {k, k}, where k < m;

- no horizontal edges of the form {k, I} or {k, I}, where k,[ < m.
Consider the terms of f corresponding to the graphs I' € £. Such terms

appear in f only if the chosen monomial belongs to the subset .
Suppose this is the case. Then among those terms are the products

If[l(mkl,m + k) - (mkik,m + k) m,(b(v))

n

X T (myy, m + k) - (m’kjk,m + k)
k=1

h.

i

11 HZ(mijl,...,miﬁ), (4.19)

i=2,4,... j=1
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where the juxtaposition of the sequences
mkl,...,mkik,m/kl,...,m/kjk; k=1...,n

and

Mgy My i=1... h; i=2,4,...

runs through the set of all permutations of the sequence 1,2,...,m. All
these terms will be called the leading terms of f. Note that the parameters

DZL TRERRL TV IARRRRY Y POV FUR

can be uniquely restored from any of these leading terms.

All the non-leading terms of f corresponding to graphs I' € £ can be
obtained from the products (4.19) by certain non-empty sets of the follow-
ing replacements. One can replace the factor in (4.19)

(M, m + k) (my ,m+ k) by
(my, m+ k) (mkl-k,m +k)- (—1)”

provided the vertex k of the graph vy is the left end of a horizontal edge.
One can also replace any factor

(myy, m + k) - (m’kjk,m + k) by
(my, m +k)---(m’kjk,m +k)-(—1)jk.

Due to the conditions (4.17) the terms so obtained are not proportional to
any leading term in the image with respect to m,, of any monomial from
F". This observation completes the proof. |

We will now compare the algebra We(n, N) with the degenerate affine
Hecke algebra He(n) from [C1, C2, D]. The latter algebra is generated by
the group algebra C[S(n)] and the pairwise commuting elements v,,...,v
subjected to the relations

n

S U; = Uy, l#k, k+1;
SV — UpypaS = —1, Silkrq — Vs = 1.
By (4.1) to (4.4) we have the following corollary to Theorem 4.6.

COROLLARY 4.9. Foranyf,, f,,... € C the assignments s, — s;, 5, — 0,
Vi = Uy, and

w; = fi, i=2,4,...

determine a homomorphism of the algebra We(n, N) onto He(n).
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The subalgebra in He(n) generated by the elements v,,...,v, is maxi-
mal commutative. The centre of the algebra He(n) consists of all symmet-
ric polynomials in v,,...,v,. For the proofs of these two statements see
[C2, Sect. 1]. The next corollary provides analogues of these statements for

the algebra We(n, N).

COROLLARY 4.10. The subalgebra in We(n, N) generated by the elements
Viveoor ¥, and Wi, Wy, ... is maximal commutative. The elements y: + --- +y!
with i = 1,3,... and w, with i = 2,4,... generate the centre of the algebra
We(n, N).
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