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Introduction

The notion of a quantum group was introduced by V. G. Drinfel’'d and
M. Jimbo, independently, in their study of the quantum Yang-Baxter equa-
tion arising from two-dimensional solvable lattice models ([10, 23]). Quan-
tum groups are certain families of Hopf algebras that are deformations of
universal enveloping algebras of Kac-Moody algebras. Over the past 20
years, they turned out to be the fundamental algebraic structure behind
many branches of mathematics and mathematical physics such as:

1) solvable lattice models in statistical mechanics,
2) topological invariant theory of links and knots,
3) representation theory of Kac-Moody algebras,

5} topological quantum field theory,

(
(
(
(4) representation theory of algebraic structures, e.g., Hecke algebra,
(
(6) geometric representation theory,

(

T} C*-algebras.

Kac-Moody solvable
algebras lattice models
quantum groups

quantum field
theory

geometric
representation
theory

X1
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In particular, the theory of crystal bases or canonical bases developed
independently by M. Kashiwara and G. Lusztig provides a powerful combi-
natorial and geometric tool to study the representations of quantum groups
([38, 39, 48]). The purpose of this book is to provide an elementary intro-
duction to the theory of quantum groups and crystal bases focusing on the
combinatorial aspects of the theory.

In such an introductory book, the first question to be answered would be:
What are quanturn groups? In his famous lecture given at the International
Congress of Mathematicians held at Berkeley in 1986, Drinfel’d gave a defini-
tion of quantum groups: it was defined to be the spectrum of a certain Hopf
algebra [11]. That is, Drinfel’d noted that any suitable category of groups
(algebraic, topological, etc.) is antiequivalent to a suitable category of com-
mutative Hopf algebras. In such a situation, one goes from the group to the
algebra by considering a suitable algebra of functions, while the group can
be reconstructed by taking the spectrum in the sense of Grothendieck. Thus,
even when one has a noncommutative Hopf algebra, it becomes natural to
think of the correspending object in the opposite category as a gquantum
group, and this is the meaning of Drinfel’d’s definition.

In this book, we focus on the quantum groups that appear as certain
deformations of universal enveloping algebras of Kac-Moody algebras. For
example, let g be a finite dimensional simple Lie algebra, and let U{g) be
its universal enveloping algebra. Choose a generic parameter g. Then, for
each g, we can associate a Hopf algebra U,(g), called the guantum group or
the quantized universal enveloping algebra, whose structure tends to that of
U(g) as q approaches 1. Therefore, we get a family of Hopf algebras U,(g},
and when g = 1, it is the same as the Hopf algebra U(g).

The following example shows how one can understand the above state-
ment in a naive way. This example is not rigorous, not even mathematical,
but it gives us a certain intuition. Let g = sl be the complex Lie algebra of
2 x 2 matrices of trace 0. It is generated by the elements e, f, and h with
defining relations

[6,f]=h, [h=e]:267 [h,f]:fz‘f_

Thus its universal enveloping algebra {/(slz) is an associative algebra over
C with 1 generated by the elements e, f, and A with defining relations

ef — fe=h, he —eh = 2e, hf — fh=-2f.

Now, the quantum group U,(g) = Uy(sly) is defined to be the associative
algebra over C(q) with 1 generated by the elements e, f, and ¢* with defining
relations

h —h

" —gq _ -
ef —fe="— d'eg" =q¢%, ¢"fa"=q7*F.
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Let us look at the first of these defining relations. As g approaches 1,
the left-hand side remains the same as ef — fe, but the right-hand side is
undetermined. If we apply L'Hospital’s rule (however absurd it might be),
then the right-hand side is equal to

qh _ q—h hthl + hq——h—l 9k

1 ql—1>t1L 1+q_2 2 h,

lim
g—1 g — g

as desired.

For the second relation, if we let ¢ — 1, then we get e = ¢, which gives
nothing new. But if we differentiate both sides with respect to g {again,
hewever absurd it. might be), we get

hg"teg " + g e(—h)g M ' = 2qe.
Thus, if we take the limit ¢ — 1, we get
he — eh = 2e.

Similarly, the last relation gives the desired relation as g — 1.

Therefore, one can say that for each generic parameter ¢, there is a
quantum group Ug(slz) which is a Hopf algebra, so we have a family of
Hopf algebras, and the structure of quantum group Uy(sla) tends to that of
U(slz) as ¢ — 1. But of course this cannot be regarded as a mathematical
treatment at all. So the first goal of this book is to make the above idea
rigorous enough to convince ourselves.

In Chapters 1 and 2, we will give a brief review of the basic theory
of Lie algebras, Hopf algebras, and Kac-Moody algebras. The notion of
universal enveloping algebras, highest weight modules, and the category Oint
will be introduced. The Poincaré-Birkhoff- Witt theorem and the Weyl-Kac
character formula will be presented without proof. The readers may refer
to [1,17, 28, 53] for more detail and complete proofs.

Let g be a symmetrizable Kac-Moody algebra, and let UU(g) be its uni-
versal enveloping algebra. In Chapter 3, we will define the quantum group
U,(g) as a certain deformation of U(g) with a Hopf algebra structure and
show that the Hopf algebra structure of Uy(g)} tends to that of U/(g) as ¢
approaches 1.

Moreover, we will give a rigorous proof of the statement: The repre-
sentation theory of Kac-Moody algebra g is the same as the representation
theory of quantum group Uy(g). The essential part of this statement is a
theorem proved by G. Lusztig in [47):

The g-modules in the category Oy ( = integrable modules over g in
the category O) can be deformed to Uy(g)-modules in the category Ol in

1
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such a way that the dimensions of weight spaces are invariant under the
deformation.

More precisely, let M be a U(g)-module in the category . Then it
has a weight space decomposition M = €D, p M), where M), is the common
eigenspace for the Cartan subalgebra. Now Lusztig’s theorem tells that for
each generic g, there exists a Uy(g)-module MY in the category O, with
a weight space decomposition M? = D, .p M] such that dimgygy M 7=
dimg M), for all A € P and that the structure of M9 tends to that of M as
g approaches 1.

Pictorially, the results obtained in Chapter 3 can be illustrated in the
following figure.

Uy(g) M

Actually, this is one of the motivations for the theory of crystal bases.
For an integrable module M over U(g) in the category (i, consider the
formal power series defined by

chM = Z(dimc My)el.
AeP

The formal series ch M is called the character of the U(g)-module M. The
characters of U/(g)-modules in the category Ouy characterize the represen-
tations in the sense that if M = N, then ch M = ch N. The converse is
not always true, but will hold if the two modules are both highest weight
modules with one of them either a Verma module or an irreducible highest
weight module. The characters often represent important and interesting
mathematical quantities such as modular forms in number theory and one-
point functions in solvable lattice models.

Similarly, one can define the character of a U,(g)-module M? in the
category O to be

it

Ch Mq = Z (dimc(q) Mf)e)‘.
AeP
Since M7 is a quantum deformation of M, by Lusztig’s theorem, ch M7 is
the same for all generic parameter ¢, and it is just the character of M. So if
one can calculate ch M7 for some special value of g, then it suffices to focus
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on that special case only. The natural question is: When is the situation
simple? The crystal basis theory tells that it is so when ¢ = 0.

In Chapters 4 and 5, we develop the crystal basis theory following the
combinatorial approach given by Kashiwara [38,39]. In (48], a more geo-
metric approach was developed by Lusstig, and it is called the canonical
basis theory. In [43—45], P. Littelmann introduced a combinatorial theory
called the path model and obtained a colored oriented graph for irreducible
highest weight modules over Kac-Moody algebras. It turned out that Lit-
telmann’s graphs coincide with Kashiwara's crystal graphs ([25, 40}).

A crystal basis can be understood as a basis at ¢ = 0 and is given a struc-
ture of colored oriented graph, called the crystal graph, with arrows defined
by the Kashiwara operators. The crystal graphs have many nice combina-
torial features reflecting the internal structure of integrable modules over
quantum groups. For instance, one of the major goals in combinatorial
representation theory is to find an explicit expression for the characters of
representations, and this goal can be achieved by finding an explicit com-
binatorial description of crystal bases. The following picture is the crystal
graph for the adjoint representation of Uy(sls).

1]1]
2

3l

2
3]

Moreover, crystal bases have extremely nice behavior with respect to tak-
ing the tensor product. The action of Kashiwara operators is given by the
simple tensor product Tule and the irreducible decomposition of the tensor
product of integrable modules is equivalent to decomposing the tensor prod-
uct of crystal graphs into a disjoint union of connected components. Thus,
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the crystal basis theory provides us with a powerful combinatorial method
of studying the structure of integrable modules over quantum groups.

Qur exposition is based on the combinatorial approach developed by
Kashiwara [39], and some of our arguments overlap with those given in [21].
The existence theorem for crystal bases will be proved using Kashiwara’s
grand-loop argument (Section 5.3). We will simplify the original argument,
which consists of 14 interlocking inductive statements, to proving 7 inter-
locking inductive statements. Still, the spirit of the argnment is the same as
the original one: the fundamental properties of crystal bases for U, (g) will
play the crucial role in the proof.

The next step is to globalize the main idea of crystal bases. More pre-
cisely, let M7 be a Uy(g)-module in the category O, with crystal basis
(£,B). As we mentioned earlier, the crystal basis B can be regarded as a
local basis of M9 at ¢ = 0. In Chapter 6, we will show that there exists a
unique global basis G(B) = {G(b)| b € B} of M1 satisfying the properties

G(b)=b mod ¢L, G(b) = G(b) forallbe B,

where — denotes the automorphism on M given by (6.5). The existence
theorem for global bases will be proved using the notion of a balanced triple
and the triviality of vector bundles over Pl. Our argument closely follows
the original proof given by M. Kashiwara in [39].

Over the past 100 years, it has been discovered that there is a close con-
nection between representation theory and combinatorics. We can see this
in the classical works by A. Young ([57-59]), D. E. Littlewood and A. R.
Richardson ([46]), D. Robinson ([52]), and H. Weyl ([55]). In Chapter 7,
we study the connection between the crystal basis theory of finite dimen-
sional U,(gl,)-modules and combinatorics of Young diagrams and Young
tableaux. The notion of admissible reading (e.g., Far-Eastern reading and
Middle-Eastern reading) lies at the heart of this connection. The crystal
graph of a finite dimensional irreducible Uy(gl,)-module will be realized as
the set of semistandard Young tableaux of a given shape. Moreover, using
the tensor product rule for Kashiwara operators, we will give a combinato-
rial rule (Littlewood-Richardson rule) for decomposing the tensor product
of finite dimensional U,(gl,)-modules into a direct sum of irreducible com-
ponents. One may refer to [46] for the classical approach.

In Chapter 8, we will extend the above idea to the study of crystal
graphs for classical Lie algebras. The crystal graph of a finite dimensional
irreducible module over a classical Lie algebra will be realized as the set
of semistandard Young tableaux satisfying certain additional conditions de-
pending on the type of the Lie algebra. We will also give a combinatorial rule
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(generalized Littlewood-Richardson rule) for decomposing the tensor prod-
uct of crystal graphs. Most of the results in Chapters 7 and 8 can be found
in [41] and [50].

As the theory of quantum groups criginated from the study of the quan-
tum Yang-Baxter equation, the theory of solvable lattice models can be best
explained in the language of representation theory of gquantum affine alge-
bras (which are the quantum groups corresponding to the affine Kac-Moody
algebras). In Chapter 9, we will describe the very basic theory of solvable
lattice models and discuss its connection with the representation theory of
the quantum affine algebra Uq(g[g) (see, for example, |24, 36]). In particu-
lar, the one-point function for the 6-vertex model will be expressed as the
quotient of the string function by the character of the basic representation
of Uy (sly).

In Chapter 10, we will develop the theory of perfect erystals for quan-
tum affine algebras (see {36, 37]), which has a lot of important applications
to the representation theory of quantum affine algebras and vertex models
(see, for example, [7,24] and the references therein). We will first study
the properties of verter operators and then prove a fundamental crystal iso-
morphism theorem. Using this crystal isomorphism, the crystal graph of
an irreducible highest weight module over a quantum affine algebra will be
realized as the set of certain paths.

The final chapter will be devoted to the study of crystal bases for basic
representations of classical quantum affine algebras using some new combi-
natorial objects which we call the Young walls (see [34]). The Young walls
consist of colored blocks with various shapes that are built on the given
ground-state wall and can be viewed as generalizations of Young diagrams.
The rules for building Young walls and the action of Kashiwara operators
will be given explicitly in terms of combinatorics of Young walls. (They are
quite similar to playing with LEGO® blocks and the Tetris® game.) The
crystal graph of a basic representation will be characterized as the set of
all reduced proper Young walls. We expect that there exist interesting and
important algebraic structures whose irreducible representations (at some
specializations) are parameterized by reduced proper Young walls. Tt still
remains to extend the results in this chapter to the quantum afline algebras

of type aﬁ” (n>3).
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NOTATION FROM CH 1 DIFFERING FROM OURS:

F Arbitrary field of characteristic 0
Z Ring of integers in F
Q Field of fractions in F
h  generators of sly(F) (our z,y, h)
(L) Lie algebra and its enveloping algebra
M(A)  “Verma module”, the a highest weight module of weight A.
®, &, Roots, pos/negative roots
To simple reflection associated to «, our s, or o,



Chapter 2

Kac-Moody Algebras

(For notation)

In this chapter, we review the basic theory of Kac-Moody algebras. Our
exposition is based on Kac’s book {[28]). We will omit most of the proofs.
Interested readers may refer to [28, 49| for more detail.

2.1. Kac-Moody algebras

Let I be a finite index set. A square matrix A = (aj;)i jer with entries in Z
is called a generalized Cartan matriz if it satisfies

ay =2 for alliéI,
(2.1) ajj <0 ifi# 7,

a;; =0 ifand only if a5 =0.
If there exists a diagonal matrix D = diag(s; |7 € I) with all s; € Z~¢ such
that DA is symmetric, then A is said to be symnetrizable. In this book,
we will assumne that the generalized Cartan matrix A is symmetrizable. The

maftrix A is indecomposable if for every pair of nonempty subsets Iy, In © T
with I; U Iy = I, there exists some i € I} and j ¢ Iy such that ay 7 0.

Let PY be a free abelian group of rank 2|I| — rank A with a Z-basis
{hi|li € I} U{ds|s = 1,...,|I| —rank A} and let = F ®z PV be the F-
linear space spanned by PY. We call PV the dual weight lattice and h the
Cartan subalgebra. We also define the weight lattice to be

P={Xep*XPY)c Z}.
Set TIV = {h;|¢ € I} and choose a linearly independent subset II =
{eu]i € I} C b* satistying
(2.2 aj(h;) = ay, a;j(ds) =0 or 1
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22 2. Kac-Moody Algebras

for4,7 €I, s =1,...,]I] —-rank A. The elements of II are called simple
roots, and the elements of [TV are called simple coroots. We also define
the fundamental weights A; € h* (i € I) to be the linear functionals on
bh given by

(23) Ai(hj):(sij, Al(ds) =0 fOIjEI,S=1,...,|I|*1"a,n1{A.

Definition 2.1.1. The quintuple (A4, IL 11V, P, PV) defined as above is said
to form a Cartan datum associated with the generalized Cartan matrix
A = (aig)ier-

The free abelian group @ = @ig 7 Loy is called the root lattice and
Q1 = > ;es Zxoa is called the positive root latiice. The notation Q- —
—Q will also be used. There is a partial ordering on h* defined by A = p
if and only if A — p € Q4 for A, € b*.

For each i € I, we define the simple reflection r; on h* by

(2.4) ri(A) = A — A(hi)a.

The subgroup W of GL{h*) generated by all simple reflections is called
the Weyl group. For an element w of the Weyl group, the expression
w = ri,Tiy - - Ti, 15 called a reduced expression if ¢ is minimal among all
such expressions. Note that an element of the Weyl group can have many
different reduced expressions. The minimal number ¢ is called the length
of w and is denoted by I{w).

Remark 2.1.2. Tn (28], the triple (h,II,11Y) is called the realization of
A. This is sometimes called the minimal realization, for 2|I| — rank A is
the minimal dimension for the Cartan subalgebra b such that a; (i € I)
are linearly independent. On the other hand, we could use the mazimal
realization. Set Ymax = { @,e; Fhs)® (D, c; Fos ;) with formal basis elements
h; and d; (4 € I), and define o; € b}, by setting a;j(h;) = a; and a;(d;) =
85 (1,7 € I). Then the linear functionals ; are always linearly independent
and we can develop the theory of Kac-Moody algebras with the maximal
realization in the same way.

We now define the notion of Kac-Moody algebras.

Definition 2.1.3. The Kac-Moody algebra g associated with a Cartan
datum (A,IL, IV, P, PV) is the Lie algebra generated by the elements e;, fz
(iel ) and h € PV subject to the following defining relations:
1) [h,A] = 0 for b, € PV,
(2) [ei, £5] = dijha,
(3) [h,e] = a;(h)e; for h € PY,
(4) [h, fi] = —ai(h)f; for h € PY,
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(5) (ade;)! %ie; =0 for i # j,
(6) (ad fy)1=% f; = 0 for i # j.

The relations (1)-(4) are called the Weyl relations and the relations (5)—
(6) are called the Serre relations. We define g (respectively, g_) to be the
subalgebra of g generated by the elements e; (respectively, f;) with ¢ € I,
and for each a € @, let

ga ={z € g|lh,z] =a(h)z forall h €h}.
The basic properties of Kac-Moody algebras are given in the following propo-
sitiom.
Proposition 2.1.4. (28, Ch.1]

(1) We have the triangular decomposition
9=p-Dhdg+.

(2) We have the root space decomposition

a= @ga with dim g, < oo for all o € Q).
acQ
(3) The subalgebra gy (respectively, g-) is the Lie algebra generated by
the elements e; (i € I) (respectively, fi (i € I)) with the defining
relations (5) (respectively, (6)) in Definition 2.1.3.
(4) There exists an involution w : g — g, called the Chevalley invo-
lulion, sending e; — —fi, fi— —e;, and h— —h.

If o # 0 and g, # 0, then « is called a root of g and g,, is called the root
space attached to a. The dimension of g, is called the root multiplicity
of . The set of all roots is denoted by ®. Denote by &4 = ® N Q4 the set
of positive and negative roots. Every root can be seen to be either positive
or negative. The subalgebra g’ = [g, g] is called the derived subalgebra.

The center and the ideals of Kac-Moody algebras are described in the
following proposition.

Proposition 2.1.5. [28, Ch.1]
(1) The center of the Kac-Moody algebra g is given by
Z{g)=1{heh|lai(h)=0 foralliecI}.
Hence the dimension of the center is ditnh — |I| = corank A.

(2) Suppose that the generalized Cartan matriz A is indecomposable.
Then every wdeal of the Kac-Moody algebra g either contains its
derived subalgebra g’ or is contained in ils center Z(g).
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We now turn to the universal enveloping algebra U(g) of the Kac-Moody
algebra g. First, note that (Exercise 2.1)

N
N
(ad )™ (y) = Z(—l)k(k)a:N*kymk for x,y € U{g), N € Z>p.
k=0

Hence we obtain the presentation of U(g) with generators and relations.
Proposition 2.1.6. The wniversal enveloping algebra U(g) of g is the as-

sociative algebra over ¥ with unity generated by e, fi (i € I) and b subject
to the following defining relations:

(1) kh' = Kh for h,h' €Y,

(2) esfy — fiei = Sishi fori,j €1,

(3) he; — eih = ai(h)e; for h e h, i € I,
(4) hfi — fih = —ai(h)f?; forheh, 1€ I,

© Tt () A =0 dor i

As we have seen in Chapter 1, the universal enveloping algebra U{g) has
a Hopf algebra structure given by

Alz)=z®1+1®z,
(2.5) e(z) =0,
S(z)=-=z forzeg.
Let U (respectively, U? and U™) be the subalgebra of U/ = U(g) gen-

erated by the elements e; (respectively, b and f,) for i € I. We also define
the root spaces to be

Usg={ue U | hu —uh = B(h)u  for allheh} for geq,
Ui ={ue UF | hu—uh = B(R)u forall ke b} for B € Qu
By the Poincaré-Birkhofl-Witt Theorem, the universal enveloping alge-
bra also has the triangular decomposition and the root space decom-
position.
Proposition 2.1.7.
(1) U@=U- U gU*.
(2) U(g) = Dyeq Us:
(3) Ut = ®5EQ:|: Uﬁi'
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2.2. Classification of generalized Cartan matrices

In this section, we will discuss the classification of generalized Cartan ma-
trices and corresponding Kac-Moody algebras. Let u = {(u1,...,u,)" be a
column vector in R™. We say that u > 0 (respectively, w > 0} if u; > 0
(respectively, u; > 0) foralli =1,...,n.

Theorem 2.2.1. [28, Ch.4] Let A = (ai;); jer be an indecomposable general-
ized Cartan matriz. Then one and only one of the following three possibilities
hold for both A and At

(Fin) det A # 0; there exists w > 0 such that Au > 0; Av > 0 implies
v>0o0rv=0.

(Aff) corank A = 1; there exists u > 0 such that Au = 0; Av > 0 implies
Ay =0.

(Ind) There exists w > O such that Au < 0; Av > 0 and v > 0 imply
v =0.

Definition 2.2.2. A generalized Cartan matrix A is said to be of finite
{respectively, affine or indefiniie) type if A satisfies the condition (Fin)
(respectively, (Aff) or (Ind}) in Theorem 2.2.1.

Corollary 2.2.3. [28, Ch.4| An indecomposable generalized Cartan matriz
A is of finite (respectively, affine or indefinite) type if there exists u > 0
such that Au > 0 (respectively, Au =0 or Au < 0).

To each generalized Cartan matrix A = (a;); je7, we associate an ori-
ented graph, called the Dynkin diagram of A. The Dynkin diagram of A
consists of vertices indexed by [ and edges with arrows defined as follows: If
aijaj; < 4 and |ag;| > |as), then the vertices ¢ and j are connected with |a;;]
edges equipped with an arrow pointing toward ¢ if |ai;| > 1. If aiay > 4,
then the vertices ¢ and j are connected with a bold-faced edge equipped with
an ordered pair of integers (|a;;|, |asi)-

Conversely, from each Dynkin diagram, we can recover the corresponding
generalized Cartan matrix, up to the order of indices.

Let us give some examples of 2 x 2 generalized Cartan matrices and their
corresponding Dynkin diagrams.

Fxample 2.2.4.
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(4) A= (_23 _22) o235

A subdiagram of a Dynkin diagram consists of a subset of the vertices
of the original diagram and all edges of the original diagram joining the
chosen vertices.

Proposition 2.2.5. |28, Ch.4] Let A be an indecomposable generalized Car-
tan matric.

(1) A is of finite type if and only if all its principal minors are positive.
Equivalently, A is of finite type if and only if all the subdiagrams
of the Dynkin diagram of A are of finite type.

(2) A is of affine type if and only if det A =0 and all its proper princi-
pal minors are positive. Equivalently, A is of affine type if and only
if det A = 0 and all the proper subdiagrams of the Dynkin diagram
of A are of finite type.

Definition 2.2.6. An indecomposable generalized Cartan matrix A is said
to be of hyperbolic type if A is of indefinite type and every proper subdi-
agram of the Dynkin diagram of A is of either finite or affine type.

The complete classification of generalized Cartan matrices of finite type
and affine type are given in [28,54]. The generalized Cartan matrices of
hyperbolic type are classified in [42, 54].

Some examples of generalized Cartan matrices of hyperbolic type and
their corresponding Dynkin diagrams are listed below.

Example 2.2.7.

(1) A=(2 _"’) withab>5 oo
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2 -1 0 0 0 0 0 0 0 0)
1 2 -1 0 0 0 0 0 0 0
0 -1 2 -1 ¢ 0 0 0 0 0
0 0 1 2 -1 0 0 0 0 0
0 0 0 1 2 -1 0 0 0 0
BA4=16 0 0 0 -1 2 1.0 0 0
o 0 0 0 0 -1 2 -1 0 -1
0 0 0 0 0 0 -1 2 -1 0
O 0 0 0 0 0 0 -1 2 0
\o 0 0 0 0 © 1 0 0 2/
o0—O0—0—0—0—0

One of the fundamental problems in the theory of Kac-Moody algebras
is to find an explicit formula for the root multiplicities. For the Kac-Moody
algebras of finite type, the root multiplicities are all one. The root multi-
plicities of affine Kac-Moody algebras are also well known (see, for exam-
ple, [28]). For the Kac-Moody algebras beyond affine type, only limited
information is available (see, for example, [4, 12, 29, 30, 32]). There do ex-
ist formulas for the root multiplicities of Kac-Moody algebras associated
with symmetrizable generalized Cartan matrices. In [5], S. Berman and
R. V. Moody derived a closed form root multiplicity formula and in [51]
(see also {28]), D. Peterson derived a root multiplicity formula in recursive
form. In [32], using the Euler-Poincaré principle and Kostant’s formula for
the homology of Kac-Moody algebras, the general root multiplicity formulas
were derived both in closed form and in recursive form. However, the behav-
ior of the root multiplicities is still a mystery and no satisfactory description
has yet been discovered.

2.3. Representation theory of Kac-Moody algebras

A g-module V is called a weight module if it admits a weight space
decomposition

V= EB Vi, where V, = {v € V|hv = pu(h)v forall h € h}.
ueh*

A vector v € V}, is called a weight vector of weight p. If e;u = 0 for all
¢ € I, v is called a maximal vector of weight p. If V, #£ 0, p is called
a weight of V and V, is the weight space attached to p. lts dimension
dim V), is called the weight multiplicity of n. The set of weights of the
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g-module V is denoted by wt(V). When dim 'V}, < oo for all weights u, the
character of V is defined to be

chV = Z dim V,e",
u
where e* are formal basis elements of the group algebra F[h*] with multi-
plication defined by e*e# = e 4.

We leave verification of the following proposition to the readers (Exer-
cise 2.4).

Proposition 2.3.1. [28, Ch.1] BEvery submodule of a weight module is a
weight module.

For A € b*, set D(A) = {u € §* | < A} . Let us define the category O.
Its objects consist of weight modules V over g with finite dimensional weight
spaces for which there exists a finite number of elements Ay, Ag, ..., As € §”
such that '
wt (V) C D(A) U - U D(A).
The morphisms are g-module homomorphisms. Note that the category O is
closed under taking the finite direct sumn or finite tensor product of objects
from the category @. Also, the quotients of g-modules from the category O
are again in the category O.

The most interesting examples of g-modules in the category O may be
highest weight modules given in the following definition.

Definition 2.3.2. A weight module V is a highest weight module of
highest weight X ¢ §* if there exists a nonzero vector vy € V, called a
highest weight vector, such that

gty =0 foralliel,
(2.6) hvy = A(h)uy for all h € b,

V= U(g)m.

For a highest weight module V, the triangular decomposition of U =
U(g) (Proposition 2.1.7) yields V = U~ wvx. Note also that dmVj = 1,
dim V,, < oo for all p € wt(V), and V = P, Vy.. Thus any highest weight
module belongs to the category O and the name highest weight module is
justified.

Fix A € b* and let J(A) be the left ideal of U(g) generated by all e; and
h—Ah)1 (i €1, heh). Set

M) = Ulg}/J(A).

Then M () is given a U(g)-module structure by left multiplication. We call
M()) the Verma module. As we have seen in the case of 51, (F)-modules,
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the properties of Verma modules can be summarized in the following propo-
sition.
Proposition 2.3.3. |28, Ch.9]
(1) M(A) is o highest weight g-module with highest weight A and highest
weight vector vy = 1+ J(A).
(2) Every highest weight g-module with highest weight X is a homormnor-
phic image of M(A).
(3) As U™ -module, M(X) is free of rank 1, generated by the highest
weight vector vy =1+ J(A).
(4) M()) has a unigque mazimal submodule.

Let us denote by N{X) the unique maximal submodule of M()). The
irreducible highest weight module M(\}/N(A) is denoted by V(). The
importance of irreducible highest weight modules is reflected in the following
proposition.

Proposition 2.3.4. [28, Ch.9] Every irreducible g-module in the category
O 1s isomorphic to V(A) for some A € h*.

Let A be a symmetrizable generalized Cartan matrix with a symmetriz-
ing matrix D = diag(s; |4 € I). Define a symmetric F-valued bilinear form

{|)onhby

(htlh):(lg(h)/sz for heh,

(ds|de}) =0 for s,t =1,...,|I| —rank A.
The next lemima may be checked easily (Exercise 2.9).

(2.7)

Lemma 2.3.5. (28, Ch.2] The symmetric bilinear form ( | ) on § is non-
degenerate.

Define a linear map v : h — h* by v(h)(#') = (= |R’). The above lemma
shows that this map is a vector space isomorphism. Thus we can identify b
and h* through this map and there is a nondegenerate symmetric bilinear
form on h* induced by ( | ). We will denote this hilinear form by the same
notation ( | ). It satisfies, in particular,

(oi| o) = sjaiy for all4,j € I

Moreover, it can be easily checked that the symmetric bilinear form ( | ) is
W-invariant; that is, we have (Exercise 2.9)

(wAlwp) = (Mp) forallw c W, A\, u € h*.
The nondegenerate symmetric bilinear form on § can be extended to a

nondegenerate symmetric invariant bilinear form as can be seen in the next
proposition.
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Proposition 2.3.6. [28, Ch.2] There ezists a symmetric bilinear form (| )
on g such that

(1) ( |} is given by equations (2.7) when restricted to ,

(2) ([z,4]12) = (2| [y, 2]) for all z,y,2 € g,

(3) (g lgg) =0 Fat+ B #0,

(4) (| ) s nondegenerate on go X g—a;

(5) [z.9] = ( |y}~ () for £ € 8o, ¥ € B

Choose a linear functional p € b* such that p(h;) =1 for alli € I. Let

{u;} and {u*} be two bases of b, dual to each other with respect to ( | ).
Also, for each positive root «, fix a basis {e‘(;)} of g, and { féf)} of g_a

which are dual to each other with respect to ( | }. We define the Casimnir
operator to be the formal sum

(2.8) Q=2v"Yp)+ Zuiui +2 Z Z FDeld),

i ac®, i
For now, this may be understood as just a formal sum, but it will be a well
defined operator on restricted g-modules defined below.

A g-module V is restricted if for every v € V, gqv = 0 for all but
finitely many positive roots c. Thus the action of Casimir operator is well
defined on any restricted g-module.

Proposition 2.3.7. |28, Ch.2|
(1) The action of Casimir operator Q commutes with the action of g
on any restricted g-module V.
(2) If v € V is a mazimal vector of weight A; i.e., if e;u = 0 for every
i eI and hv = Mh)v for b € By, then Q(v) = (A +2p| A)v.

Hence, the Casimir operator acts on any highest weight module of high-
est weight A by the constant (A + 2p|A).

2.4. The category O

Let L be a Lie algebra and V' an L-module. We say that z € L is locally

nilpotent on V if for any v € V there exists a positive integer N such that
N

" v =0

Lemma 2.4.1. Let L be o Lie algebra and V' an L-module.

(1) Let {w| i € A} be o set of generators of L and let x € L. If for each
i € A there ezists a positive integer N; such that (adz)Vi(y;) = 0,
then ad x is locally nilpotent on L.
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(2) Let {v;| i € A} be a set of generators of V and let z ¢ L. If for
each i € A there exists a positive integer N; such that z™ - v; = 0
and ad z 1s locally nilpotent on L, then z is locally nilpotent on V.

Proof. For a positive integer N and z,v, z € L, we have

N
(adz)™ ([, 2)) = > (D)l(ad z)*(y), (ad )V ¥ (2)),
k=0
y=_ (F)(adz)*(y))z"*.
k=0

Here the second equation should be understood as an equation in the uni-
versal enveloping algebra with (adz)(y) = zy — yz. Our assertions follow
from the above identities by induction. D

A weight module V over a Kac-Moody algebra g is called integrable if
all e; and f; (i € I) are locally nilpotent on V.

Definition 2.4.2. The ecategory Oy, consists of integrable g-modules in
the category O such that wt(V) C P.

By this definition, any g-module V in the category Oy, has a weight
space decomposition

V= @ Vy, where V), = {v € V|hv = A(h)o for all h € PV}.
ACP

Fix i € I. We denote by g(;) (respectively, Uy;) the subalgebra of g
(respectively, U(g)) generated by e;, fi, hi. Then we have gi;y = sly and
U(i) = UU(slg). Let V be a g-module in the category Oiy. Since e; and f;
are locally nilpotent on V, there is a well defined g-module automorphism
of V given by

(2.9) 7i = (exp fi)(exp(—ei)){exp fi).
Moreover we can prove:

Proposition 2.4.3. (28, Ch.3] Let V be a g-module in the category Oin.

(1) Foreachi e I,V decomposes into a direct sum of finite dimensional
irreducible h-invariant gg;y-submodules.

(2) We have
VA=V forallic I, »cwt(V).
Hence dim Vy, = dim V) for allw € W, A € wt(V).
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By Lemma 2.4.1, a highest weight g-module with highest weight A and
highest weight vector v is integrable if and only if for every i € I, there
exists N; € Z>q such that f,fvivA = 0.

Define the set of dominant integral weights to be
Pt = {,\ = P|/\(h,.,-,) S 220 for all ¢ € I}
Lemma 2.4.4. |28, Ch.10]

(1) Let V(A) be the irreducible highest weight g-module with highest
weight A € §*. Then V(A) lies in the category Oy if and only if
- re Pr
(2) Ewery irreducible g-module in the category Ot is isomorphic lo
V(X) for some A € P+,

Proof. (1) Suppose V(A) lies in the category Oiy and let vy be a highest
weight vector of V/(A). Then, by definition, A € P, and for each ¢ € I, there
exists a nonnegative integer IV; such that fiN" -vy # 0 and ftNﬁlv)\ = (.
Thus we have

0= e oy = (N + D(MR) — (Vi +1) + 1) f 0,
which implies A(h;) = N; € Z>»q. Hence A € Pt.

Conversely, if A € Pt, consider the vector f:‘ (hi)ﬂv)\. If § = 4, then
ejfi)\(h"‘)_"lm = 0. Moreover, we have
e AL (A (he) + DAY — (ARa) + 1) + 1) "y = 0.

Hence if f?(h")ﬂm #£ 0, since its weight is A — (A(h;) + 1)a; < A, it would
generate a nontrivial proper submodule of V, which contradicts the irre-
ducibility of V(A). Therefore, f:\ (ha) 1, = 0 for all i € I and hence V(A) is
integrable. Clearly, wt(V} C P, and V(A} lies in the category Oin.

(2) By Proposition 2.3.4, every irreducible g-module V' in the category
@ is isomorphic to V()) for some A & h*. If V lies in O, by (1), we must
have A ¢ PY, t

Remark 2.4.5. We have just seen that if V(A) is an irreducible highest
weight g-module with highest weight A € P and a highest weight vector
vy, then we have fi)‘ (hi)HvA = 0 for all ¢+ € I. Actually, as we can see in
the following theorem, the converse is also true: if V' is a highest weight
g-module with highest weight A ¢ Pt and highest weight vector vy such
that f:‘ (hi)ﬂm =0 for all i ¢ I, then V is isomorphic to the irreducible
highest weight g-module V().
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Theorem 2.4.6. (28, Ch.10], [49, Ch.6] Let g be a Kac-Moody algebra
associated with a Cartan datum (A, ILIIY, P, PY), and let V be a highest
weight g-module with highest weight X\ € P and highest weight vector v,

If ftf\(hi)+lv)\ =0 for all i € I, then the character of V is given by
Ewew(*l)l(w)ew(Hp)_p
HaE(I)+(1 _ e—ot)dimﬂa

In particular, V' 13 isomorphic to the irreducible highest weight g-module
V(A).

(2.10) chV =

The formula (2.10) is called the Weyl-Kac character formula.

Corollary 2.4.7. [28, Ch.10] Every highest weight g-module in the category
Oy 18 isotnorphic to some V(\) with A € PT,

Proof. Let V be a highest weight g-module in the category Oin with highest
weight A and highest weight vector vy. From the first part of the proof
for Lemma 2.4.4 (1), we find that the nonnegative integer N; satisfying
f,éN‘i -uy # 0 and fiN"Hm = 0 is actually A(h;). So we have A € P and
f:‘ {h‘;)ﬂv,\ = ( for all ¢ € I. Hence, by the Weyl-Kac character formula, we
obtain V =2 V(). O

Letting A = 0 in (2.10), we obtain the denominator identity

(2.11) [T (1 —eoydmee = 3~ (~1)iwlewee,

acd weW

The denominator identity is a rich source of interesting mathematical re-
search activity. For instance, the root multiplicity formulas for Kac-Moody
algebras mentioned in Section 2.2 were all derived from the denominator
identity. Moreover, when it is applied to the affine Kac-Moody algebra of

type Agl) associated with the generalized Cartan matrix A = 32 _22),

it yields the famous Jacobi triple product identity ([26, 28]):

oo

— — E(k—1) k{kt+l)
H(l_pnqn)(lipn lqn)(l_pﬂ.qn I)ZZ(—I)kP T g 2.
n—=1 kcZ

The denominator identity can also be interpreted as the BEuler-Poincaré
principle for the Kac-Moody algebras. (See [31], [32] and [33] for more
detail and further developments in this direction.)

We conclude this section with a complete reducibility theorem for g-
modules in the category Oint.
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Theorem 2.4.8. [28, Ch.10] Let g be a Kac-Moody algebra associated with
a Cartan datum (A, XL, TV, P, PV). Then every g-module in the category Oint
is isomorphic to a direct sum of irreducible highest weight modules V(A) with
Ae Pt

We will not give a proof for this theorem. But a quantum version of this
theorem will be proved in Section 3.5. The original proof given by Kac [27]
for the nonquantum case uses properties of the Casimir operator. The proof
for the quantum case, which does not use Casimir operator, may easily be
adopted to the nonquantum case.

~Corollary 2.4.9. [28, Ch.10] The tensor product of a finite number of
g-modules in the category Oing 5 completely reducible.

Exercises

2.1. Let L be a Lie algebra and U(L) be its universal enveloping algebra.
Verify that for any 2,y € U(L) and N € Zzxp, we have

k

(1) () = Y0 ) Pt

k=0
2.2. Classify all the Dynkin diagrams of affine type with n vertices con-
taining the Dynkin diagram A,_; as a subdiagram.

2.3. Let W be the Weyl group of a Cartan datum. Show that
l(w) = |[{a € &4 |wa < 0}
2.4. Prove that every submodule of a weight module is also a weight mod-
ule.
2.5. {(a) Show that the center of a Kac-Moody algebra g is

Z(g) = {h € hlay(h) =0 for allie I}
(b) Show that Z(g) C b = €D;; Fhs and that dim Z(g) = corank A.

2.6. Let g be a Kac-Moody algebra associated with an indecomposable
generalized Cartan matrix. Prove that every ideal of g either contains
g’ or is contained in Z(g).

2.7. Verify the properties of the Verma module stated in Proposition 2.3.3.

9.8. Show that every irreducible g-module in the category O is isomorphic
to V() for some A € bh*.

9.9. Verify that the symmetric bilinear form ( | ) on b defined by (2.7) is
nondegenerate on §) and is W-invariant.
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2.10. Let V be a g-module in the category O, and let 2 be the Casimir
operator on V. Show that if v is a maximal vector of weight A, then

Qv) = (A + 2p[M)v.
2.11. Verify the properties of the automorphism 7; of g given in Proposi-
tion 2.4.3.

2.12. Let g be the affine Kac-Moody algebra of type Agz) associated with

the generalized Cartan matrix A = _21 _24) Show that the de-
nominator identity vields the quintuple product identity

oo

H (1 _ p2nqn) (1 - pZn—lqn—l)(l _ pzn_lq”)(l _ p4n—4q2n—1)(1 _ p4nq2n—1)

n=1
3 2 2_ 2_
_ Z (pSk 2 (3KP1K)/2 _ 30— Akt o3k k)/z) _
keZ
Hint: The root system of g is given by
P = {(2n + 1)ap + noy, dnag+ (2n+ 1oy | n € Z},
"™ = {2nag +nay | n € Z,n # 0},
where dimg, =1 for all @ € ®. (See [28, Ch.8|.)



Chapter 3

Quantum Groups

In this chapter, we introduce the quantum deformations of the universal
enveloping algebras of Kac-Moody algebras, or in more popular terms, the
quantum groups Ug(g). We will show that many of the features of the uni-
versal enveloping algebras of Kac-Moody algebras carry over to the quantum
groups and that the quantum groups are true deformations of the univer-
sal enveloping algebras. We will also show that the representation theory
of Kac-Moody algebras can be deformed to the representation theory of
quantum groups.

3.1. Quantum groups

In this section, we construct the quantum deformation Uy(g) of the universal
enveloping algebra U(g) of a Kac-Moody algebra g. It will be given a non-
commutative, noncocommutative Hopf algebra structure and we will show
that it admits a triangular decomposition. The base field F will be, as
before, an arbitrary field of characteristic zero.

Given n € Z and any symbol z, we define the notation

Tt

gt —g "

(3.1) [n]e = g1
We define [0];! =1 and [n],! = [n]s[n — 1z - - [1]; for n € Z,.

For nonnegative integers m > n > 0, the analogues of binomial coeffi-
cients are given by

62 Wioe e

nl, [nla![m—n]!
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Fix an indeterminate q. Then, [n|, and ™ are elements of the field F(g),
a n
g

which are called g-integers and g-binomial coefficients, respectively. We
may show inductively, using the identity

I P R R Nt

that these elements actually belong to Z[g,¢ '] (Exercise 3.1). Note that

we have
[nlq = n and [mj| — (m) as ¢— L
nl, 7

Let A = (ai;)ijes be a symmetrizable generalized Cartan matrix with
a symmetrizing matrix D = diag(s; € Zo|i € 1) and let (A,IL 1LY, P, PY)
be a Cartan datum associated with A.

Definition 3.1.1. The guantum group or the quantized universal en-
veloping algebra U,(g) associated with a Cartan datum (A, T, 1Y, P, PY)
is the associative algebra over F(g) with 1 generated by the elements e, fi
(i € I) and g" (h € PY) with the following defining relations:

(1) ¢ =1, ¢*¢" = ¢*** for b,k € PV,

(2) qheqh — q‘*"-(h)e,; for h € PY,

(3) ¢*fig™" = =M f for h e PY,

K- K;' .
(4) e.,gfj — fje?; = 64,31—11— fori,7 € I,

i 1

(5) Laco” (-1 [1 _kmj] e; ™ Fejef =0 fori#j,
i

(6) pg? (—1)* [l _k”’ij] FO R R =0 for i # 5.
qi

Here, q; = ¢° and K; = gsihi. For a = 5, micy; € Q, the notation Ko =
L K;* will also be used.

Set deg f; = —oy, degg® = 0, and dege; = ;. Since all the defining
relations of the quantum group U,{g) are homogeneous, it has a root space
decomposition

(3.4) Ug(9) = ED(Ug)es
acl}

where (Ug)a = {u € Uy(s) | g ug™* = g®(Phy for all h e PV}
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The last two defining relations above are called the quantum Serre rela-
tions. Define

(adgz}y) = 2y — ¢“1Pyz for € (Upa,y € Ups (a0 € Q),

and extend it to all of Ug(g) by linearity. These are called quantum adjoint
operators. Then, we get (Exercise 3.2)

N

ai;—1) |V _

(g (o) = (-0 ] ke
k=0 : Fi

Hence the quantum Serre relations may be written in the form
(3.5) (adge) ™% (ej) =0,  (adg i)' 7™ (f;) =0 fori#j.

We will now show that the quantum group U,(g) has a Hopf algebra
structure.

Proposition 3.1.2. The quantum group U,(g) has a Hopf algebra structure
with the comultiplication A, counit ¢, and antipode S defined by

1) A(¢") =d"®¢",

(2) Ale)) =ei @K ' H1®ei, A(f)=Li®1+ K& fi,
(3) (g =1, e(e) =e(fi) =0,

(4) S(qh) =qh, Slei) = —e;Ki, S(fi) = —Kglfi
forhc PV andicl.

Proof. The maps have been defined only on the generators. So we first
extend them to the free associative algebra on the given generators by re-
quiring A and £ to be algebra homomorphisms and by requiring S to be an
antihomomorphism of algebras. To show that these maps are well defined,
it suffices to show that all the defining relations are preserved under these
maps. The first four relations in Definition 3.1.1 can be easily verified.

To prove that the antipode preserves the quantum Serre relations, we
use

S(eN_kejef) = (—1)N+1qéV(N+a"‘j_1)eke-eN_kK{VKj,

% 1 V1%

SUMR D = (GO g MO RN R R Y,

both of which may be obtained by using the first. three defining relations.
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We will now prove that comultiplication preserves the quantum Serre
relations. By induction, we can show

A((adq ei)N(Bj)) = (ady ei)N(BJ’) ® K;NKj_l
N-1 N
LD DL M ef ™ @ KV (adg ) (es)
k=0 %

+1® (adq ei)N(ej),

where ‘T,&N) = [N - q-z(t+ﬂ*j)) (Exercise 3.2). Setting N = 1 — aij,

T
the middle term vanishes and we see that comultiplication preserves the

quantum Serre relations.

It remains to check if these maps actually satisfy the conditions for
Hopf algebras given in Definition 1.5.3. We have only to verify that these
conditions are satisfied on the generators of Ug (@), which is straightforward
(Exercise 3.3). [

Let UJ (respectively, U, ) be the subalgebra of U,{(g) generated by the
elements e; (respectively, f;) for i € I, and let Ug be the subalgebra of Uy(g)
generated by ¢ (h € PY). In addition, let UZ? (respectively, U=") be the
subalgebra of Ug(g) generated by e; (i ¢ I) and g" (h € PV) (resp. fi (i € 1)
and ¢" (h € PV)). We would like to show that the quantum group Ug(g)
has the triangular decomposition

Uy(o) 2 U; @ U, @ Uy
To do this, we first introduce an involution on U,(g). Define a linecar map
T : Uglg) — U.(g) by
T =g Te)=fi TU)=e (heP’icl)
It is easy to verify that 7" defines an algebra endomorphism on Uq{g). Let
o : Uy(g) ® Ug(p) — Uyla) ® Ug(g) be the transposition map defined by
cla®@b)=b®a forabe Ug(g)-

As the following proposition shows, T is actually an involution.

Proposition 3.1.3.
(1) 7% =id.
(2) AoT =00 (T®T)0A.
(3) T restricted to US gives an algebra isomorphism between U and
U;.

Proof. It suffices to check them on the generators, which is quite straight-
forward. [
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The following lemma is the key step in proving triangular decomposition.

Lemma 3.1.4.
>0 e~ 770
(1) U=l Uf.
<0~ 77— (0]
(2) Uqf qu ®Uq.

Proof. We will just prove the second part. Let {f¢}cca be a basis of U,
consisting of monomialsin f;’s (i € I). Consider the map ¢ : U, ®Ug — UqSD
given by o(fe ® ") = fgqh. Since

fe =PV g for J € (U7)-p, B€Qu,
¢ is surjective. Thus it is enough to show that {frq"|¢ € (O, h € PV} is
linearly independent over F(g).

Suppose

Z Cc,hfcqh =0 for some C¢p € F(g).

CeR
hepVY

We may write

Z( 3 C’C,hfcqh):o.

BeQy degfe=-8
hepPV

(Here, we denote degu = € Q if u € (Uy)g.)
Since Uy = @peg(Uy)g, we have

(3.6) Y Cenfed® =0 for each B € Q.

deg fe=—03
hepv

Since each f; is a monomial in f;’s (¢ € I), if it is of degree —F € Q_, we
have
A(fe} = fr ® 1+ (intermediate terms) + Kz ® fe.

Applying the comultiplication A to (3.6) yields

Y Cen(fed"®q" -+ Kpd" @ fegt) =0

deg fe=—pf
hePY

Collecting the terms of degree (—3,0), we obtain
>, Cenlfed*®d") =0

deg fe=—p3
hcpPY

Since the set {¢"}pepv is linearly independent, we have

> Cepfeq"=0 forallhe PV
deg fe=—48
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Multiplying by g " from the right and using linear independence of f¢, we
conclude all C¢p, =0 as desired. |

We are now ready to prove the triangulor decomposition for Ug(g)-

Theorem 3.1.5. Uy(g) 2 U; @ U) ® uf.

Proof. Let {fc}cen and {ec}ceq be monomial bases of U and U; , Tespec-
tively. As in the proof for Lemma 3.1.4, it suffices to show that the set
{feqhen|C,mEeNhE PV} is linearly independent over F(q).

Suppose
Z Ceng fgqhen =0 for some C¢pyp € F(q).
¢ b

The root space decomposition of Uy(g) shows that
Z OC,h,nfgqhen =0 forallye@.

hePY
deg fe+deg en="
We know
A(en) = 617®ng1€8” +"‘+1®6ﬂ,
A(fg) = fg®1+---—|—K,degf§ ®fc.
Therefore,
0= Z Cenni (fcqhen)
d f}ffv -
(3.7) Bleraee e

=Y Cpalfc®@1l+ )@@ TS ).

hePY
deg f¢+degen="7

Recall the partial ordering on h* defined in Section 2.1 and choose o = deg fe
and 3 = deg ey, which are minimal and maximal, respectively, among those
for which C¢ p, is nonzero. The terms in (3.7) of degree (o, §) must sum to
zero. Hence,

Z Cepnlfed" ® qey) = 0.

hePV,
deg fr=c,deg en=0

Since the vectors fcqh are linearly independent by Lemma 3.1.4, we have
S Cinmien =0 forall ¢ and h.
deg en=0
From this, we may conclude that Ceppn =0, 88 desired. 1
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3.2. Representation theory of quantum groups

In this section, we study representations of the quantum group. The theory
is quite parallel to that of Kac-Moody algebras.

A Uy(g)-module V¢ is called a weight module if it admits a weight
space decomposition

Vi=PVI where VI={ve VI gv=¢"u foralheP)
peP

A vector v € V)] is called a weight vector of weight p. If e;u — 0 for all
i € 1, it is called a mazimal vector. If Vi{ # 0, u is called a weight of
V? and V}{ is the weight space attached to u € P. Its dimension dim VJ
is called the weight multiplicity of u. We will denote by wt(V9) the set
of weights of the Uy(g)-module V7. If dim V){ < co for all u € wt(V9), the
character of VY is defined by

chVi= Zdim Viet,
I

where e# are formal basis elements of the group algebra F[P] with multipli-
cation defined by etef = e M,

Proposition 3.2.1. Bvery submodule of o weight module over Uy(g) is also
a weight module.

Proof. Let V7 be a weight module. Suppose there exists some submodule
W1 which is not a weight module. Choose v = v1 + -+ 4+ v, € W9, where
v, € V&, pg are distinct, and vy € WY for some k. We may assume
further that every element of W9 with fewer summands has all its summmands
belonging to W4, This forces v, & W9 for all k. Choose any A € PY such
that wi(h) # px(h) for at least one k. Then ¢*v — ¢*™y is a nonzero
element of WY with a strictly smaller number of summands for which all its
summands do not belong to W4, which is a contradiction. O

For A € P, set D(X) = {p € P|u < A}. The category O7 consists
of weight modules V9 over Uy(g) with finite dimensional weight spaces for
which there exist a finite number of elements A1, Ao, ..., As € P such that

wt(VT) € D(M)U---U D(As).

As is the case with Kac-Moody algebras, the most important examples
among the Uy(g)-modules in the category @7 may be highest weight mod-
ules. A weight module V? is called a highest weight module with highest
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weight A € P if there exists a nonzero v, € V9 such that

e;vn =0 foralliel,
(3.8) vy = ¢ My, for all h e PY,

V4 = Uy(g)va.
The vector vy, which is unique up to constant multiple, is called the highest
weight vector. The triangular decomposition for Uy(g) (Theorem 3.1.5)
shows VI = U, vy for any highest weight module. It can be easily verified
that dim Vi =1, dim V) < oo for all p € wt(V4), and VI = D, ., Vi{. The
last property justifies the name highest weight modules.

Fix X € P and let J2(\)} be the left ideal of Ug(g) generated by e; (i € I)
and ¢"—¢*®1 (h € PY). Define the Verma module M9()\) = Uy(g)/JI(}).
This is a U,(g)-module by left multiplication. Set vy = 14 J9(A). Then we
have

Por =" +1°0) = P+ TR = "o,
evy =¢; + .)Tq()\) = Jq()\) =0,
Us(g)va = Ug(g)/JU(A) = MI(A).

Thus M9()) is a highest weight module with highest weight A and highest
weight vector vy = 1 4+ J4(A).

Proposition 3.2.2.

(1) As a Uy -module, M%) is free of rank 1, generated by the highest
weight vector vy = 1+ JI(A).

(2) Ewery highest weight Uy(g)-module with highest weight A is a ho-
momorphic wmage of MI(\}).

(3) The Verma module M9()) has a unique marimal submodule.

Proof. (1) Any highest weight module is generated by its highest weight
vector as a Ug-module, so it only remains to prove that it is free. We
need to prove that wvy = 0 for u € U, implies u = 0 or, equivalently,
U, NJ9A) = 0. Combining Lemma 3.1.4 and the triangular decomposition
(Theorem 3.1.5), we may write Uy(g) = Uy @ UZ®. Thus JU(}), the left
ideal of U,(g) generated by e; (i € I) and ¢* — M1 (h € PY), cannot have
elements that lie in U,

(2) Let W9 be an arbitrary highest weight module with highest weight
A and highest weight vector w,. Then (1) allows us to define a map
¢ MI(A) — Wby u- (14+JA)) — u-w)y for v € U, . Since W = Ugw,,
the map ¢ is surjective. It remains to check if ¢ is a U,(g)-module homo-
morphism.
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The action of an arbitrary z € U,(g) on an arbitrary wuy € M2(\) with
u € Uy(g)™ may be computed as follows, First, write zu € Uy(g) in the form
given by the triangular decomposition, say, zu = 3 v vyt with v* € U;E
and u? € Ug. We want to see if zuw), is sent to zuw, by the map ¢. This
is equivalent to checking if 3" u~u%utwy is sent to 3w ulutw,. Since the
actions of ¢" and e; on vy and w) are identical and result in only constant
multiples of vy, each u%utwy is sent to the corresponding wutw,. The
remaining action of 4™~ is preserved by construction of the map. Hence the
map ¢ defined above does preserve Uy(g)-action.

(3} Note that any proper submodule of M%()) cannot contain the highest
weight vector vy = 1+J9(\); that is, it must lie inside € wa M9(A),. Hence
the sum of two proper submodules is again a proper submodule of M7()).
Therefore, the sum of all proper submodules of M4({}) is the unique maximal
submodule of M9(}). 1

We denote this unique maximal submodule of M?(A} by N9(X). Then
the quotient M%(X)/N9()) is an irreducible highest weight module with
highest weight A, which will be denoted by V4(A).

We now define the main object of our study in this chapter—the category
O, of Uy(g)-modules. A weight module V7 over the quantum group U,(g)
is integrable if all e; and f; (i € I) are locally nilpotent on V9.

Definition 3.2.3. The category O consists of Uy(g)-modules V7 satis-
fying the following conditions:

(1) V¥ has a weight space decomposition V1 = @, p V¥, where
Vi={ve Vi g =™y forall he P}
and dim Vf < oo for all A € P,
(2} there exist a finite number of elements Ay, ..., A; € P such that
wt(VT) € D(A) U ---U D{X),
(3) all e; and f; (¢ € I) are locally nilpotent on V4.

The morphisms are taken to be usual {/,(g)-module homomorphisms.

Hence the category 0., consists of integrable U,(g)-modules in the cat-
egory O9. Note that the category O is closed under taking direct sums

1n
or tensor products of finitely many U, (g)-modules.

Fix i € I. We denote by Uy(g(;y) the subalgebra of U,(g) generated by
e, fi, Kfﬂ. Then we have Uy(g(;)) = Uy (slz), and, as for the g-modules in
the category Ons, we can prove (Exercise 3.5):
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Proposition 3.2.4 ([21,28]). Let V2 be a U,(g)-module in the category
Of,. Then, for each i € I, VI decomposes into a direct sum of Uy(h)-

int”
tnvariant finite dimensional irreducible U, 1(8¢))-submodules.

Set e( ) = bkl and £® — 75 /[kls,!. They are called the divided
powers of e; and f;, respectively. We have the following commutation
relations for the divided powers, which can be proved by straightforward
induction (Exercise 3.6).

Lemma 3.2.5. For alli ¢ I and k € Z>q, we have

Bzf(k) fz(k) z_,_f(irc y Kig " _
q‘z’
Proposition 3.2.6. Let A\ ¢ P and let Vq()\) be the irreducible high-

est weight module of highest weight X and highest weight vector vy. Then
Sy 0 for alli e I

%

Proof. The above lemma shows
(3.9) 6ifi{k)UA = [A(hr,;) —k+ l]qifi(k_l)’v)\

Substituting & = A(h;) + 1, we see that ¢; f?(h")ﬂw\ = 0. Moreover, for
o, Aha)+1 e pMRi)+1 .
J # 4, we already know e;f; vy = 0. Hence if f; vy # 0, it
would generate a nontrivial proper submodule of V4(A), contradicting the
irreducibility of V4(XA). O

Proposition 3.2.7. A highest weight U,(g)-module V' with highest weight
A € P and highest weight vector v, zs integrable if and only if for every
1 € I, there exists some N; such that f fuy = 0.

Proof. We have only to prove the if part. Note that e; - Vi € Vigo,-
Since all the weights of a highest weight module are less than or equal to
its highest weight, the e; (i € I} are always locally nilpotent on any highest
weight module. So we restrict our attention to the f;’s only.

For homogeneous u ¢ Uy of degree —a € Q_, we have

k=0
With the help of (3.3), we may check this by induction (Exercise 3.7). Recall

that (ady fi)*(f;) = 0if j # i and k > —aij. Soif u= fu' with j # i, we
have

P 30D (G, 5)

44
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If u = fi/, we may set fPu = f*"/. Given u € U, , this shows how we
may inductively prove fi'u € U - f:v ¢ for all sufficiently large n. Now, an
arbitrary element of V¢ may be written in the form = - vy with u € Uy
which completes the proof. O

Proposition 3.2.8. Let VQ( A) be the irreducible highest weight Uy(g)-module
with highest weight A € P. Then VI()\) belongs to the category O if and
only if A € PT,

int

Proof. The if part is taken care of by Propositions 3.2.6 and 3.2.7. Let us
prove the only if pa.rt Fix i € I and let N; be the smallest nonnegative
mmteger such that f tuy # 0 and fN +lyy = 0. Then we have

0 = e, £y, = [A(hs) — Nilg ™0y,

which implies
?\(hi)*Ni . q}f)\(hi)-l-Ni
(A(hi) — Nilg = & i 0.

qz'—qi_l

It follows that q2(A(h J=N) _ 1. Since ¢ is an indeterminate, we must have

)\(h ) N; € Z20 ‘ O

Remark 3.2.9. As in Lemma 2.4.4 (2), we would like to claim that every
irreducible Uy (g)-module in the category O.%, is isomorphic to the irreducible
highest weight module V() for some A € P*. For this, we need to wait
until the end of the first half of Section 3.4. In Section 3.4, we will also show
that every highest weight U,(g)-module in the category Oj'flt is isomorphic
to VI(A) with A € PT.

3.3. A -forms

In the previous section, we have seen that the representation theory of U;(g)
is very similar to that of g. Hence it is natural to expect that the quan-
tum group Uy(g) may be regarded as some sort of deformation of U(g) in
such a way that the representations of U,(g) can also be regarded as the
deformations of those of U(g). Moreover, from the defining relations, we
can expect the structures of the quantum group U,(g) and its representa-
tions tend to those of U(g) and its representations as g approaches 1. This
observation is one of the most fundamental properties of quantum groups
and their representations which was first proved in [47].

In this and the next section, we make precise and prove these statements.
By somewhat modifying Lusztig’s approach, we show that the quantum
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group U,(g) is a deformation of U(g) as a Hopf algebra and show that a
highest weight U (g)-module admits a deformation to a highest weight Uy (g)-
module in such a way that the dimensions of the weight spaces remain the
gsame under the deformation.

We consider the localization of F[g] at the ideal (¢ —1):

A1 = {f(q) € F(q}| f is regular at ¢ = 1}

(3.10) = {g/h|g,h € Flg], h(1) #0}.

- Notice that [n]y, € Ay and [Tqﬂ € Ay, being elements of Z[g,q !]. For an
g

integer n € Z, we formally define

Lyt oyl L yat -1
(3.11) [y; nls = [ and (yin)s = 1

For example, we have

m+'n._qlfm#'n
[¢f";n)g, = — 57— € Ay,
qi —dg;
+n
g -1
(‘ﬁn:n)m = = 1 EA].:
T
h . n —h . —n
h gq —q 'q 0
[Q5n]q: qg—q! EUqa
h " —1 _ 4
(g"5n)g = g—1 €U

Definition 3.3.1. We define the A -form, denoted by Ua,, of the quantum
group Uy(g) to be the A;j-subalgebra of U,(g) generated by the elements e;,
fi, q", and (g";0)q (i € I, h € PY).

Let UL (respectively, Uﬁ_n) be the Aj-subalgebra of Ua, generated by
the elements e; (respectively, f;) for ¢ € I, and let U?kl be the A;-subalgebra
of Ua, generated by ¢" and (g";0)q for h € PV. The next lemma shows that
URI contains all of the more frequently appearing elements of Ug .

Lemma 3.3.2.

(1) (¢"n)g €Uy, forallncZ and h € PV,
(2) [Kisnly € qu forallncZ andiel.
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Proof. 1t suffices to check the following identities:

B h q" —1
(¢"in)q = " (% 0)g + ——,
qg—1
qg—1 -1
[Ki;0g, = %F 1 1(1 + K HK;0)q,

[Ki; n]'}‘i = q?[K’i; O]Qi + [n]‘h‘K'iiI’
all of which can be verified by straightforward calculations (Exercise 3.8).

|

‘We next show that the triangular decomposition of U/;(g) carries over to
its Aq-form.

Proposition 3.3.3. We have a natural isomorphism of Aq-modules
Ua, 2U, ®UR, QUL

induced from the triangular decomposition of Uy(g).

Proof. Consider the canonical isomorphism ¢ : Ug(g) = Uy ® Ug @ U;’
given by Theorem 3.1.5. The commutation relations
ei(qh;O)q = (¢"; —ai(h))qti,
(" 0)qfi = fila"s —ai(R))g,
eif; = fiei + 6ii[Ki; Olg,,
together with Lemma 3.3.2 show that the image of ¢ lies inside U, ® Ugl ®

UXI when restricted to Ua,. Its inverse map is given by multiplication.
Hence the two spaces are isomorphic as Aj-modules. |

Fix A € P. Throughout this and the next section, V¢ will denote a
highest weight U/;(g)-module with highest weight A and highest weight vector

Vi,

Definition 3.3.4. The A;-form of the highest weight module V% with
highest weight A € P and highest weight vector v, is defined to be the
UAl-module VAl = UA1 Ux.

First, observe that we have:
Proposition 3.3.5. Vj, = Uy, U

Proof. In view of Proposition 3.3.3, it suffices to show that UII’U)\ = Aqvy
and UE\IUA = A;v). The first assertion is clear by the definition of highest
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weight modules. For the second assertion, we observe that

¢"vy = '™

Vs
P —1

q—l Ux.

(a";0)qux =
Hence we get Ua, vx = Uy v ]

Recall that the highest weight U,(g)-module V¢ has the weight space
decomposition

Vi—= @Vq, where Vi = {v € VI |¢"v = @My forall h e PV}
p<A . ‘ .

For each u € P, define the weight space (Va,), = Va, N V. The next
proposition shows that the weight space decomposition of V¢ also carries
over to its Aj-form.

Proposition 3.3.6. Va, = @, (Va,),-

Proof. Assume v =1 + - 4w, € Va,, where v; € VI and p; € P. We
may take p; to be distinct. Fix an index j. It suffices to show v; € Va,.

For each k # j, we may choose H € PV such that u;(Hy) # up{Hz).

Note that
g {H)—pp(Hy)
(q*T), — g (H))g = 7

is invertible in A; for each k # j. Imitating Lagrange’s interpolation for-
maula, define u € Uy, to be

g—1

. (q™%; —pu (Hy))q
kI}j (g Te); — g (H))g

Then wv; = v; and uwvy = 0 for k # 7. Hence uv = v, € V. OJ

An approach to proving the above proposition that mimics the proof of
Proposition 3.2.1 fails because the scalars we are dealing with do not form
a field. But the proof for the next proposition relies heavily on the fact that
A, is close enough to a field.

Proposition 3.3.7. For each u € P, the weight space (Va,), is a free
Aj-module with ranka, (Va, ), = dimggy Vi

Proof. Notice that (Va,), is finitely generated as an Aj-module. Let
{vr}i_, be an Aj-spanning set of (Va,),. We will show that this span-
ning set can be reduced to an A;-linearly independent set. Then we would
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have an Aj-basis of (Vj, ),, which would imply (V,), is a free Aj-module.
Consider an arbitrary Ai-linear dependence relation :

(3.12) ci{g)vr + -+ ep(q)v, =0

with each cx(g) € A;. Dividing out by (g — 1) if necessary, we may assume
that at least one of the coefficients satisfies ¢x(1) # 0. For example, suppose
e1(1) #0. Then ¢1(q) 1 € A; and

= s lea@un t o))

Repeating this process, we get an A;-linearly independent spanning set of
(Va, )#' ‘ .

As for its rank, let {fcva} be a basis of V], where f, are monomials in f;.
The set certainly belongs to (Va,),, and is also A;-linearly independent, so
ranka,(Va,), > dimp(y Vi{. To show the converse inequality, let {vx}h_;
be an Aj-linearly independent subset of (Va,),. Consider an F(g)-linear
dependence relation

bi(q)vi+ - + bp(q)v, = 0,
where by(g) € F(g) for k = 1,...,p. Multiplying by (g — 1) if needed, we

may assume that all by(g) € Aj. Since vy,..., v, are linearly independent
over A, we must have bg(q) = O for all k£ = 1,...,p. Hence vy,...,u,
are linearly independent over F(g) and ranka, (Va,), < dimg) Vj/, which
completes the proof. O

Proposition 3.3.8. The F(q)-linear map ¢ : F(g) ®a, Va, — V7 given by
c®vi—cv (c € F(g), veVa,) is an isomorphism.

Proof. Combining Propositions 3.3.6 and 3.3.7, we get the desired linear
isomorphism. O

Remark 3.3.9.

(1) We see from this proposition that the A;-form Va, of a highest
weight module V? is an integral form of V2 over Aq; i.e., it can be
viewed as an Aj-lattice in V4.

(2) In Exercise 3.10, we give an alternative proof of Proposition 3.3.7
which works for more general setting.

3.4. Classical limit

We now proceed to take the limit ¢ — 1 of highest weight U,{g)-modules.
The notation from the previous section will be retained. In particular, V?
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will denote a highest weight Uq(g)-module of highest weight A € P and
highest weight vector vy. Let J; be the unique maximal ideal of the local
ring A; generated by g — 1. There exists an isomorphism of fields

Ai/J1 = TF givenby f(g)+J; - f(1).
(In particular, g is mapped onto 1.) Define the F-linear vector spaces
Ur = (A1/J1) ®a, Ua,,
V= (A1/d1) ®a, Va,.

Then V1 is naturally a U/;-module. We would like to show that U7 is iso-
morphic to the universal enveloping algebra U(g) and that V%is a highest
weight U(g)-module of highest weight, .

Note that

(3.13)

Ur 2Ua, /I1Us, and V1=V, /31Va,.
Consider the natural maps
UA—l - UA}_/JIUAI = Ul,
Va, — Va, [TV, 2 VL
We use the bar notation for the image under these maps. The passage
under these maps is referred to as taking the elassical limit. Notice that
¢ is mapped to 1 under these maps. The notation U1 has been used to call
to mind “U,(g) at g = 17.
For cach ys € P, define V! = (A,/J;) ®4, (Va,)u- Then we have:

Lemma 3.4.1.

(1) For each p € P, if {vi} is a basis of the free Aj-module (Va )

then {9} is a basis of the F-linear space V;.

(2) For each p € P, a set {v;} C (Va,)p s Ap-linearly independent if
the set {9;} C Vx} is ¥-linearly independent.

(3.14)

Proof. (1) Using [18, Thm.5.11, Ch.4], we may show that {1®wv;} is a basis
of the (A;/J;)-linear space V! (Exercise 3.11).

(2) Suppose 3 ¢ (¢)v; = 0 for ci{g) € A4, not all zero. Dividing out by
g—1, if necessary, we may assume at least one ¢i(1) #0. Then, 3" ¢;(1)7; = 0
is a nontrivial F-linear dependence relation. O

Proposition 3.4.2.
(1) Vl = @,U.SA V;}
(2) For each u € P, dimp V, = ranka, (Va,),.

Proof. The first follows from Proposition 3.3.6. And the second follows
from Lemma 3.4.1. O
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We now know

(3.15) dimp V; = ranka, (Va, }u = dimg,) V)]
for all p € P.
Let i € U7 denote the classical limit of the element
h " —
(¢ 0)g = P € U,

We first show that the image of Ugl under the classical limit is quite close
to UV = U(h).

Lemma 3.4.3.

(1} For all h € PV, we have g =1.
(2) For any b,k € PV, h+ 1/ = h+ k. Hence, nh=nh forn € Z.

Proof. (1) Note that
" —1= (¢ 1){¢"0)q

Hence the classical limit of the right-hand side, being a multiple of ¢ - 1, is
ZETO0.

(2) We may easily calculate
(d"50)g = " (¢"0) + (¢";0)¢

We take the classical limit of both sides using F =1 to obtain the desired
result. [l

Define the subalgebras U = F ® Ugl and U{t =F® Uil. The next
theorem shows that the classical limit of U,(g) is almost the same as U(g).

Theorem 3.4.4.

(1) The elements &, f;, (i € I} and h (h € PY) satisfy the defining
relations of U(g) given by Proposition 2.1.6. Hence, there exists
a surjective F-algebra homomorphism 1 : U(g) — U1 and the -
module V' has a U(g)-module structure.

(2) For each p € P and h € PV, the element h acts on V; as scalar
multiplication by p(h). So V’} is the p-weight space of the U(g)-
module V1.

(3) As a U(g)-module, V' is a highest weight medule with highest
weight A € P and highest weight vector Uy.
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Proof. (1) The first relation for U(g) is trivial. Let us check the second
defining relation. By definition of U,(g), we have

g q' 1
¢ +1lg

Taking Lemma 3.4.3 into account, the Classwal limit of the right-hand side
is

eifi — fies = [Ki;0]g, = (1 + KN (K35 0)q.

1 1
= . 2.8;h; =h;
2 5 54 iy

which yields the second defining relation. As for the third defining relation,
note that

(g";0)gei — ei(q™;0)g = €i(g™; i(h))g — (g™ 0)g
_ qcxt-(h) -1
g—1
We take the classical limit of both sides to obtain hé; — &h = a;(h)€;. Since

h
eiq .

mq, =n and [n] = (n) we get the remaining Serre relations.
g mf.. m
(2) For v € (Va,), and h € PV, we have
h) _
h. g —1
(¢ 0)qv = ——7~v
Taking the classical limit of both sides yields our assertion.

(3) By (2), we have htiy = A(h)oy for all h € PY. For each i ¢ I, ;v
is trivially zero. By Proposition 3.3.5 and (1), we get V1 = U oy = U @,
and hence V! is a highest weight U( J-module with highest weight A and
highest weight vector 7. O

Summarizing the discussions in Propositions 3.3.7 and 3.4.2, and The-
orem 3.4.4, we obtain the following identity between the characters of a
U(g)-module and a Uy(g)-module.

Proposition 3.4.5. ch V! = ch V7.

This shows that the U,(g)-module V9 can be viewed as a deformation
of the U(g)-module V1. The next theorem shows that highest weight U,(g)-
modules in the category O, and highest weight U(g) modules in the cate-
gory Oint are in good correspondence.

Theorem 3.4.6. If A € P' and VY is the irreducible highest weight Uy(g)-
module VI(X) with highest weight A, then' V1 is isomorphic to the irreducible
highest weight module V(X) over U(g) with highest weight X. Hence, the
character of V4(A) is the same as the character of V{(X), which is given by
the Weyl-Kac character formula in Theorem 2.4.6.
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Proof. Let vy be the highest weight vector of V9. By Proposition 3.2.6 and
Theorem 3.4.4 (3), V! is a highest weight U/ (g)-module with highest weight
A and highest weight vector v, satisfying fz-)\(hi)H'U)\ = J?(h‘:)ﬂﬁ;\ = 0 for all
i € I. Hence Theorem 2.4.6 shows V! 22 V(). The second assertion follows
from Proposition 3.4.5. O

Corollary 3.4.7. Let A € PV and let V9 be a highest weight module over
Uq(g) with highest weight A and highest weight vector vy. If f?_-}‘(hi)ﬂv)\ =0

for alli € I, then V9 is isomorphic to the irreducible highest weight module
Va(A).

Proof. As in the proof of Theorem 3.4.6, we have V1 = V()) as U(g)-
modules. Hence, chV? = ch V! = chV()\) = chV9()\). Note that there
exists a (weight preserving) surjective Uy{g)-module homomorphism V9 —
V4(A). Since the characters are the same, this must be an isomorphism. [J

Corollary 3.4.8.

(1) If VY is a highest weight Uy(g)-module in the category OJ, with
highest weight A € P, then A € Pt and VI = VI()).

(2) Every irreducible Uy(g)-module in the category O2 . is isomorphic
to VI(A) for some X € PT,

Proof. (1) Under the conditions given, V! is a highest weight module in
category Oins. Hence by Corollary 2.4.7 we have V! = V()\) with A €
P* as U(g)-modules with A\ € PT. The rest follows as in the proof for
Corollary 3.4.7.

(2) Let V7 be an irreducible U;{g)-module in the category O . Since
wt(V9) C ;) D(}j) for some Ay, ..., As € P, there exists a maximal vector
vy of weight A for some A € P. Then v, generates a highest weight Uy (g)-
module W7 with highest weight A. By (1), we must have A € P+ and
W2 = V4e()). Since V1 is irreducible, we conclude that V9 = W4, O

Theorem 3.4.9. The classical limit Uy of Uy(g) inherits a Hopf algebra
structure from that of Uy(g), and it is isomorphic to the universal enveloping
algebra U(g) as a Hopf algebra over F.

Proof. By Theorem 3.4.4 (1), there exists a surjective F-algebra homomor-
phism ¢ : U(g) — U defined by e; — &, f; — f;, and h+ hfor i € I and
h € PY. Recall from Proposition 2.1.7 that U(g) = U~ @ U U™.

We first show that the restriction 4 of 1) to U is an isomorphism of U/°
onto Uf. The restricted map vy is certainly surjective. Choose any Z-basis
{zi} of the free Z-lattice PV. Tt is also a basis of the Cartan subalgebra f.
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Thus any element of % may be written as a polynomial in {z;}. Suppose
g € ker 4p. Then, for each A € P, we have

0=1bo(g) vy = A(g)x,

where vy, is a highest weight vector of a highest weight U, (g)-module of high-
est weight A and where A(g) denotes the polynomial in A(z;) corresponding
to g. Hence, we have Mg) = 0 for every A € P. Since we may take any
integer value for A(%;), g must be zero, which implies that 1y is injective.

Next, we show that the restriction of ¥ to U, which we denote by W,
“is an isomorphism of U/~ onto Uy . Suppose kert_ # 0 and u = Y acfc €
ker+_, where a¢ € F and f¢ are monomials in fi’s (i € I}. Let N be the
maximal length of the monomials f¢ in the expression of u, and choose a
dominant integral weight A € PT such that A(h;) > N foralli € I. If
Ve = V4()\) is the irreducible U,(g)-module of highest weight A, then by
Theorem 3.4.6, the representation V1 is isomorphic to the irreducible U(g)-
module V(}) of highest weight A. By Theorem 2.4.6 and Remark 2.4.5, the
kernel of the map ¢ : U™ — V1, given by z — P(z) - vy, is the left ideal
of U~ generated by the elements f;\ (h)+1 g1 4 € I. Therefore, u =) acf¢
cannot belong to kery. That is, ¥—{u) - va = W(u) - vy # 0, which is a
contradiction. Therefore, keryy_ =0 and U™ is isomorphic to U; .

Similarly, we have U™ = Uf . Hence, by the triangular decomposition,
we have the linear isomorphisms

Ug)=2U-oU'eUt2U; @U@ U =1,

where the last one follows from Proposition 3.3.3. Tt is easy to show that
this isomorphismn is actually an algebra isomorphism (Exercise 3.14).

For the Hopf algebra structure, we first show that U/} inherits a Hopf
algebra structure from that of U, (). It suffices to show that Ua, inherits
the Hopf algebra structure of Uy (g). Thisis accomplished by observing that

h h _
A0 = TELE B = (@0, 81448 (50
£((4"50)4) =,
S((¢";0)g) = (7" 0)g:

Hence the maps A : Ua, — Ua, ®Uay, €:Ua; — Ax, and S :Ua, — Ua,
are all well defined and Uy inherits a Hopf algebra structure from Uy (g).

(3.16)

Let us now show that the Hopf algebra structure of Uy(g) coincides with
that of U{g) under the isomorphism we have been considering. Taking the




3.5. Complete reducibility of the category O} 57

int

classical limit of the equations in Proposition 3.1.2 and (3.16), we have
Ah)=h®1+1®h,
Alg))=&@1+1Q8E,
Alf)=fi®1+18 fi

This coincides with the comultiplication given in (2.5). The classical limit
of other maps may also be checked to coincide with the maps for U(g). []

Since U™ = U7, it is natural to expect that the clasgical limit of a Verma
module over Uy(g) is isomorphic to the Verma module over U(g) with the
same highest weight. This is proved in the next theorem.

Theorem 3.4.10. Let A € P. If V7 is the Verma module MY(A} over Uy(g)
with highest weight ), then its classical limit V' is isomorphic to the Verma
module M(X) over U(g) with highest weight X.

Proof. Let vy be the highest weight vector of V?. Since U™ = U, it
suffices to show that V! is a free U -module of rank one generated by the
highest weight vector 7.

Recall from Proposition 3.2.2 that V¢ = M?(}) is a free U, -module of
rank one generated by the highest weight vector v,. Noting the fact that
Va, is a subspace of V9 and taking Proposition 3.3.5 into account, we see
that Vi, is a free U;l—module generated by wy. Taking the classical limit,
we see that V! = U] - vj.

It remains to show that V! &V, /J1Vy, is a free U, -module. Suppose
# - vy = 0 for some u € UXI. Then v -vy € J1Va, = JlU_Klv)\. But since -
Va, is a free Uy -module generated by vy, we must have u € Jq U, which
implies @ = 0 in Uy 2 Uy /J1Uy (see, for example, [18, Lemma 1V.2.10]).
Therefore, V! is a free U, -module of rank one generated by the highest
weight vector ). O

3.5. Complete reducibility of the category 02,

In this subsection, we will prove the complete reducibility of U/;(g)-modules
in the category Q.. We first define the notion of finite dual (or restricted
dual) of a Uy(g)-module. Let V be a Uy(g)-module belonging to the category
O1. It is graded by the weight lattice P with each weight space of finite

dimension:

(3.17) V=V, withdimV, < co.
peP ‘
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We define the finite dual of V to be the vector space

(3.18) V= @ vy, where V; — Homg()(Vy, F(q))
I3

with the action of Uy(g) on V* defined by

(319) (@ d,v) = (¢, 5(x) v)

for each = € Uy(g), ¢ € V*, and v € V. From the property
T - V.lt C th($)+w

- we may show that z - ¢ actually belongs to V*. Although we will not have
chances to use the real dual of highest weight modules V(A) or VI(}), to
reduce confusion, we shall write V*()) and V7*()) to denote their finite
duals.

Since the antipode S is an antiautomorphism, we could have defined the
dual space using S~! in place of S. The dual of V thus defined will be
denoted by V'.

The following lemma is an immediate consequence of the definitions.

Lemma 3.5.1. Suppose that V is a Uy(g)-module in the category O, such
that wt(V) C Ui (A — Qy) forsome \; € P (j=1,....5).

(1) There ezist canonical isomorphisms (V*) =V = (V')*.

(2) The space V;; is a weight space of weight —p.

(3) The finite dual V* is also integrable and we have

8

wi(V*) € | J (=2 +Q4)-

=1
Proof. We leave it to the readers as an exercise (Exercise 3.16). O

Suppose that V is a Ug(g)-module in the category O2,. Recalling the
definition of category 02 , we may choose a mazimal weight A € wt(V)
with the property that A+ o is not a weight for any i € I. Fix any vx € Vi
and set L = Uy(g)vy. Then from Corollary 3.4.8 (1) we know L = V()
with A € PT.

Let v} denote an element in VY satisfying v}(va) = 1, vy (V) = 0 for
A # p, and set

L =Uy(g)v} C V™.

Lemma 3.5.2. The Uy(g)-module L is isomorphic to the irreducible lowest
weight module VI*(\} with lowest weight —\ and lowest weight vector v}.
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Proof. Lemma 3.5.1 shows that L is integrable. Moreover, from the choice
of A, we know v} is a lowest weight vector of weight —A. That is, it satisfies
fivy=0 forallic I,

g vy = g APy,
Hence L is an integrable lowest weight module of lowest weight —\. Trans-
lating the theory of the category O, to the case of modules with weights
bounded below, we know that it is an irreducible lowest weight module
of lowest weight —A. Since V?*(\) is one such module, the translation of
Corollary 3.4.8 (1) tells us that these two modules must be isomorphic. [

We may now single out at least one irreducible component from V.

Lemma 3.5.3. Let V be a U,(g)-module in the category O, and let L be
the submodule of V' generated by o mazimal vector vy of weight A. Then we
have

VLeV/L

Proof. We will show that in the short exact sequence
0L 5%V -V/L-0,

the map ¢ has a left inverse. Let us take the dual with respect to S 1 of
the injection L — V* to obtain a map (V*Y — (L). With the help of
Lemma 3.5.1, we may consider the following sequence of maps:

L—Vv % (LY.

We may easily check that the image of v, is nonzero under the composition
of these maps. Using Lemma 3.5.2, we also know that both L and (L)
are isomorphic to the irreducible highest weight module V9(\}. Hence, by
Schur’s Lemma, the above composition of maps must be an isomorphism.
By composing the inverse of this isomorphism with the map , we obtain
the left inverse of ¢«. Hence the above short exact sequence splits and we
have

V(LY d(kerp) = L V/L.
O

We may now use this lemma to show the complete reducibility theorem.

Theorem 3.5.4. Let Uy(g) be the quantum group associated with the Cartan
datum (A, 1L, IV, P, PV). Then every U,(g)-module in the category O, is
wsomorphic to o direct sum of irreducible highest weight modules V() with
Ae Pt
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Proof. Let F C V be a finite dimensional U§>-0~submodule and set Vp —
Ug(g)F C V. We may choose a maximal weight vector of F' C Vp and apply
Lemma 3.5.3 to obtain

VF=LGBL1§L®VF/L

for some irreducible highest weight module L with dominant integral highest
weight and its complementary submodule £.,. Note that, as a Uy(g)-module,
L is isomorphic to Vi /L which is generated by the UzZ%-module F/(FNL).
Since the dimension of ¥/(F 1 L) is strictly less than that of F, using
induction, we may write the submodule V& as a direct sum of irreducible
highest weight modules with dominant integral highest weights.

Now, for any v € V, by definition of Ol the quo—module Fv) = quo'v
is finite dimensional. Hence, using previous notation, we obtain

V= Z VF('U))
velV

where each Vi, is a (direct) sum of irreducible, highest weight modules
with dominant integral highest weights. Thus V can be expressed as a
sum of irreducible highest weight modules with dominant integral highest
weights. Therefore, by the general argument for sernisimplicity ([8, Propo-
sition 3.12]), we can deduce that this sum is actually a direct sum, which
proves our claim. O

Corollary 3.5.5. The tensor product of a finite number of Uy(g)-modules
mn the category (’)i?.l,G 15 completely reducible.

_
Exercises

3.1. Show that the g-integers [7]; and the ¢g-binomial coefficients [ﬁ;ﬂ are

g
elements of Z[g, ¢~'] for all nonnegative integers m > n > 0,

3.2. (a) Show that the quantum adjoint operator satisfies

N

aj—1) | N _

(g (e = (0D W] vkt
k=0 q;
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(b) Verify that the algebra homomorphism A defined in Proposi-
tion 3.1.2 satisfies

A(adge)™ (e;)) = (a.d e?;)N(ej) ®K,;_NKj_1

N) k k - _
+Z ( )i(N )|:k:|q'6iN k®Ki N+k(adqe?;)k(ej)

+1® (ad, en;) (€j),

where T,EN) = i\; 7;1(1 - qf(pr“ij )).

3.3. Verify that the maps A, ¢, and S defined in Proposition 3.1.2 satisfy
all the conditions for Hopf algebras.
3.4. Prove UZD & UO ® U+

3.5. Show that, for each i € I, every Uy(g)-module V7 in the category O,
decomposes into a direct sum of finite dimensional irreducible Ug(g (%))
submodules, where U,(g(;)) is the subalgebra of Uy(g) generated by e;,
fi, K.

3.6. Prove the following commutation relation for k,1 € Z>o:

min{k,1) t
1 _
0= 3 ”([I[Kz,(ws)—(mnl%) =0,

=0 [t]Qi! s=1
3.7. For v € (U; ) With @ € Q4 verify that

4

k=0
3.8. Show that the identities in the proof of Lemma 3.3.2 hold.

3.9. Verify the three commutation relations stated in the proof of Propo-
sition 3.3.3.

3.10. (a) Show that A; is a principal ideal domain. Deduce that, for each
1 € P, the weight space (Va, ), is a free A;-module.

(b) Let A be an integral domain and let F be its field of quotients.
Consider a vector space V over F. Show that a set of vectors
{v1,...,vn} is F-linearly independent if and only if it is A-linearly
independent.

(c) Deduce that ranka, (Va, ), = dimgg Vyi.

3.11. Let A be a commutative ring with 1 and V be a free A module with
basis {v;|j € J}. Show that, for any A-module W, every element u
of W @V can be expressed uniquely as

U= ij ®wv; with w; e W.
jEeJ
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3.12. (a) Show that for each y € P, a set {v;} C (Va,) is a basis of VJ
over F(q) if the set {#;} is a basis of V; over F.
(b) Verify that the map V! — Vu, given by (¢(q) +J1) @ v — c(1)v
is injective.
(c) View V! as being embedded in V5, and hence in V9. For each
p & P, any basis of V!} over F is a basis of V¥ over F(g).
3.13. As with the modules, we may view Ut = Uli as a subset of U;‘.
Define (U, )4 = Uy, N (U)es and (UF)s, = F ®a, (Ux, )y for
each ;€ Q.
{(a) For each p € @4, show that a set {z;} C (Uil)iju is a basis of
(UF)+p if the set {Z;} is a basis of (U),,.
(b) Deduce that, for each p € @4, any basis of Ujfp is a basis of
(U;E )t
3.14. Show that the composition of linear isomorphisms
Ulg) 2 U @U'eUt2Ur Ul U, =2U,
is an isomorphism of algebras.
3.15. Let V9 be a Uy(g)-module in the category O%,. Show that dim Vi =
dim VY for all w € W, A € wt(V9).
3.16. Prove the statements in Lemma 3.5.1.



