Chapter 4
Algebras and Representations

Abstract T this chapter we develop.some. algebraic tools needed for the general
theory of representations and invariants. The central result is a:duality theorem for
focallyregiilar representations of a reductive algebraic-group G The duality between
the Trreducible regular represertations of ¢ and irreduciBle representations. of the
commuting algebra-of & plays a fundamental tole in classical invariant theory. We
study the repiesentations of a finite group through its group algebra and chiaracters,
and 'wé congtruét induced representations 4nd ealenlate: heir chatacters.

4.1 Representations of Associative Algebias

In:this section we obtaiii the basie facts ahout representations: of associative alge-
brag: a general version of Sehor's lema, the Ticohson density-theorem, the notion
of complete reducibility of representations, the douhle commutant theorem, and the
isetypic: decompesttion of a locally completely reducible representation of an alge-
braie-group.

4.1.1 Definitions and Examples

We know from the previous chapter fhat.every regular representation (p,V) of &
reductive linear algebraicgroup G decomposes inte a-direct som-of frredweible rep-
reseritations {in particulas, this is true when G is & classical group): The same I true
for finite-timensivral repredenfatiotisofa serisiiple Lie algebra g Thomext task
is to-determiing the extent of unigueticss of siich a degotnposition and to-find explicit
projection. aperators anto irreducible subspaces of ¥. In the tradition of modern
‘mathematics we will attack these-problems by putting fhem in-4 more general (ab<
stract) context, which we have already employed, for example, in the proof of the
[heaten of the highest weight in Section3.2.1.
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176 4 Alpebras and Repiesentations

Definition 4.1.1.. An asseciative algebra over the-complex field T is a vector space
A over C together with a bilinear multiplication map

HiAXA—=A, Xy = ,U{A,,';)) »

such that. (gcy).a-: E(yz) The algebra A is said to have a unit element if fhere exists
ec A such that de =¢a = o for all ¢ € A TLA has a unit-element it isuhique-and it
will usually be denoted by 1. '

Examples:

1. Let V be-a vector space over € (possibly infinite-diinensional), and let A =
End{¥ ) be-thesspace of C-lingar transformations on V., Then A. 18 il agstedative.al-
gebra,with mulfiplication the composition of transformations, When dimV =n < oo,
then this algebra has a basis consisting of the elementary matrices ey that multiply
by ejiepm = k€ im for 1 <1, < . This aigebra will play a furidamental rolein
ourstudy of associative algebras ard their representations.

2. Let- Gbe.a group, We define an associative algebra A, ealled the group algebra
of G, as follows: As a veetor space, J[G] is the set of all functions f: G —=C
such that the support of F (the set where f(g) # 0) is finite, This space has a basis
conisigting of the functions {8, 1 g €. G}, where

8,(8) = {1 ity =g,

0 otherwise.

Thus an element x of A|G] has a unique expression as a formal sum Y, c5x(g) 8,
with enly a finite number of coefficients x{g} 0.

We identify g € G with the element §; & A[G], and we define multiplication
on A[(] ds the bilinear extension of group multiplication. Thus, giver functions
¥, y€ AlG], we define their produet %=y by

(EgeG x(8) 81+ (Lne y(B)Os).= _Eg,he(}‘x(-gjy () B

with the sum over g,k € &, (We indicate the: multiplication by # so-it will not be
confused with the peintwise multiplication of functions on G.) This product is as-
sociative by the assomatlwty of group multiplication. The identity: element e € G
becomies the unit elemtent. 8 in .A[G} anci Gisa Subgroup of the gﬂmp of mvertlbie

it from the :ieﬁmnon it is- cle_a_r t_hai
(xx3)(8) = Epmg XM ¥{k) = Yieq x(Ryy(h g} .

If ¢ G——= H is-a gtoup hemomorphism, then we.can extend ¢ uniquely to a
linear map @ + A{G] —sA[H] by theTule
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@ (Ve 2(8)8;) = Lpciz ¥(8) Bp(g):-

From the definition of multiplicatior in A[G] we see.that the extended map P isan
-associative-algebra. homomorphlsm Furthermore, if 3 1 #'— K is-another greup
homomorphism, then ¥ 5@ = o §.
An important specmi case‘occurs when & is-a subgroup of H and ¢ is the inchy-
slon map. Then & is injective:(sirce {8, ] is o basis.of A[GT), Thus we can identify
AlG | with the subalgebra of AH| consisting of fuiictions supporied on G-

3. Let g be alie aigﬂbra over .A, Eusi as in the casc ot group algebras there is art

......

linear Hl‘lp j [ (g) suuh that ;(g) gene1 atcs U (g) and

JEY]) = JX)F ) — S X)

(the multlphcatwn on.theright is in U7 (g) seer Appendix C.2.1 afid Theorem C.2.2).

Since. I (g) is uniquely determined by g, up to isomorphism, we will identify g with
Jlg). T g ls a Lie subalgebra then the:Poincaré-Birkhoff-Witt Theorem C.2.2
allows'us to identify /(h) with the associative subalgebra of U {(g) generated by b,
56 wehave the same sitnation as for the group algebra of a subgroupIf. G.

Definition 4.1.2; 614 be an associative algebra over B, A represeiuadon of Aisa
pair {p, V), where V is a vector space over Cand p : A —>End{VY is:ari associdtive
algebra homomaorphism. If /1 Has an identity element: 1, then we require that p(1)
act-as the identity transformation £y on V.

‘When the map p is understood from the context, we shall call V art A-module and
write o for p'(a)'v. If V,W are both /-modules, thén we make thie. vector space
VW into an A-module ty the action a- (p@w) = avdaw.

IFW CVis alinear subspiace svch that p (@)U .U for all g € A, then we say that
U isinvarignr under the representation. In this case we can define.a representation
{pw,7) by the restriction of p(/) to U and a representation {py /U,Vf E7) by the
natural quotieit action of p(A) on V/I7. A representation {p,V) is irreducible if
the gy invariant subspaces.ave. {0} and V.

Defing Ker(p) = {x € A : p(x) = 0} This is a two-sided idéal in A, and V
is a mnedilé: for the: quotiet algebra A/ Ker(p) via the naturdl quotient map. A
representation p is fuithfid if Ker(p) =

Definition 4.1.3. Let.(p, V) and (z,W) berepresentations of v, and let Hom(V, W)
be the space of C-linear maps from V to W. We denote by Hom 4 (V, W) the set of
all T ¢ Hom(V, W) such that Tp(a) = t(@)T for all @ € .A. Such a mapiscalled an
interiwining operator hétweeti the 1wo representations or d medude- hotomerphism.

T CV is an itvariant subspace; then the inclusion map 7 —-» V' and the
quotient map V——= V/II' are intertwining operators. We say that the- TEPIESETl
tations (p, V) and (£,W) are eguivalent if there exists aninvertible operator in
Hom (V,W). Trithis.case we write (p, V) & (7, W).
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The composition of two. intertwining operators, when defined, is again an inter-
wmmg operator. In particnlat, when V =W and p = 1, then Homy (V,¥) is an
associative algebra, which we denote by End 4 (V).

Examples

L. LekA-= C[x] be the polynomdal ring ‘In one indeterminate. Let V' be a finite-
dimensional vectar space, and let-T & EBnd(V). Define arepresentation (o, V) of A
byp(fi=f(T ) for f & Clx]. Then Ker(p) isthe ideal in A génsrated by the miniial
polyaomizl of T, The problem of fnding-a ¢anonical form forthis vepresentatiofn 1s
the same as finding the Jordan carionical form for T (see Section B.1,2),

2. Let G be a group aad let A = A{G} be the group algebia of G, 1f (p, V) isa
representatign.of A, then the map g p(é ) is a.group. homomorphism from G to
GLQVT Conversely, every representation p | G——» GL(V) extends uniquely 16 a
representation g of A{G] on V by

PU) =L ec F P (8)

for f & A{G]. We shall-use: the same symbol to denote a representation of a group
and 1s group algebra.

Suppsseé W ¢ V' is a linear subspace. Tf W is invariait under ¢ and w e W,
then pi(f)w € W, since p(g)w € W. Conversely, if p(f)W C W forall f & A[G),
ihen ,o(G)W C W, since we can fake f = 8, with ¢ arbilrary in G. Puitherimore, an
operator R & End(V'):commutes with the, &GtIOIl of G if and only if it commmtes with

p(f) forall £ €. A|G].

Two impertant new constructions.ave possible in the case of group representa-
tions (we already encountered thein: in Section 1.5.1 when G'is a liriear algebraic
group). The fitst is'the consragredient ot duul represenfaticn (pf; V*) where

(p*(g).fv V} = <f: p(g—l)v>

for g€ G, ve V, and f & V™. The secend is the rensor product (p &, VOW) of
two representations defined by

& o)g)veaw)=pgrao(gw.

For example, let (p,V)} and (o, W) be finite-dimensional representations of- G5,
There is a representation & of G an Hom(V,W) by #(g)T = o (g)Tp{g) ! for
1= Hom(V, W), There i$ a riatural linear isomorphism

Hom(V, W) 2WaV* A1)
(see Section B.2.2). Hére. a tensor of the form w@ v* gives the linear transforma-

tion Tv={w* viwfrom V to W, Since the tensos Gy @ p*{)v* gives the linear
iransformation’
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vios (p*eh, vo(glw = (v,p(g) via(gw="o{g)Tp(g) v

we, see that 7 is equivalent to.o ® p*. Tn particular, the space Homg(V,W) of G-
intestwining maps between V and-W corresponds to the space (W @ V*)% of G-fixed
clements in W e V*. _

_ We-can iferate the tensor produ&,t constructmn tor obtéin G-modules RV = ¥ OF

p@-"' (R(ri@ @) =plg)vi @ @plghve

ofi decomposable tensors. The subspaces $4(V) {symmelrie tensors) and AV
(skew-symimnétric tensors) are G-invariant (seg Sections B.2.3 and B.2.4). These
maodules ave-called the symmetricand ,skewusymmezfric powers of P

The goniragredient: and tensor-product constructions for group. represetitations
age associated with the inversion map g —. g~ and the diagonal map g — (2,8)-
“The properties of these maps can be deseribed axiomatically using the Tiotion of &
Hopf algebrd (ste Exércises 4:1.8).

3. ety be aTie algebra over €, and let (p, V) be a representation of g. The univer-
sal Tapping property fmplies that p.exterids uniquely to a represenfation of: U(g)
(see Section €,2:1) and that évery representation of g comes from a unique repre-
séntation of &7 (g) Just as ifi the case of group-algebras. In this case wi define fhe
dieal representation (p*, V™) by

X)) =—{f, pK)w) forX € gand f & V*.

We can also define the zensor product (p & o, V.@ W) of two representations by
Tetting X e ¢ act by

X (},@W} — p()(_)_v.-@g W+ v @ G(X)W .

‘When g is the Li¢ algebra.of a linear algebraic group-Gand pr, & are the differentials
of regular représentations of G; then thig action of g is the- differential of the tensor
product of the Grepresentations (see Sections 1.5.2).

These constructions are associated with:the maps Xo— ~X and X — X @ I+1®
X. As in the case of group -algchras, the properties of these maps can be- described
axiomaticaily using the notion of a Hopfalgebra (see Exercises 4.1.8). The k-fold
tensor powers of p and the symmetric and skew-symuietric powers are defined by
amalogy with the case of group represertations, Here X' € g acts by

PPEX) (v & @) = pXI0 & B V@ p X @w
AW @ @ LK)

on decomposable tensors. This action extends lineasty to. all tensors.
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4.1.2 Schur’s Lemma

We say that a.vector space has countable dimenston if the cardinality of every linear
independent set of vectors is countable,

Lt-mma 4 1.4. Let (p,V ) and (1‘ W) be meduczble represenmnons of an assoecii-

; i#{p, V) = (W),
dim Hom,o(V, W} ~ { O otherwise.

Proaf. Let T' & Homa (V, W), Then Ker{T') atd Range(T) ate invatiant subspaces
of V and W, tespectively. If T =£ 0, then Ker(T) # V'and Range{T) # 0. Hence by
the irredugibility of the representations, Ker(7) = 0 and Range(?") =W, sothat T'
ig.afinear 1som01'ph1sm Thms Hom 4 (V, W) £ 0 if and only if (g, V) = ('r W),
‘Suppose the representations are equivalent. If §,7" € Hom 4 (V,W) are nonzero,

then R = 71§ ©Bnd 4 (V). Assume, for the sake of contradiction, thal R'is not-a
multipie of the identity-operator. Ther forall 2 & Cowe: wouild havé R — A I nofizero
ariel hence invértiBle. We' assert thigt fhis fmplies that for any nonzere veclor v € V
anid distingt scalars Ay, . .., Ay, the-set '

[ =MDy AR 2D~} 4.2)

is linearly independent. We note that this would contradict the countable dimension-
ality of V and the. lemma wonld follow:

Thus it suffices to prove.the lingar independence of (4.2) under the hypothesis on
R, Suppose there is a linear relation

1

Y ak—d) tv=0
=1

Multiplying through by [1;(R —241); we-obtain the relation. f (R)1= 0, where
)= f_gai{nn— 2}
iz i

Thi polynomial f(¥) talees the vatue 6; 11 — Ay) atx =2 T a; 0 for some i,
then £(x) is a nonzero polynomial anl has a factori ization

SO =l —fi) o () 5,

with ¢ # 0 and g4 € C. But by our assumption on R the operators R— i/ are mvert—
itile for sach i, and henee f(R) is invertible. This contradicts the relation f (R)y ==
Thus a; =0 feralld gnd the set (4.2) s linearly independerit, EI
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4.1.3 Jacobson Density Theorem

IfV is-a complex veetor space, v; €V, and T' & Biid (V7), then we write

V(ﬂ) — VEB . EBV and T("L) Eu]-'?-‘ -.-._,-V”] = [Tﬂl"l;u oy Ti"n]_ .
3 . , 2 )

‘1 Supics,

The map 7"+ 7" is-a representation of End(¥) on V. ¥ Z is-a subspace of V,
then we idenfify Z® with the subspace {21, .z : zj € Z} of VAL IR ¢ Bnd (V)
ig a stibalgebra, thén we consider'V(f’) to be arl. R-tfiodule with r o Roacting as ) ;
we write #v for ¥ vwhen v € VO,

Theovem 4.1.5. Let V be a couniable-dimensional vector space over (. Let R
be’ aSubalgebra of End(V) thar aers irveducibly on V. Assume that for every

“«. Finite-dimensional subspace W of V there exists v € R so that viw = Hw. Then

RV, vil = VIO heriever {vy,:. v} i @ binearly independent subser of V,

Progf. The proof is by inducton en.n. I n= ¥ the-asserlion is-the definition of
itredueibility, Assume that the theorem holdsfor n.and suppose {vg,..., ey }is a
linearly independent set in V. Given any elements ¥j ;. .., %y it ¥V, we must find
r& % such that

rvp=x; for j=1,..,n+1 . *3)

The inductive hypothesis implies that thee is an element 7o & R such thaf rov; = x;
for j=1,...,n. Define B = {r € B : rivi,..., %] =0} The subspace Br,ys of ¥V
is invariant under R, Suppose By £.0; then Byyyq =V, since R acts rreducibly
on V. Hence there exists by € B swchi that bovyyy = g ~ Fo¥py1. Since-bgyy =0
for j=1,...,1, Wesee that the element r= ry - by of R satisfies (4.3), and we ate
done in thig case, _

To complete the inductive stép, it thus suffices to show that Br,yq # 0. We as-
surme the contraty and show that this leads to.a contradiction, Set

W =RV Py Vupa]  and U= {[0,...,0,¥] : ve V}.

K,

Then W1y v s Yoy Vs 1] € W. By the inductive hypothesis VOt = W40 M re R
and [Py o PV Yt @MW then vy =0 for f=1,.. .0 Hence r € B and
congequently: #heer = 0-by the assumption By =0 Thus Wl =0, so-we
conclude that '

Vit e wa {4:4)
as an Rmadule: Let PV #HH W be the projection corresponding to this direct.
snm decomposition. Then Peommutes with the action of [ and can be written ag

Plat, e idnpt] = [EJ, B ixs, Ej:'Pﬁ_i,__l)jE.}’Cj]
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with P, ; € Bndq (V). Thng by Lemma 4.1.4, each operator B j equals.g; ;1 for some
scalat g;; & €. Hence for ay subspace Z of V wie have P(ZD) C 20t

We can now obtain the desiredl contradiction. Set Z = Span{vy,. .., V1) and
16t 101, .., Wyt bearbitrary elements of V. Since {vi,...,¥+1]} is linearly indepen-
dent, there is a linear transformation T : Z —V with Tvj=w; for j==1,... ,n+ 1.
We caleulate

T(!H-I.)_P[yi’_‘_?yu_l_ﬂ = [ qt,; Vi EiGatyy v
[.Ej G gWiy o a}:j'q}ﬁ-'l_,j Wf]

P, oy Wnit] -

On the gther hand,

- VJH-;}: {'vl 3esn 91‘!117(.—_1] and T(WH) {_Plr al"nei—l] = E Lynes aszl} H

g0 we conclude that [wy,.. ;W 1] = Plwj, ..., Way . Hence [y, .. Wypt] € WL
Singe: wi; are any elements of ¥, this implies that W = V(”“), which contiadicts
“4). O

Corollavy 4.1.6. If X is a finite-dimensional subspace of Vand f € Hom(X, L), then
there exists r'e R such thar f = rix.

Proof. Tt V1,005 v > b€ a basis for X and set w; = f{vy) for j=1,...,n By
Theoren 4.1.5 thete exists-# € R such that rv; =w; for j= 1,...,n. Henece by
linearity rlx-= . C

Corollary 4.1.7 (Burnside’s Theorem). Jf R aces-irreducibly-on L and dim [, < o
then K= Bnd{L).

Thus the image of an associative-algebra in 2 finite-dimensiotial irreducible rep-
reserdation (p, L) is completely determined by dim L (the degre€ of the represetita-
tion). '

4.1.4 Complete Reducibility

Lét{p, VY be a finite-dimensional representation of the associative algebra /. When
V'=W@®U with W and U invariant subspaces,.then U7 22 V/W as an.A-module. In
general, if W © V is an A-invatiant subspaee, then by extending a basis for W to 2
basis for V, we obtain a vector-space isomorphism V = W @ (V /W). However, this
isoritorphism is not tiecessarily an isomorphism of A-modules,

Diefinition 4.1.8, A finite-dimensional. A-module V' is completély redieible if for
every -invariant subspace W C V there exists a complemerttary invarfant subspace
[J < V suchthat ¥V = WOH U,
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We proved in Chapter 3 that rational representations of classical groups and
fistite-dimensionsl representations of semisimple Lie algebras. are’ completely re-
ducible; For any agsociative algebra the property’ of coinplete reducibility is fnber-
jtéd by subrepresentations arid gquiotient representations.

Lemma 4:1.9. Let (p, V) be completely reducible and suppose W V- is an invari-
ant subspace: Set 6{x) = px)iw and (XY (v-+ W) =p v+ W forzc A andve V.,
Then the representations (o W) and (®,V /W) are completely reducible,

Proof. "The preof of Liemma 3.3.2-applies verbatin to this conitext, o

Remurk4.1.10, The coriverse to. Lemma 4.1.9 is-not frue. For example, Tet A be
fhe algebra of matrices of the form [§ ] with x,y€ T, acting on V = 2 by left
mtdﬁlil'ij;:ation.; The space W = (Ui is invariant and-rreducible. Since V./W is.one-
djnensional, it is also irreducibile. But the matrices in A have only. one. distinet
*-gigenvalue and. are mot. diagonal, so there is no. invariant complement to W in V.
Thus V 18 not conipletely redncible as A-module,

Proposition 4.1.11. Ly (p,V) be d finite-dimensional represéntation of the dsso-
ciaiive algebra A The following are equivalent:

1.{p, V) is complerely reducible. ‘
2,V =Wy W, with each Wy an irreductble A-module.
3,V = Vi 4o} Vgasid vector space, where gach Vi is an irveducible A-submotile,

Furthermore, if V satisfiés these conditions.and if all the Vyin (3)-are.equivalent 10
a singlé irreducible Aemodiule W, then cvéry A-submodide of V is.isomorphicto g
direct sum of copies of W..

Proof The equivalence of the three conditions follews by the proof of Proposition
3.3.3, Now assume that V satisfies these conditions and that fhie- V; are all mutally
ecuivalent as A-modules. Tet M beran A-sibmodule of V., Sinice V' is completely
redueible by (1), it follows from Lemma 4.1.9'that M ig complefely retlueible, Hence
by (2) we have M =W - & W witty Wy an ireducible A-module, Fuorthermore,
there is a complementary A-subimnodule V such that V =M &N . Hence

V=Wg - @WoN.

Let pi: V —=W; be the projection corresponding to this decomposition. By (3) we
have W; = p; (Vi) -+ - -+ pi(Va). Thus for eachthere exists. Jsuchithat p;(Vy) #{0).
Since W; and V; areririeducible and p; is att A-modie map, Sehiur’s lemma implies
that Wi =2 Vyas an A-mbdnle, Herice Wi & W for'all £, i}

Corollary 4,112, Suppose {p, V) and (6, W) are completely reducible representa-
tions-of A. Then (p Do,V @W) isa complete‘ly_reduci_b’lé-t‘epresemazion.

Proof This follows from the equivalence: between conditions (1) atd (2) in Propo-
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4.1L.5 Double Commutant Theorem

Let'V be a veclor space. For any subset & C End(V) we define
Comm(8) = {x ¢ Bnd(Vy : xs = sx forall se §)

and call it the commutant of §. We observe that Comm($) is an associative algebra
withunit fy.

Theorem 4.1.13 (Double Comiputant),. Suppose A C BndV is an asseciutive gl-
gebra with identity Iy. Set B = Comui(A). IfV it & completely reducible A- aodule,
then Comm(B) = A.

Progf, By definition we have A € Comm(B). Let 7' ¢ Comm(B} and fix a basis
{1}1 e v,,} for' V. It will suffice.to find an etement § e A such that Svp= T for
BT, Let wy = v @Dy € VO, Since V0 iga completely reducible A-
medule by Propositiot: 4.1,11, the cyclic submodle M =A wp has i A- -mvariant
complenent. Tlhus there'is 4 projection P: V& -+ 3 that commurtes with 4. The
action.of P is given by an % # matrix i3], whete piy € B, Sinee Pwg = wp and
Tpi;= piyT, we have

P(Ty @ @Tv)=Tv® - &TvncM.
Henee by definition of # there exists § € A such thal
S Sy =T @@ T vy
This proves that T'=§, so0 T'c A, O

4.1.6 Isotypic Decomposition and Multiplicities

Let.A be an associative algebra withi unit 1. If 7 is a finite-dimensional irreducible
A-modile, _we denote by (/] the equivalerice class of all A-modules giivalent

to 7. Let A be the sef of z_ill equivalence classes of finife-dimensional frreducible
A-modules. Suppose that ¥ is an /A-module (we do not. assume that V is finite-
dimensional). For each A .4 we-define fhg ?L'—i,s*a.typi;c subspace

Vo= 3 U.
Uy, U4

Fix-a module F* i1 the class A for each 4 € /. There isa tautological linear map

Si:Homa(FAV)@F oV, 8 www) —u(w) . (4.5)
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Make Hom i (£, V) &F® into an A-module with action x- (7@ w) = e (xw) for
x € A. Then 5, is an A-intertwining map. If 0. u & Homa{(F*,V) then Schur’s
lemma (Lemma 4.14) implies that #(#*) is an irreducible A-submodule of V iso-
merphic 10 F A Hence

8y (Homa (F*, VY@ r) cVyy forevery A el

Definition 4.1.14, The A-module V is'locally completely reducibleif the. eyclic A-
submadule /v i finite-dimensional and eompletely reducible for every ve V.

For exainple, if (7 is'a rediictive lingar algebraic group, then by Proposition 1.4.4
@[6] is a locdlly complétely reducible module for the group algebra AlG] relative
to-the left or right translationiaction of G,

Propsitiond.1.15, Ler V be a locally completely reducible A-module. Then the
. “hadp Sy gives an A-modvle isomorphismBonit g (F*, VYQFF =2 Vi, for sachh e A
Furthermore, , '

V= @-V@,) {algebraic direct sum).. 4.6)
AeA

Proof. U < V is an A-invariant finite-dimensional irreduecible subspace with
[£7] = A, then there exists u € Homy (F*,V) such that Range () = U/, Hence S3
i sujective,

To show: that 3 18 injective; let 16 ¢ Hom 4 (F A Vyand we e F* ford == 1,....4
and suppose that ¥m(wy) = 0. We may assame that {wq,...,ws} is linearly inde-
perident.anid that u; £ 0 for all i. Let W = u; (F Ay poen +u;¢_(F1)_..Thm1 W is a finitg-
dimensional /A-submtodule of V(a): hence by Proposition 4. LILW =W & - &W,
with W; irreducible and [W)] = A. Let @ W F* be the projection onta
the subspace Wi followed by an /A-module isomorphistn with F*, Then-pjo ;&
End g (F*). Thas @pomy = cif with e;7 € C (Schur’s lemma), and we have

0= Y, @puilws) =Y ey for j =1,
. S

Since {w1,...,wg} 18 linearly independent, we- conclude that ¢;; ==0. Hence the
projection of Range(x;) onto W; is zerofor j =1, ..., This implies that ;= O,
proving injectivity of.5y.

The definition of local complete: reducibility implies that ¥ -is spanned by the
spaces Viay (4. & A3, Soit remains to-prove only that these spaces are linearly inde-
pendent, Fix distinet classes {A4,...,Aq} < A such fhat Viayy # {0}, We will prove
by induction on & that the sum E = Vig,y b ok Vi 3 divect. I do=1 there. is
‘nothing to prove. Let'd > 1 and-assume that the resuit holds for-d — 1 summands.
Set 7 =Vt 4 Va,  Then B = U4V y andld =VigyB- BV, ) by the
tidiction hy.pothe‘sis. Pori< dlet pp2 U —= V@_ be the projection ccﬁ*e{spcnding
to-this direct sum decomposition. Suppose, forthe sake of. contradietion, that thefe
exists anonzero vector v& I Wiy . The A-submedule Av of Vi,y is thennonzero,
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finite-dimensional, and completely reducible. Hence by the last part of Proposition
4.1.11 there is-a decomposition

Av=W@---dW, with [W]=4,. CN)

Ot the other hand, sinee Av C I/, there must exist an i < d such that p;(AV) is
fionzero. But Proposition 4.1.11 then implies that p:(Av) is a direct sum of jire-
duicible modiiles of type A;. Sinee 4,5~ 5, this contradicts (4,7), by Schor’s lemma.
Henee U1 ¥4, = (0), and we have £ = Viay) @ @V 0

We call (4:6) the primary decomposition. of V. We set
my (1) =dimHom 4 (F*,V) for 2 E.;Zf

and catl m‘v(ﬁt) the-pudsplicityof § inV. The mulhphmtms may be fintte or infinite;
llkG‘JVlSﬂ for the mmmber of nonzero symmands in the primary decomposition. We
call the set B

Spec(V) ={A ¢ A : my(A) #£0}
the-spectrim of the A-module V. The primary decomposition of V gives an isomot-
phigin

Voo @ Homy (F*,V) o F* (4.8)

AeSpectV)
with the action of A only on the second factor it each snmmand,
Assume that V' is completely reducible noder /. The primary decomposition has

a finite: number of summands, since ¥ s finife-dimensional, and the multiplcities
are-finite. We-claim that my {4) isalso given by

my (A) = dimHom g (V,F*) . 4.9)
To prove this, let m = my (1), Then V = W (F"’“}(’”}, where W is the sum of the
isotypic subspaces for representations not equivalent to A. If T & Hom q (V,F*),
then by Schur's lemma T'(W) = Qarid T is a linear coribitiation of the operators
ITI; m} where

Twdv @, @)=y forweWandv, oV,

These-operators are linearly independent, so they furnish a basis for Homy V,Fh),
Remark 4.1.16. Let [ and V be completely reducible /-modules. Define

(U, V) = dim Hom 4 (U7, V) .

Then frem Proposition 4.1,13 we Have

(V) =¥ mgAiyme(d) . {(4.10)
red
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Tt follows that {7, V) = (V, U yand ({1,V W) = (U, V)+{U W forany completely
reducible A-modules I, V, and W.

4.1.7 Characters

Let /A be an associative algebra with unit 1. If (p;V) is a tinite-dimensional repre-
sexttation of /A, theri the characrer of the representation i the linear tunetionial eh V'
on- given by

ch¥V(d) =try(pla)y  foracA.

Proposition 4.1.17. Characters safisfy. c_hﬁf(_ab) = chV(_ba) for dib a.b e A and
iV (1), = dim V. Furthermore, if UV is a sibniodule and W = VU, thenr

Progf: The fivst two properties are obvious from the-definition, The third follows by.
picking a subspace Z © V complementaty to U, Then the matrix of p(a),a € A, is
in block triarigular form relative to the-decomposition V = U @ Z, and the diagonal
blocks give the action of @ on Urand.on V /T, 0

The use of characters in representation. theory is a powerful tool (similar to-the
uge-of generafing functiofis i coriibinatorics), This will beeome’ appatent in later
chapters. Let usfind the extent to which a-tepréséntation is determired by itg char-
-acler.

Lemma 41,18, Suppose (D1, V1 )y - .. (0r, V;) are finire-dimensional irreducible rep-
resentations' of JL such that p; is not equivalent to p; when i # . Then the set
{eht¥i,...,ehV,} of linear functionals on A is linearly independent.

Proof. SetV =Vi@ &V, and p = pi & & p; Then (p,V) is a completely
reducible representation of /by Proposition 4.1,11. Let B be’the commutant. of
p A, Sitice the represenitations are irredueible and mutually ineguivalent, Schur's
Yempid (Lemina 4,1.4) implids that the elements. of B preserve each subspace V; and
acton it by scalars. Hetleg: by the-double commutait theorem {Theorem 4.1.13);

PA) =Bad (V1) @@ Bnd(V,) .

Let [; @ End(V}) be the identity operator on V. For each { fhere exists @; €. A with
PpRalv; =831 We have

chVy (@) = & dimr ¥z,

Thus given a linear relation ¥.a, chV; =0, we may cvaluate on 0y to corichude that
adim Vi = . Héice a; = 0 for all £ s

Let {p, V) bea finife-dimensional «-module. A composirion series (o Jordan—
Holderseriesy for V is a sequence of submodules
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M =WcWic. ..cV=V

such that. 0 £ W, = V,/ Vi-y isirreducible fori =1,... ,r. It it clear by induction on
dimV that a composition series always exists. We define the semisimplification of V
to be the module.

.
Ve =CBW.
=1

By (3) of Proposition 4.1.17 and the obyious indnetion, we see that

¥
chV'= ¥ ch(Vi/ Vi1 = ch Vs . 410

=1

Theorem 4.1.19. Let (p,V) ‘be a finite-dimensional A-module, The irreducible
factors: i, a composition series for V .are unigue up to isomorphism and order of

appearance. Furtheriore, the modide Vi is iguely determined by-chV up to-
isomorphism. In.paviiculas; if V is completély seducible; then:V is uniquely deter-
miined yp 1o iSomorphisim by chv.

Proof. Let (p;,{}), fori=1,...,n, be the pairwise inequivalent irreducible repre-
senfations that oecurin the composition series for V, with corresponding mudiplic-
tties my. Then

"
ch¥ = z my chl7y

=1
by(4.11). Lemma 4.1,18 implies that the multiplicities m-are taiquely determined
bychV. 0
Example

Let & =8L(2,C)-and let {9, V) bea regular representation of . Let

d{g) = diaglq,¢ '] forgeC* .

lf-g .G and tr(g)* 5 4, then g = hd(g)h 1 for some h & G (see Txercises 1.6.4,
#7), where the eigenvalues of g are {g,¢~' }. Hence chV(g) = chVi(d(g)). Since
the function g i~ ¢hV {p{g)) is regular and & is eotinected (Thecrem. 2.2.5), the.
character is defermined by its restriction to the sef {4 & G+ t1(g)? £4}. Hence.chV
is uniquely determined by the function g +— chV {d{g)) for q &' C*, Fusthetniore;
since. d(g) is conjugate 1o d(g 1} in &, this function on € is invariant uader fhe
symmeiry g ¢ arising ffom the action of the Weyl group of (G on the. diagonal
matrices. -

Let (pg, #®)) be the (- 1)-dimensional irreducible representation of SL{2,C)
{see Proposition: 2.3:5). Theti

chFO@E(g)) =g+ g 2ot g2 g
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{note the invarianeeunder-g g~ ). For a positive infeger # we define

My =g" gt b g g = %
-as a rational fimetion of ¢. Then we-can write ch F® () = Fe-+1] o

Define [0, = 1, [nl,! =TT on— fl, (thegfactorial), and
g ; ) =0 q ¢ ;

[;m— }1] _ g

N ﬂ[h@]_q-![’ra}q'!: (g-binciidal cosfficient)

Theorem 4.1.20 (Hermite Reciprocity). Letr SL(F *) Y be-the jth symmeiric power
of P& Then for q € ©,

s/ (FB) (@) = [" j “’} -- (412)
9

In particulas, $/(F®) 2. S5(FDY ag representations of SL(2,L),

To prove this theorem we need some further character identtities. Fix'k and write
£i(g) = chS (FR) (@(g)) for g & €. Let {¥o,:.. .2k} bea basis for F® such that

preld (e ="y

Then the monomials iox . 7% With tig + -+~ 41, =/ glve a basis for i/ (FE,

and.d{g) defs on sucha monomial By the sealar ¢, where-
r = e (e — 2y + oo 1-(2— Ky —Kearig

Hence: ]
Filg) = E qk”!ﬁ““{k—'g)mi+“'"|'(2ﬁ-k)mk¥1fkﬁ.’k

L P

with the sum over-all nonnegative integers mo,. .., suchrthatmg 4+ = /.
We form the generating function

Fg) = i'ff’?f;f.(fz) s

=0

which we view asa formal power series inthe indeterminate # with coefficients in
the ring ©{g) of ratiotial funetions of g If welet C* act by scalar multiplicatior: ¢r
F®) then £ & € wets by, multiplication by ¢ on 8;(F®)) afid this action comimuites
with the action of SL{2, C). Thus we can alse-view fit,¢) as aformal character for
the %oéilt.acfion af ©F x 8L{2,C) on the infinite-dimensional graded vector space
S(ERY.
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' Lemma 4.1.21. The generating function factors as
B k 3 r
fg =TT -ty (413
=0
Progf. By definition (1 — rgk %) is the formal power series
i pgn=2)). (4.i4)
=]

Henice the right side of (4.13) is
PR q"*‘”oJr(f’""‘z_)”‘1+ 2Ky ko

), i

s

wi‘ch the sum over all nonegative integers my, ... 2. Thus the coefficient of ¢/ is
fila): O
Since the representation 57 (F¥) is completely.redueible, it is determined up to

equivalence by its character, by Theorem 4.1.19. Just as for the ordinary binomial
coefficients, one has the symmetry

{m_+ﬂJ . [ernJ

i T om ’

: g g

To complete the proof of Theorem 4.1.20; it thus suftices to prove the following
result:

Lemma 4,1.22. One hay the formal power series identity

* o 4 2
T, N, . v gk
.(I'_qu ZJ) 1: '.f‘][ :i ?

= g
where the factors on the left side ave defined By (4.14),
Proof. 'The proof proceeds by induetict on k. The cdse k= (0 is the forinal pewer

series identity (1 ~7) 1 == To#!, Now set

i ) L) - k 1
Hk(f?Q): Z_IJ'[ 1»}] 3
J=0 a

arid asgume that .
By,q) = [[(1 g %)
J=0

It is easy to check that the g-binomial coefficients satisfy the recurrence



4,1 Represeitations of Agsociative Algehins 19

[lethi] 48 )
q

k-1 e Y 3
Thus
-+, el ;
Hyy1(t,q) = ﬁmﬁ'k@ﬁ'a g)— —_qmﬂk(ﬁf s -
Herice by the induction hypoth‘esxs‘wa have!
g}kﬂ.
H o iltg) = e o T ——
i (-0 (g — gD T (1~ rgh 27y
- gt |
s g Tolt —iat 57
L kil A
_ q .4 Y A+l —k 1 k+1~2
- (e ) (- - )
e H(l k-H-—a;)— 0
=0
4,1.8 Exercises

1. Let A be an associative algebra over © with unit element 1. Then A& A s an

associative algebra with unit element 1 &1, where the muitiplication is-defined
by (a® b){c@ dy = (ac) & (be) on decomposable tensors and extenided to be
bﬂmeax A Bialgebra struciure on A consists of an algebra homormerphism
A A—s A A (called the comulsiplication) and art algebta homomorphism
£ i A——C {called the comniz) that satisfy the following:

(coassociativity) The maps-4 &l and [y @ A from A 16 A& A &4, com-
cide: (A® 14 )(A(a)) = (T4 @ A YA (@) for all a.€ A, where (A M) @A is
identified with A (A ®.A) as usual and Iy : A~ A is the identity map.

{eounity The maps (L ®e)od and (e®lq)0 A from A to A coincide:

(L4 @ YA (a)) = (6®14) (Aa)) for all a e A, whete we identify Ce A with
A as usial,

(a) Let G'be a group and let A = A[G] with convolution product, Define A and €
on the basis elements & for k€ Gby A(&c) 8, 8 and 8(51) = 1, and extend
these maps by linearity. Show that 4 and £ satigly the: conditions Tor 4 bidlgehfa
stroetire-on A and that (A (f),g k) = (f,gh) for f,g,h & A[G). Here we write
(9,9 = Loex ¢ (9)wr{x) for complex-valued functions ¢,y on a set X, and gh
denotes the pointwise product of the functions g and A.
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(b) Let & be & group and consider A[{G] as the commutative algebra of C-valued
furictions on (7 with poirtwise multiplication and the constarit fanction 1 as Lden-
tity element. Identify A|G] ® A[G] with A[GxG] by 8@ &, + By T
x,y-€G. Define A by A(f) (%) = f(i) and defire s () = £(1), whete | & G
is the identity element, Show that this defines a bialgebra stricture on AG] and
that {A(f), g ®4) = {f,g+h} for f,g,h € A[G], where {4 ) is defined as in (a)
and where g+ A.denoles the convolution product of the functions gand A, '
() Let & be a linear algebraic group, Consider 4 = O[6] as a (commutative)
algebra with poiniwise multiplication of functions.and the cofistant furiction 1 as
the identity element. Identify /4@ A with O]G % G| as in Pioposition 1.4.4 and
define.A and £ by the same formiilas as ifi (). Show that this defines a bialgehra
stryetore-on A
(d) Let g be a Lie algebra over € and let U{(g). be the universal enveloping al-
gebra of g. Define A(X) =X @14 10X for X € ¢ Show that A(X, ¥y =
o BXVAY) — A(Y)A(X), and concluds that A extends uniquely to ari algebra ho-
 momorphism A : () —= U(a) @ U{g), Let¢: U {g) ~—= C be the umique
algebra homomotphisni: such that £(X) = 0 for all X € g, as in Section 3:2.1.
Show that 4 and £ define-a bialgebra structure on U{g).
(e) Suppose G is a linear-algebraic group with Lie algebra g- Define a bilinear
form on U (g} = O[G] by (T, f) = THI) for T e U{g) and f O[(, where the
aetion of I/ (g} on O[G] comes from the-action of g as left-invariant vector fields.
Show that (A(T"), f& g) = (T, fg) for all Te U{g) and f,g € 0101, where A
is defined as in (d): (This éhoWs that the comultiplication on {7 {g) is dual to the
pointwise multiplication én O[G1.)

2., Let A bean associative algebra over C, and suppose.A: and £ give A the-structure
of a bialgebra, in the sense of the previous exercise. Let (V,p) and {(W,o) be
representations of /1.

() Show that the map {a, b) — pla)® o(B) extends o arepresentation-of A A
o V@ W, denoted by p&a. _

(b) Define {6 @ 0) (a) = (pH o) (4(a)) for.ive A, Show that p® & is a represeii-
tationof A, called théfensor prbducf P &0 plthe representations p and &

(o) When A and A are given as in (a) or (@) of the previous exercise, verify that
thetensor product defined viathe map 4 isthe same as the tensor product defined
in Section 4.1.1.

3. Let.Abe a bidlgebra, inthe sense of the previous exercises with comultiplication
map A and counit &. Let:§ 3 /L — A he an antiautomorphsin (S(xv) = $()8(x)
for all x,y € A). Then § is ealled an ansfpode it p((S® La) (A(a))) = g(a)t
and. 1 {{fq ® S)(4 d))) =&(a)1 for all 4 € A, whete it 1. A4S A —= 4 is the
multiphication map. A bialgebra with.an antipode is called-a Hopf qlgebra.

(a) Let. G'be a group, and let A = = AJG] with cenvolution multiplication. Let A
and & be defined as in the exereise above, and let S7(x) = F@x~1) for £ € A[G]
and ¥ & G, Show that-§ is an antipode.

by Let G be a group, and let 4 = A[G) with pointwise multiplication. Let A and
& be defined s in the. exereise above, and let 87 (x) = f(&™1) for f & A[G] and
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x.¢ G, Show that S is an antipode (the same holds when G'is a linear algebraic
group and A =0[G]).

(cy Let g be a Lie algebra over €. Define the maps A and & on U(g) as in the
exercise above. Let S(X) = —X for X in g. Show that § extends.to an anfiduto-
miorphist of I/ (g) and satisfies the conditions for an aritipade.

. Let /t be a Hopfalgebra.over € with antipode-S.

(e} Given a representation (p, V' of A, define p¥x) = p(Sx)* for x €. 4. Show

that (p%,V*) is a representation of .

(b) Show that the representation (p®,V*) Is the dual represeritation to {p,V)
wheri /. is-gither /[G] with convolution multiplication or U{g) (where jyis a Lie
algebra) and the antipode is defined as in the exercise:above:

. Tet A=Alxand let T € M,[C]. Define arepresentation p. of A on C* by p(x) =

T, When is the representation p-completelyredueible? (HINT: Put.T' into Jordan

“cagfonieal form:)
. Let A be an associative algebra and let V' be a completely reducible finite-

dimensicial A-modle.

{a) Shaw that V- is irteducible if and enly if dimBom g {(V,V) = L,

(b) Does:(a) hold if V is not completely rediicible? (HINT: Consider the algebta

.of all upper-triangular 2 .2 matrices.)

. Let:(p,V) and {o,W) be finite-dimensiona] representations of a group ¢ and let
gl L
(a) Show that ch(V & W) (g). = chV (g) - chW (g).

(b Show hat (A" V) () = § (e (8))* — ehV ().

(c) Show that ch(§*(V))(g) = %( {(ch¥ (g))z—l— ch¥(g% ) .

(FIINT: Tet {A;} be the eigenvaluesiof p(g) on Vi Then {AA;}ic; are the cigen-
vafuesof g on AV and {41 }ic; are the sigenvalues of g on S2VY)

The following exércises use-the natation in Section4.1.7.

8,

9‘

Let (o, W) be a regular tepresentation of SL(2,C). For g € € let flg) =
ch¥ (d (Q)) Wrile f (Q ) = -fs\?eﬂ'(q ) + f odd (‘-}): whegs fé#en (*g) = f even (EI) -atd
Fod (— @)= —foaa (). _

(a) Show that fuyen(d) = Joven (971) a0 Fott(g) = fiua(g -

(b Let foven(q) = Yaczar ™ and fodalq) = Lrez by g1, Show that the se-
quences {4+ and {&} are.unimodal.. (HINT: See Exercises 2.3.4 #6.)

Let (o, W) be a regular representation of SL(2,C) and let W 2 Dy iy (k)

be the decompositiosn of W inte.isotypic coponents. We say that W is even.il

my, = 0 for all.odd integers &, atid we say that W is odd if ny = 0 for all even
integers.
{a)y.Show W is even if and enly:if chW(d(--g)).= chW{d(g)), and odd if and

otily if chW {d (Tfl)? = —chW(d(g)). (HmT: Use Proposition 2:3.5.

(h) Show that S(F9) is even if jkis even and odd if jk s odd. (HINT: Use the
model for #® froim Section 2:3.2 to show that — & SL(2,€) dcts o FE by
(—1)* aind heres acts by (— 1)/ on §7/(F®).) '
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11,

12

13..

Tog
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Setf(g) =[], for g € € and positive integers m and ».
(a) Show that f{g) = f(g 1),

(b) Show that £(g) = Yicq @ g™, where € = 0 when-mmn is even and & — 1

wher i is odd,

() Show that the séquence {a} 1 (b) is vaimodal. (HINT: Use the previons
exéreises and Theorein 4,1.20)

(a) Show (by a computer algebra system of otherwise) that

[ 5 I =47+ g0 20 130 1 4gt 1 4gP 54
tq

(where .- indicates terms innegative powers of 4).

(b) Usex (a) to prove thiat §% (V) 2¢ SHV3) 2 Vip @ Vs Vs Vy @ V.
(EIINT; Use Proposition 2.3.5 and Theotem 4.1, 20.)

+{2) Show (by a computer algebra system or otherwise) that

5! ;
[' ] 3} =4+ + 24" 130+ 497 +5¢° 1 6474 69+
- 4

(where .. Indicates terms in nigative powers of g).

{b) Use (&) 1o prove that 5*(Vs) 2 S5(V3) 0 Vis Vi) Vo @ Vo Vs @ Vi,
(TNt Use Proposition 2.3.5 and Theorem 4120

Forn e and g & C define {#} =nand

= g — D/g—1) farg#l,

(&) Show that {n} > —g¢" ],
(b) Define: ; )
_ oy imAnY! _
Ceymmly) = W .

(This is an alterndtive-version of the g-binomial cosfficient that also pives the
ordinary bisomial coefficient when specialized to g=1.) Let p be a prime and
let F be the field with ¢ = P? clements.. Prove that Cminmiq) is the number
of m-dimensienal subspaces in the veetor space B (HINT: The number of
nonzero clements of B4 is g™ — 1 Ify & B0 4DY then the number of
¢lements that are not- multiples of 3 is g**" — 4. Continying in this way we find
that the cardinality of the set of afi linearly independent m-tuples- {ix, .., Vi
s (g™ — g1y, (g —1) = fnm- The desired cardinality is thug
an,mfr'a(),m-z-gn-i-m,m (Q)) . -
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4.2 Duality for Group Representations

T this section we prove the duality theorem, As first applications we obtain Schur—
Weyl duality Torrepresentations of GL{n, ) ontensor spaces and the decomposition

of the representation of G'x Gon O[G]. Further applications of the duality theorem
will accur i later chapters.

4.2.1 General Duality Theorem

Assume-that G © GL{#,C) is 4 redugtive linear algebraic group. Let G denote thie
;ermwalence classes of itreducible regular rejgresen‘[ahon& of G and fix a repregerita-
n (Y, F*) in the class A for each A € G. We view representation spaces for &
* ag-miodules for the group algebra A[G], as in Seetion 4.1.1, and identity G with &
subset of A[G].

‘Lét (L) be-a locally regular répresentation of (3 with dimf. cotintable, Then-p
i¢ alocally completely reducible réptesentation of A[(], and the-irreducible Al
sibmodules of L are irredneible regular representations of & (since G is reductive).
Thus the nonzero isotypic components Ly y ave labeled by A€ G. We shall write
- Speclp) for the set of represemanon types that ocenr in the primary decomposition
“iol'L. Then by Proposition 4.1,15 we have

Lz @ Hom(F,neF*
A &8pecip)

©as wGimodule, with g € G ueting’by 16 7*(g) on the summand of type A . We now:
fovus oni‘the puddiplicity spaces Hom{F4, L) in this-decompesition.
Assime that R.c Bnd(£) 1s a subalgebra that satisfies the following conditions;

Yy Fdots ifreducibly on. L,
@y itge G amd I' € R then p(g)Tp(g) e R (so(Facts on R), and
i the representation of &'on R.in (i) is locally regular.

dimyE <50, the: only chofce for R {s End{L) by Corollary4.1.7. By contrast, when
dimL=c there may exist many such algebras R; we'shall see-an important example:
cotion 5.6,1 (the Weyl algebra. of linear d1fferer1t1a1 opetators with polynomial
fiicients),

Bix R satigfying the conditions (i) and. (i) and let

RE = {TeRrp)T =Tplg) forallgeG}

.{the commutaiit of p(G) in R). Since G'is-rednetive, we may view 1-as 1. locally
ompletely irreducible reprcsent ation of A[G]. Sinee elements of RE commute with
elements of A[G], we have a representation of the-algebra R% @ A[G] on L. The
dialivy theorém describes the decomposition of this representation:
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E* =Homg(F 1) forpcd.

Then E* iga module for R ji turtural way by left muiﬁplicatioz;g sifice

Tula* (2)v) = Tp(@)u(v) = ple) (Te(w)

for Te R% uc b, g G andve pr, Hetice as 2 module for the algebra R @ A6
the space I, decomposes as

L= B Flert, (4.13)
%ESpecip)

In (4.15) an operaior T' & ®G acts by T'®{ on the smmmanid of type A,

Theore:{gt&ﬁ;l (Duality), Eacfi rudtiplicity space E* is an irvedneible RG thodile:
Hyrihermiore, if A, 41 & Spec(p) and E* = pu as an RS module, then ). = i,

- The duality theorem plays a cenfral role in the representation andinvariant-fheory-
of the classical graups. Here is an immediate cotsequence.

Corollary 4.2:2 (Duality Correspondence). Let o be the representation of R o
L.and ze_r'S_pecj(iq) denote the ser of equivatence classes df the fr.reduc'i_blé'-rép?fe&én-
tattons {E} of the algebra RS that oeeur in L. Then the following hold:

1. The representation (0,L) is a direcr sum of irreducible R moduies, and each

irreducible submodule E* oocurs wish Jinite multiplicisy dim F3,
2. Themap FY —— F4 gop6 up-a bijection berween Spec(p) and Spee(e),

The proof of the duality theorem wil] use the following resil-

Lemiad23.let X c L pp g4 finite-dimensional G-invaridns subspace, Then
RG]y = Hom(X, £).

Proaf. Let T e Homg {X,1). Then by Corollary 4.1.6 there exists-r < B such that-
rix = T Since G is reductive, condition (iif) and Proposition 4.1.15 furnish 3 pro-
Jection r i 4 from R fo RE, But the map R — = Hom(X,L) given by pis Wx
Intertwines.the & actions, by the ¢; invactance of X, Henee T — 7 — » |- a
Proof of Theotem 431 We first prove that the action of % on Homg(F4,1,)

ig freeducible. Let T & Homg(F*, Ly be: uonzero, Given aftothér fiohzéro elemarit
8 & Homg (FA,1) we need to. find £ & RO suep that 77" = §. Let X = TF* nd
Y'=SF* Thea by Schir’s lemma X apd ¥ are isomorphic G-thodules of clags 7.
Thus Lemma 4,2.3 implies that there exists u « ®¢ such that uly Implements this
isomorphistm, Thus 7 s 4 — o g i a.G-miodule isomorphism. Schur's lemmg
implies thiat-there exists ¢ & € such that ca? = §; 50 we may take ¥ = ry.

We now show that if 4 £ then Home(F*, 1) and Homg(F®,1) are inequiva-
lent modules for &G, Suppose
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@ Homg(F*,L) — Homg (" 1)

i an intertwining operator for the action of RE, Let T e Homg (A, L) benonzero
and set 8 = ¢(T). We want'to-show: that § =0. Set U = TF* -t §F¥. Then since
we are assuming A 7, the sum is direct. Let p I/ — SF" be the corresponding
profection. Then Lemma 4.2:3 implies that there exists < RE such that rigy'= p.
Sisice pT =0, we have r7° =0, Hence ‘

0 g0T)=ro(T) 1S =pS =,

which proves tliat @ =0 O
In {he finite-dimeisional case we can combine the duality theotem with the dou
ble-commutant theorem.

- épfgilary 4.2.4. Assume diml, < oo Set A= Spanp(G) and B = End g (L). Thex
7 15 a completely reducible Bomodule. Furthermiore, the following hold:

1.-Sippose that for every A ¢ Spec(p) there is given an operator Ty € Bnd(F Ay,
Then there exists T € A that acts by I ® Ty on the A sarmand in the decomposi-
tion 4.15):

2 Let T € ANB (the center of A) Then T is dingonalizéd by the decomposi-
tion (415)y and acis by a scalar Ta) €C on Ek @ FY. Conversely, given
any. complex-valued function. f on. Speclp), there exists T e AyB such thot

TR =f)

Proof: Since L s the direct sum of B-invariant irreducible subspaces by Theorem,
4.2.1, it is a completely redueible B-rodule by Proposition 4.1.11. We now prove:
thies other assertions.

{1} Let T¢ Bnd(L) be the operator that aets by 1 @1, on the A summand.
Then 7 & Comin(BY, and hence 7' & A by the double commutant theorent (The-
orem 4,1.13).

¢2): Fach summand in (4.15) is invariant witder T, anid the aetion of T on the 4
summaiid is-by an operator of the form Ry &Z = I8, with By € End{#*) and
S,  Bnd(F4Y. Such an operator must be a sealar multiple of the identily operator.
The converse follows from (1), O

4.2.2 Products-of Reductive Groups

‘We tiow apply the duality theotemm fo determine the vegulai representations of the
product of two reductive linear algebraic groups H and K. Let ¢ = Hx K be the di-
rectproduct linear algebraie group. Recall that O[G)] =2 O[H| & O[K] under the natu-
ral pointwise multiplication map. Let{o,V) and{t, W) be tegular representations of
H and K respectively. The outer tensor product i the representation (6®1, Vo W)
of H x K, whete
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(0B7)(1,8) = (k) ® tk) forkcHamdkek .

Notice-that when H = K, the resiriction of the outer tensor product ¢&7 1o, the
diagonal subgroup { (k) : he HY of B % H is the tensor product o1,

Proposition 4.2.5. Suppose (0,¥) and (z, W) are irreducible. T hen ihe outer ten-
sor product (68T,V @ W) is an irveducibie representation of H x K, and every
irredicible regulay representarion of H X K iy of this Jorin,

Proof” We bave End (V& W)= Rad (V)@ End(W) = Spanfo (H)@T(K) ) by Coral-
lary 4.1.7. Hence i 0 £ i & V@ W, then Span{(c(H) & t(&)u} =~V o W. This.
shows that p& o is frreducible, '

Conversely, given an irreducible regular: representation (p,L) of H x K . set
tk) = p(L,K for k e K, and use Theovem 4.2,1 (with R = End(L)) to decompose
L aga Fmodule:

LB L= (B Fert. 4.16)
N A €8pec(v)

Seta(h) = p(h,1) for he H. Then o (H) C Bndg (1), and thus 17 preserves decom-
pesition (4.16) and| acts on the A summand by & w03 (h) @7 for some representa-
tien oy. We claim that Oy ds irreducible, Th prove this, note that since Endg(L) acts
ireedizeilily on £* by Theorem 4.2.1 . we have.

Ende(l)> € Bnd@EYyer. “4.17)

- A€Speais)

Butp isan ifreducible representation, s6 End(E) is spanined by'the'tl‘ans;formaﬁons
phk) = o{hyrik)y withhe i atidk ¢ K. Since X s reductive, there is a Drojection
T 1% from End(F) otito Budg (L), and 5k, for k € &, -acts by a scalar in each
suminagd in (4.16) by Schui’s lemma, Henee Bnd{E*) ig spatined by oy, (), prov-
ing.that oy is irreducible. Thus each summand in (4.1 6) is an irreducible modyle.
for H x K, by the earlier argument. Since p is irreducible, there can be only one
summand in (4.16). Hence p. = o6t. 3

Proposition 4.2.6. Ir 11 and K are reductive iineczr'algebmi;? Lroops, then H % K {5
rediciive,

Proof. Let p bea regular representation of Hx K. As in the preof of Propesition
4.2.5 we set 1(k) = p(1, k) for k& K, and we use Theorem 4.2.1 (with R = End(L))
to obtain decomposition (4.16) of I, as 4 K-module. Set o (h) = P for he dT.
Then o(H) ¢ Endg(F),-and thus we have g regular representation of £ on £2 for
tach A & Spec(t). Since H is reductive, these tepresentations of 5 decotipose as
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4.2.3 Isotypic Decompasition of 0G|

T.et 6-be a veductive linear algebraic group. The group G & is reductive by Prope-
sition 4.2,6 and it acts'on O[G] by left and right translations. Denote this represen-
tation by p-.

PR = f ), fot fe0[6] and x3zeC.

Fof cach 4 € G fix an fireducible représentation {(m* FY) i the class A. Denote
by A* the class of the vepresentation contragredient to-A.. We choose the representa-
tions 77 so that the vector-space FA* equals (F+)* and the operator 7% (g) equals
at (g LY. We write dy, =dimV* and call d, the degree of the representation. Note
thiat dy = di.

ihwrem 4.2.7. Fora, € Gdéfine gy (1*@v){g) = (" ?-ﬁ?b-(gﬁ Wiforge G, vh e v,
and v &'V, Extend'@y to a linear map from F A e B 1o O[6). Then the following
hold: ' ' '

1. Range(gy ) is independent of the choice of the model (a, F*)-and furnishes an
irrediictble regidar reprogentation of €. Gisomorphicio F A SFR.

2. Under the aciion of G % G; the space O[6| decomposes s

ole] = (h o (FY o F*) . 4.18)
166

Proof. Given v & F* and v € F%, weset fry = @3 (W @}, Then for . p,2 € G
we have . & o _
Forgo(e) = (& @V, 0@ m* OI) = fir (" T2y}

This shows that gy inteftwines the action of (% &, Binice F¥ @ F* g irfeducible
as-a G % G module by Preposition 4,2.5, Schur’s lemma implies that.¢; must.be
-injaeti\;e; Ti:ds clear that the range of @ depends only on the equivalence class of.
{(m FHy,

Let QG aybethe A-igotypic sybspace relative o the right action R of G. The cal-
culation above shows that Range(ga) © O[Glay: 80 by Proposition 4.1.15 we need
to-show only:the Opp'oéite.; inclysion. Let W < O[G] (%) be, any jrredicible subspace
for the right action of G. We may then take W as the-model for A in the definition
of: the map ¢y Define § € W by {8, w) =w(l). Then

Fswl8) = (8. R(2)w) = R(g))(1) = w(g)-
Hence @) (5@ W) = w, completing the proof. 0
Corollary 4.2.8, In the right-translation fepresentation. of G on O 16 -every irre-
dicible representition.of ooty with multiplicity equal o its dimepsion.
Remark4.2.9. The representations of & G that oceur in-O[G} are the outer tensor
-pmﬂu;&ts-?l,?@ﬁ;. forall & € G, a:jdggach'i‘eprt_ésentation oeers with ninftiplicity cne.
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Under the isomorphism #4* @ F* 2 End(F*) that sends the tensor v to the razk.
one aperator 1 (v*,u)v, the map @, in Theorem 4.2.7 is given by @ (T){e) =
{7 (Q)T) for T e End(F*), In this model for the isotypie components the element
(8:8) €GxGacts by T' s (/YT (o) ~* on thie' A sumimand.,

The: duality principlein Theorem 4.2.1 asserts that the commutant of & explains
the multiphcities i the primary decomposition. For example, the space O[G] isa'di-
rect sum of irreducible representations of G, relative to the right translation action,
since (7 is reductive. Obfaining such 4 decomposition requires decomposing each
isotypic componerit into irreducible subspaces. If G'is not an algebratc torus, then
it hais=1'rmduaible=representations-of'dimension greater than one, and the, decompo-
sitiont of the corresponding isotypic comporient is mot. unique. However, when we
include the additional symuetries coming from the commuting left transiation ac-
tion byG then each isotypic component becomes irredueible -tnder the action, of
G X Gf‘;‘.,' 3

L

4.2.4 Schur-Wey! Duality

We now apply the duality théorem fo obtain‘a tesult that will play a central role.in
onz study of tensor and polynomial invariants fof the-classical groups, Let p be the
defining representation of GL{n,C) en €% For all integers k> 0'we can construct:
the representation py-= p® on R*C”, Since

A Bu)=gn .. gV

for g € GL(n,C), we can perinute the positions of the vectars in the fensor prod-
uet without changing: the. action of G, Let & be the group of permutations of
{1,2,... &} We define a représentation o of B on ®FC by

(038 (A‘)(!’z @ BYy) = Vein @@ Yol

for s € G Notice that oy, (s) moves the vector in the #th pésition in the tensor product
to the position s(i). It is clear that Ok{s) commutes with pelg) for all s & & and
£ € GL{r,C). Let A == Span p{GL(n,C)) and B = Spanoy (&) Then we Haye
A C Comitii(B). - '

Theerem 4.2:10 (Schur). One hus Comm{B) = A and Co_mm(_ﬂ) =HR;

Progf. The sepresentations oy and py are completely reducible (by Corollary3.3.6
and Theorem 3,3.11), Frem the ‘double commutant theorem (Theorem 4.1,13) it
sultices to prove that Comm(B) ¢ .A. _ 7
Let {e1, ..., } bethe standard basis for O, For an ordered k-tuple 7 = Gy, in)
with 1.<i; <, define |7 | =kand er=¢;,@ . ‘®e;,. The tensors {¢/}, with I rang-
ing overthe all such ktuples, give s basis for "%, The. group &, permutes this
basis by the action o3 ($)er = ¢y, where for J — {B15-.- 51z) and 5°€ &) wédefine
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L (i] i s ,Ik) = (‘Iﬁé‘A{l:)j cas 1i&—l(k}) e

Note that s changes the positions’ {1 to k) of the indices, riot theit valiies (1 to n), and
wehave (56} -F =5+ (f-I) fors,t & Gy. '
Suppose T € End(iR ") has matrix [az,s] relative tothe basis {er}:

Ter=Y apser.
s

Wehave )
Tlow(ses) = Tless) :}: Uerer
o

for s ¢ Gy, whiereas

TS, o) {Ter) =Y arresy =} @iy e -
I E

Thus T € Comm (B). if and only if @z = gy .y for all multi-indices 7,7 and all

5 ¢ & Rephaciriy [ by 5 I; we can write this coridition as

Gpi gt =ary fovall LJ andall s ¢ &;. 4.19)

Consider the nondegenterate bilinear form (X, ¥) = t(X¥} on Bnd {&* C*), We
claim that the restietion of this. form to. Comm({B} is nondegenerate. Indeed, we
Have a projection X — X1 of End (@ C?) onto Comm(B) given by averaging over
i

e L X oyt
Xie=— ¥ o)Xy .
ek 966];

I T € Camm(B) ther
@1y =L ¥ (o onls) ) = (X, 1),
B G

since 03(8) T = Tox(5). Thus {Comm(B), T) =0 implies that (X, T) =0 forall X €
Eindl (- &FC*), and so T' = 0. Hence the trace form on Comm(B) is nondegenerate.

To-prove that Comm(B) = A, it thug suffices to stow that if T« Comm(B) is
arthiogorial. to /L thert T = 0. Naw if ¢ = [gyy] € GL(#,C), then pi{g) has matrix
817 = Biyi - B, Telative fo the basis {e;} Thuis weassuing that

(T,px(g)) Eaug i B =0 (4.20)

forall g & GL(n,C), where [az 5] is the matrix of T'. Define a polynomial fonction

fr onMa{€) by e
Fr) = Yanmiiy - X
.[)J
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for X' [x;] € M,(C). From (4.20) we have det(X) fr (X) =0 for all ¥ < M, (C).
Hetice f is identically zero, so for all (7] € M(€) we have

Za;,_;-x_jlgl Vg =0, {4.21)
L

We now show thay (#.19) and (4.21) imply that ary =0 for all 7,7. We begin
by groping the terms in (4.21) according to distinet monomials in the: matyix ofi-
tries {x;;}. Introduce the notation. T = Niggy ++ Figji and. view theése monomials as
polynomial funetions on Ma(L2). Let 5 be the set of a)l ordered padrs (1,73 of multi-
indices with )f| = |4| = k, The group & acts on § by '

5 (I,J) = (S_-I,SJ_) .

From (4.19) we see that 7 commutes with & if and only if the function (7, J) s ar g
is'conistant on the orbits of & in 7, _

" The'sction'of &, on = defines ari equivaleiice relation on =, wheye {Lh=(r, v
i, = (s+1,8 Iy for some s & . This gives o decomposition of & intes disjomt
equivalence classes. Choose a set I” of representatives for the equivalence classes,
Then every monomial xz; with |1] = |7{ = k can be written as xy.for some ye [,
Indeed, since the variabies X;; mutually copunte, we Have

Ty=TXry Torallye Sy andyel,

Suppose xy. = X, #- Then there must be an integer p such that i = Xy, Call
p= %’ . Simi]aflrly,' there must be an imGger_’g 7 p such that F =Xy, Call g =0,
Cantimring this way; we obtain a permutation

RN ¥ VN 3 S L oK)
such.that I = S andJ =5 7, This proves that ¥ is uniquely determined by xy. For
Vel lethy =|&, . v bethe cardinality of the corresponding orbit,

Assimie-that the coefficients.ay satisly (4.19) and (4.21). Since ary = ay for all
(1,7) € 8 -, it follows from (4.21) that

X nyayxy =0,
yer .

Since the set of monomials {3 yertis lineaily independent, this fmplies fhat
arg =Oforall (5,7) ¢ E, This proves that 7 =0, Hence 4 — Comm(7B). 2|

From Theorems 4.2.1 and 4.2.10:we-obtain 4 preliminary version of Schaur—Weyl
dualiry:

Corollary 4.2.11, There are frreducible, munsally inequivalens Sr-modules E* qna
irveductble, mutnally inequivalent GL(n,C) -modides F* such thar
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k .
Qe E* @F*
Aelpec(pi}

as @ representaiion of G X GL(n, (). The representation E* upigquely desermines
Fr-agnd conversely.

Tn Chapter 9 we shall determine the explicit form of the irredueible representa-
tions and the duality corresponidence in Corollary 4.2.11.

4.2.5 Commuting Algebra-and Highest- Weight Vectors

“et g be a semisimple Lie algebra and let V hea finite-diinensional g-moduie. We

* shall apply thie thiorem of the lighest weight to decompose the commiuting algebra

- Bridy (V) asa directsuin of full iatrix algebras.

Fik 4 Cartah subalgebra b of g and a choite of positive roots of b, and let g =

et bethe associated triangular decomposition of g, as in Corollary 2.3 5.
Set

: Vn:‘" :{.v G—V X =0 forallX e t'I'F} ‘
Note that. if 7'< BEnd, (V) then it preserves Ve and it preserves the weight space
deeaimposition L

| =Y.
: =
a6 S = e Pr(g) s ¥ (1) #0}. By Theorem 3.2:5 we can lahel the equiv-

gnce: lasses of {frreduciblé-gamodules by {heir highest weights. For each g &8
(Hoese 4n irfeducible representation (7%, V) with highest weight p.

: .:ligultemzz_iiz.llz;.".??ie restriction map @ i T w2 T),oi for T' < Endy (V) gives an

algebraisotorphism

Bindg (V) =2 €3 End(V™ (1)) (4.22)
Hes

y 4t & 8 the space V W) is an trreducible module for Endg (V). Further-
distivict valies of | give-inequivalens modules for Endy (V). Under the joint
 of g and Bndy (V) the space V deécowmposes ds '

Ve VEev (). (4.23}
HES

roof Sinoe every finite-dimensional representation of g is completely reducible
Thesrem 3.3.12, we can apply Proposiiion 4.1.13 (viewing V asa U{g)-module)
o-obtain the primary décemmposition



204 4 Algebras.and Répresentdtions

V=& vy, Bndg(V)= (3 End, Vo) - {4.24)
&P () P (g) '

Here we write iy for the isotypic component 6 V' of type V4, For each Vigy £ 0

we choase irreducible subimodules Vi =VH fori=1,... .4 (fiysuchthat

Vi) = Vi1 @+ @ Vi afay . (4.25)

where d(4) = multy (z#). Let Vi € Vi be a highest-weight vector. Then (4.25)

and Corollary 35314 9mply that
oty (74) = dim V" ( 1y .. {4.26)
Henee the nonzérd terms in @24y are those with y & 8.

et LLe Bndg (V) and suppose (T = 0. Then T'vy; = 0 for all #oand i =
Lo d(u), v =y .. “XpVis withxy & g, then

Ty =x.. Kpl iy =0,

Bt v, 418 a cyclic vecior for ¥, by Theorem 3.2.5, 80 TV, ; — . Hence TV =0
for all poe P (), This F — 0; which shows thiat ¢ is ‘njective: We alsa Have

dimBndy (Vi) = (multy (7)2 = { dim v (1)? = dim (Endv™ (1))

by-(#.26). Since ¢ is injective, it follows that 9(Endy (V) = End (Ve (1)) for all
H & Py {g). Hence by (4,24) we see-that ¢ is also surjeotive. This proves (4.22).
The other asseffions of the theorem - now follow from (4.22) and, #.25%. |

4.2.6 Abstract Capelli Theorem

Lef G bé ateductive linear-algebraic group, and let (p, L) be a Iocally regular repire.
sentation.of & with dimZ éountable. Récall that p is 4 locally completely reducible
representation of A{G], and the irreducible A|G] submodules of 1, are irreducible
regularrepresentations of (7, :

There is a representation dpof the Lie algebra g=Lie(G) on L such that on
every finite-dilnensional Ghsubmoduls 1V L onehas dply = d{ply), We extend
df to'a representation of the utityersal erivelopifig algebra 77 (g) on L see Appendix
C2.1). Denote by Z(q) the censer of the algebra [{y) (the élements 7' such that
TX =XT forall X & g). Assume thiat R < Eod(L) is a subilgebra tht satisfies the
conditions (i), (i), (iil) in Section 4.2.1. '

Theorem 4.2.13, Suppose 16 Cdp(U(g). Then RE ¢ dp(Z(8)) and RE is-com-
mutdtive: Furthermore, in‘the decormposition (4.15) the rreducible R -modules E*
are gl one-dimensionat, Hence I i Sltiplivity-free o5 Gimodide,
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Proof. Let T be the representation of G on R given by

tg)r=pR)rpE ).
Thert ft_(gﬁ)_'__e Aut(R). and the reptesentation T i locally regular, by conditions (ii)
arid (iif} of Section 4.2.1. Hetice there s 4 repregentation dz: g—Fnd(R) suck
that on every finite-dimensional G-submodulé W <R one hasdt|w = d{t|w). We
¢laim that

de(X)T = [dp(X),T] faoXegand TeR. {427}

Tndeed, given v € L and T & R, there are finite-dimensional G-submodules Yy ©
Vo Lad W < Reguch that ve V. T e W, and TV ¢ V. Thus the functions

s plexptX) Tplexp—tX)v and ¢ plexprX)Tp{exp-4X)

e éiialytiq from € to the finite-dimensional spaces ¥y and W, respectively, By
definition of the differential of a representation,

g, O N |

{(dr{X)T v = dgp(expz‘X)Tp(exp X )y o
d o q

= E;P@KP’?X).TVL@_ + _T-;E;p (exp,mtX)ulFO_

= [dp (X)f Tiv,

| proving (4.27), -

Now suppose T = RO, Then 7{g)T =T for ail g € G, s0 AT(X)T = 0 for all

X &g Hence by (427 wehave. '

dp(X)T =Tdp(X) forallXeg. (4.28)

" By:asswmnption, there exists 7' & U(g) such that T = dp (T). One has T « [ (g) for
* gome integer k. Set K = Uy(g) M Ker(dp). Then AQ(G)K = K. Sinee G is reductive
* and the adjoint reptesentation of G on Uk(y) Is regular, there is an Ad(G)-nvariant
- gtibspace M. T (g) sichthat

Uplg) = K@M .

Wiite T = Ty Ty, where T € K and Ty € M. Then dp(T) = dp(1) = T. From
- (4.28) we have :

dp{ad(X)71) = [dp(X),dp(1)] =0 forallXeg..

Hence-ad(X )11 < Ker(dp) forallX < g. But the swbspace M is invariant under-ad(g),
sinee it is nvariant under G- Thus

ad(X)Ti € Ker(dp)nM ={0} forallX eg.
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06:

This proves that 7} < Z(g). The algebra dp (Z(g)) is commutative, since dp is a
homomorphism of associative algebras. Hence the subalgebra RY is commutative.
To prove that the irreducible RY-maduyle £ has dimension one, st B — R 2.
Then B' Enda £ "q'), since: B is commutative. Hence by Schur’s lemma (Lemma
4.14), we have dim'B — 1, and hence dim EA ~ 1. Since i# vriguely determines
it follows that £ is aisitiplicity-free as a G-madule, .o

4.2.7 Exercises
1. Let A be an associative algebra with 1 andlet 7,; 4 — o End(A) be the fepr

mumplicaﬁon‘rgp;wentz_xtim L{ajy = qu, Suppo_jSe' T < End{A) comimuics with
L(A). Prove that there is a1 element b = A-guch that T (#) = ab for 2l g & A

o (BT Consider theaction of 7’ on. 1)
*20 Let Ghe g group. Suppose T & End{A[G]} commutes with left translations by

G. Show that there js function ¢ € A[G] such that T /= f+@ (convolution
product) for all f & AJG]. (Himer: Use ihe previous exercise,)

3. Let G be a linear algebraic group and (p V) a regular representation of ¢ Define
a représentation 7 of' G x ¢ on End{V) by z(x, )T = PERTp( ™) for T e
End(V) andx,y € G,

() Show that the Space EP of reépresentative futietions (see Section L31)yis in-
varfantunder Gk 6 (actingby left and ri ght translations) and that the map.f s fy
from End(V) to B? intertwines the actions and LER of &x

(b Suppose p is irredicible. Prove that the map B — f5 from Bnd(V) to.G[¢] is.
injective, (Hmvr: Use Corollary 4.1.7.)

4.3 Group Algebras of Finite Groups

In this section apply the general results of the chapter to the'case of the group alge-
bra of 4 finite group, and we obfain the representation-theoretic version of Fourier
artalysis,

4.3.1 Structure of Group Algebras

Let G'hea finite grop; Thus-ﬂ,[@] consists of all.complex-valued Tunctions on @,

We denote by 7 and Rtheleft and righit translation representations of ¢.ori AIG:

LEf@ =1, Ry (¥ = flxg)-
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By Corollary 3.3:6 we know that G'is a reductive group. Hach irreducible represen-
tation is finite-dimensional and has a G-invariant positive definite Hermitian inner
product (obtained by averaging any inner product aver ). Thus we may take each
made} (7%, F) to be unitary for A & G: The space F* can be'taken as F* with

w (g = (g) . (4.29)

Eere the bar denotes the complex corjugate of the matrix of 7*(g) relative to any
orthonormal Basis for F A, Equation (4.29) holds because: the trangpose ifiverse of a
unitary matiix is the somplex conjugate-of the matrix.
From Theorem 4,2.7 and Remark 4:2.9 the vector space A[G] decomposes under
G x Glas. .
A6 B End(FY) {4.30)
FRES

‘with (g, € G'% G acting on T € End(F By by T m*(g)TH™ (B~ In particular,
since. dim.A[G] = |G| and dimEnd (¥ MY = (dyY?; the isomorphism {4.30) implies

‘that .

Gl =} (d2) . (431)

aed
We recall that A[G] is an associative algebra relative to the convolution product,

with identity elemerit 8. It has a corfjugate-linear anfiautomorphism f — £* giver
by

I*g) = flg™t)
(the cenjugate-linear extension of the-inversion map on G to AlG)). I we view the
right side of (4.30) as block diagonial matrices (one block for each 4 € Grand an
element of EndF#* in the block indexed by .A), then these matrices also form an
asspciative algebra under matrix multiphication. For 7' e End F* let T* denote the
adjoint operator relative to the G-invariant inper product on # A

(T, ¥) = (1, THY forie,ve F*

We define a conjugate-linear antiautomorphism of the algebra Dyca Bnd(F4Y by
usinig the map 7'+ T* on each summmand,

We will ficiv:define an explieit isomorphism betvreen these two algebras. Given
fe AlGland A € G, we define an operator Ff(A) on F A by

FfAYy= éf—@)vﬁ ().

In particular, when. f is-the fonction 8, with g € G, then F&,(A) = w*(g). Hence
the map f = Ff{A) is the canonical extension of the representation 71'_?“' of GH1o a
representation of #1[(7]. We defitie the Foiwier fransform Ff of f tohethe élement

of the-algebra (B, (s End(FY) with A component FF(A).

Theoren 4.3.%. The Fourier transgform
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¥ A[G]-—> P End(F*)
Aed
Is an algebra isomorphism thar preserves the »aperation on euch algebra, Further-
more, for f < A|G] and g € G oné -has

FLONHQ) = (QIf (), FRENHA) =S Mt ¢, @

Procf Since F (o100 = 751 (5182) = fa?‘ (g)m*(g3) = F(8,;)F(8,,), the map F
transforins convolution of fingtiors on G iite multiplication of operatrs on each

space o

Fe f5Y(A) = FHMFHA)
for fi, fr.€ AlGland A ¢ &. Also, F81(A) = L. This shows thiat F is an algebra
homomorphism. Hence equations (4:32) follow from L{g) f = & «.f and R(g)f =
£ g:_;—*iaé—i,.‘%[\ﬁﬁ * opetation is preserved by ¥, since (8,)* = 3,1 and ()t =
a*(g71). From Corollary 4.2.4 (1) we see that F i surjective. Then (4.31) shows
that it is bijective, O

4.3.2 Schur Orthogonality Relations

We begin with a variant of Schur’s lemma, Let G be a group and let 7 and V be
finite-dimensional G-=modules,

Lemma 4.3.2, Suppose € is g G-invariant bilinear form-on U V. Then € =0 if
Eis not equivalentta V* as d Gumodule, U =V* there is constant K such that
Clie,v) = (i, v), vhere-(u,v) denotes the canonical bilinear pairing of V¥ .and V.

Progf: We can write C as C(u,v) = {Tw,}, where 7' Hom (17, V™), Since the form
€ and the carionicai bitinear pairing:of ¥* and 'V are both (“invariant, we have

(7 T, v) = (Tgu, gv) = (T, 3)

foralluc U, ve V, and ge G- Henee ¢ My =T,andso T Homg (I7,V*), The
conclusion now follows from. Lemma 4.1.4. O

Letd ¢ G ForAe '.End{}??)' we define the representative funcrion _ fj“ an G by
[3(@) =tr(x*(2)A) for g G, as in Section 1,571,

L.emm;th 4.3.3 (Schur Orthogonality Helations), Suppose G iva Jinite group anid
Aojt € G Let A &'End(F* Yy und B € End(F®). Then

1 Sty | Q) CAB) i, -
e BA@ @ -{ 5% olenvise, 439
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Proof Define a bilinear form € on End (¥ j‘)_ « Bnd(F*) by

cwn) - g LAOK®. (4.34)

FEG

We have f} (xgy) = f;}}l (s> (x)(g) for.x,y &G, with an analogous transformation
law for fg . Replacing g by xgy 11'1 (4.34), we see that

C(at (AT (), w () BE" () — (A, B). (4.35)

Thus € is invariant under G x G Since End(F*) is.an frreducible module for GG
{isomorphic to the outet tensor product module FAEFA), Lentina 4,32 implies
that G = 0T & 7 At

) “Suposeiow (= A and write T = ah V=FF ot = o and V* = F¥_ The
. ilinear form {A,B) = trv(AB"), for A € Bnd(V) and B e End(V"), is G-invariant
and nondegenerate, 50 by Lemma 4.3.2 there is a-constant & such that C(A,B) =
wiry (AB), To determine. &, we recall that for A € End(V) and B & End(V*) we
have try (A) fivs (By = trygy» A2 B). Thus

DR =tver-(m@)A® 7 {¢)B) -

Now take A =Iy and B = Iy». Then by (AB) = dy, and hence wdy, = trvay+(P),
where 1
P=—. Y mlg)®n'g)
PN
s fhie projgction onto the G-itivariafit subspace of vV @V*, But by Lemma 432 this
subgpace has dimension one; Henge trygy+(P) = 1, proving that & = /dy &

4.3.3 Fourier Inversion Formula

With thie-aid of the Sehnr orthogoriality relations we Gan naw fitid an pxplicit iverse

o the Fourier transtorny F on AIG]-
Theorem 4.3.4 (Fourier I_nyérsi_oh_Fi)rmula)._ Suppose. G 15 4 finite group. Let
Fe={F (&)} .abein FA[G]. Defing a function f & AlG| by

Hy =7 L s (" @FRTY) (@:36)
l ! led ' '
Then $1(A) = F(A) Foralihie G
Proof. The operator Ff(A) is uniquely determined by te(FFAA]L with A varyiiig
'ove,r‘End(VR}. Replaciiig each represefitation by its dual, we write the formuta for

fas
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16)= 1 X durr (2 )y

HeG

‘Ther we calenlate

(I (R)A) = léi L L dute (5 @)a) tr(w (g ey
eyl
=y d#_{ % X, 148) fruy (;9)'} :
neG st

Applyitg the Schur orthogonality relatinng (4.33), we find that the terms with g o 2,
vanish and tr{%f (MA) = w(AF(A)). Since this holds for all 4, we conclude fhat
TFAI=FQ). §

“Crollary 43,5 (Plancherel Form wla). Let g,y ¢ A[G]. Then

L oW = i ¥y 0 (Fo@)7pay) (437)
SEG (G 3e8

Proof Let f = ¢« (w)*, Then
J =Y o).

FEG

We ean also express J{1) by the Fourier inversion tormula evaluated atg — 1.
De L og g 1 NP
f() = Gl 3 () = ] Y, dite(FFA))
iy el

Since £ (1) = Fp(L)Fw(1)*, we. obtain (437). 0

Remark 4.3.6, If we use the normadized Fourier fransforn D{A) = (/[T (1),
then {4.37) becomes

% L o) = X dy o (@(ywiay). (438)
o= ied

The left side of (4:38) 45 a-pesitive detinite Hermitian nner product o A|G] that
is: nvariant grder the: opieratoes L(g) and RigY forg & G, normatized so that the
constant furiction ®(2) =1 bas fiorm 1. The Plancherel formulaexpresses this ifner
product in terms of the nner products.en End(g*) given by tr{S7%);. these inner
products are-duvariani under Jeft and right multiplication by the unitary operators
wt(g) for g & G Tn this form the Plancherel fornuila applies fo every compact topo-
logical group, with ALGY teplaced by E4G) and summation over & replaced by
infegration relative to the rorm atized invariant measyre,
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4.3.4 The Algebra of Central Functions

We contime our investigation:of the growp aig@bm of a finite-group G. Let A[G}
be the center of AJG]: by definition, £ ¢ A[G]Y if and ondy if

frip=ep«f forallgedlG]. (439

We call such a function f a cenrval fimction onG. The space.of ceniral functions
ofi G is a commiutative algebra (urider cofivolution multiplication), In this section
we: shall weite down two differsiit bases for the space-A [¢]% and use the Fourier
transferm of G to study: the telation between thor.

We-first cbserve-that, in (4. 39) it suffices tor take @ = 8, with ¥ rangingover J,
since these functions span A[G]. Thus f is cenfral if and only if f (vx) = fFy) for

Al ne : Replacing y by w !, we can express this condition as

Foon™h = £(3) for x,yel.

Tius we can also describe AJG]C as ihespace of funetions f on & that are ‘constart

on the.conjugacy classes of G. From this observation we obtain the following bagis
for A1

Propesition4.3.7. Lei Conj(G) bethe set of conjugacy-classes in G For each € €
Conj(G) det e be the characieristic Jumction. of C. Then the set {%}CeconJ(G) isa
Basisfor A{Cﬁg and every function. f:& AGIC hashe expansion

f= Y  flOu

CeCon)(G)

Inpardendar,
dimA[G)Y = | Con{G}] . (4.40)

We derote the chisracter of 4 finite-diménsional represéntation p by ¥ viewed
as a function on G+ ¥ (g) = 1r(p(g)). Characters are central funetions because

tr(p(wy)) = tr(p{xp )y = r{p (MP() -
We note that . _
%elg ) =xpe) @41
where the bar-denotes ‘complex conjugate. Indeed, sivice p(g) can be taken as
aiiitary matrix rélative o 4 guitable basis, the eigenvalues of p(g) have abselute
valie 1. Henee the sigenvalues of ol 1) ate the coinplex conjugates of those of
pilg), andthe trace is the sum of these eigenvalues, We write ¥ forthe character of
the irreducible representation 7%
We have another representation of AJGTE obtained from the Fourfer-transforn.

We know that the map F iy an algebra isomorphisni from AJG) ¢with convolution
nnftiplication) to
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FA[G] = €] Ena(F*)
Aed
by Theorem 4.3.1. Since the center: of each ideal End(F*) in FAG] consists of
scalar multiples of the identity eperator, we conclude that £ is a central function on
G'if and only if '
THAY =305 forall 2 ed, (4.42)

where ¢; ¢ ., For each., & & define £y € A6 to be the identity operator on
FX and zeto on Fi for i # A. The set.of ‘operator-valued functions {£, } 1ca 18
obviously linearly independent, and from {(4.42) we see that itis 2 basis for FA[G)C,

Proposition 4.3.8, The Fourier transform of f & A has the expansion
PR ¥ =¥ 5E, . (4.43)

I particular, dimAfG)S 1G], and hence

IG) = [Conj (G)]. (444

Exam_pie

Suppase ¢ = &,, the Symmetric group on s l&fters, Every ¢ & ¢7 can be writter
uniquily as a prodict of disjoint cyelic permutations, For example, (123)(45) is the-
bermutation 1 —.2,2 - 3,3-51,4 5,5 =4 in &s, Furthermore, g is conjugate
tog’ if and enty if thenumberof cycles of length 1,2, ... n is the same for g and ¢/
Thus each.conjugacy class & in ¢ eomrespesids to'a pardtion of the integern as the
sum-of positive iritegers: _

n=ky Jy Foetky

with i > &, 2 e 2k >0, The class €' congists of aft elements with cvele fengtliy
kypyka e kg Prom (4.44) it follows that &, hasg p(n) inequivalent ilfreducible-r@p-

resentations, where P(n) Is the number of partitions. of . 0
We'return i a general ftite group G. Undes the: inverse Fourier transform, the-

Operator £y corresponds to convolution by a cenfral function 22 on G\ To.defermine
€%, we apply the Fourier inversion formul‘a@.Bﬁ}:

ex(g) 515, (3) ’—%m (s71). (4.45)

Sinee F-1 ig ailalgebia isothorphism; the family of furictong {ea 1A e 5} gives a
resolution of the identity for the algebra A{G):

go=f ford=p, w
fare = {0 atherwise, A ,1%@8& =a. (446)
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Since Ey = Fey and g3 (g 1) = xa+(2), we find from (4.45) that

161/t it =4, .
Frwlt ) { otherwise . (447

Thus the irrecducible characters have Foutier transforms that:vanish except on a sin-
gle fiteducible representation. Furthermore, from Proposition 4.3.8 we see that the
irrediciblé-characters: give 4 basis for A[("j . Thg: explicit form of the expansion of
4 central furiction i ferms of ireducible characters is ds follows:

Theorem 4.3.9, Lot ¢, w € A[G|S and g € G- Then

(e)= Y, d(Aixa(s) , vhere f?'@‘{ﬂ-)‘* Z Pein), amd  (448)

* 'e(’:l : 3%

!GI Y, 0¥ = X, p¥). (4.49)

Aed

Proof. Define a positive definite-innef prodiict.en /[G] by

(o] = Z () w(z) .

gEb

Let A, u € G Then xalg) = [ (g) and 7, (g) = fB (g) where A is the identity
operator on F* and Bisthe identity operator ofi F4' Hertee the Schu or thogonality
telgtons: imiply-that. _

e [ ) = {_0 otherwise ..

Thvs {%2} 4 . i a0 orthonormal basis for A[G]7, relative to the inner produet (|-,
This uﬂphes formmilas (4.48) and 4. 49). 0
Carollary 4.3,10 (Dual Orthogonality Relations), Supposé €y and Cs are Conjt-
gacy classes in (5. Then

Gl/|C =6, e
Y. (Cn(G) = {E} il _;iﬁglms z (4.50)
AeG
Progf: Let C -G be:a conjugacy class. Then
[Glge(%) = [€lxa(C) @50)

Taking € =Cy and €= C; in (4.51) and then using (4.49), we obtain (4.50). H
Cer ollary 4381, Suppose (p, V) is any finite-dimensional-representation of G. For
xcGletmy, (XY bethe nudsiplicity of & in p. Thert sy (LY = ¢ ¥p | o) and

{¥p | Xp) = Z Hip ("’L)z
rel
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In particular, {yp | x5) is a positive integer, and p i irveducible if and only if
{%p | %oy = 1. The operatoy

B =2 Y @nle) “52)
[Gi 27

is the projection onto the A-isotypic component of ¥,

Proof” We have _
red
so the result on multiplicities follows from (4.48) and (4.49).
By Corollary 4.2.4 (2) there_'exis‘_ts_f ¢ A[G)Y sich that [ {(f) = P, To show that

e ‘ dy —
£ Flg)= T{%}X:’L (g) forgew,

it suffices (hy complete redireibility of P) to show that P, = P(F) when £ =t for
some ju-& G In this case PLE) == 8 lpe by (4.47), and the same formula holds for
#y by definition, O

 Finding an-explicit formula for Xz orfor For is a difficult problem whenever
G Is o nonecotimnutative fifiite gronp. We: shal 1 solve this problem. for the symmet-
tic group in Chaptet 9 by relating the- represeritations of the symmetrie grotip to
Yepresentations of the general linear Zroup.

Remark 4.3.12. The sets of functions {y, : 4 € G} and {p : € e Corij N} onG
have the same cardinality, However, there is no- ather simple.relationship between
them. This is a representation-fieoretic version of-the uncertainty principle: The
function ¢ is suppetrted on a single conjugacy class. I C = {1} this forces - o
fa'be norizero on at least two irreducible representations. (Let ¢ =@ and = §;;
thert the left side of (4.49) is zero, while the right side is ¥, d, @ (A).) In the other
ditection, Fyy is supported an the single: irreducible representation A, If A ig not
the trivial representation, this forces 3, 1o be nonzero on at least two nontrivial
conjugacy classes: {Sineethe trivial representation has character 1, the orthogonality
of characters yields =1\:C€Conj{6‘} €2 (€)= 03

4.3.5 Exercises

L. Let n>> 1 be:an integer, and et 7, = £/n7 be the additive group of integers
maod #.
(a) Let efk) = e/ for k c 7, Show thet the characters of Z, are thefunctions
xg_(k_} = e'(kg)“fo;r,_g =01, .01
(b) For f e JI[Z,,I: define £ & A[7,] by Ha) = (1/n) i3 fk)e(—kq). Show
that f{k) = Lg=5./(9)e (kg), arid that
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=1 =l
LY 1ok = X, 7@l
k=0 g=0

7. Let’F be a finite-field of characteristic p. (so ¥ has g = p" elemeits for some
infeger n): This exercise and several fhat follow apply TFourier analysis 16 the
additive group of I: This requires no detailed kriowledge of the structure of ¥
when pdoes notdividen; for the case that p divides nyou will need to kriow more
about finite: figlds to verify part fa)-of the exércise. Let &1 be the ninltiplicative
o of complex numbers-of absolute vatve 1. Let ¥ + F — 8! be guch that
wlr4y)= x{)x(y) and 20y =1 {ie, x Is an addifive chargeter of F). The
L allest subfied of I,-call it K, s isomorphic to Z/pfZ. Define e(k) it
fork & 7] p. This defines an additive character of 7,/ p7. and hence-a character
of I, F is a finite-dimensional vectot space over K. If'ae T define a linear
pbisformation Lyt F — Fby Lgy —av. Set xi{a) = e(ir(La))-

* (A We say-that an additive character¥ is nopgiivial if (x) 5 1 for somex € F.
Lt wbe anonzero clement of ¥ and define 1{x) = g1 (ux). Show that 1} is a
" fronfrivial additive character of .

(b) Shiow that if 17 s'an additive character-of T then there exists a unigue we F
- such that n(¥)y= ki (er) fof all £& 7. _ _

* {¢):Shew that if % is.any nontrivial additive character of Fanid if 1 is'an additive
“ghajacterof T then fhere exists a tnique gi ¢ W suehi that n{x) = % (ux) for &l

ve k. R

. Lot:F be a finite field. Fix 4 nontrivial additive character % of F. Show that the

Fourier transform: on A[F] (relative to the additive group structure.of F) can be
expressed as follows: For f € A[F), define & A[F] by

76) = L1002 )

x=¥
for& . Then the Fourier iiversion formula becomes

Fy =Y. FE)x6E),

EE

andonetss (11E) Loer /@) = Leerl FEF

Representations of Finite Groups

onstructifig; irreducible representations of finite nonabelian: groups is a difficult
oblem, Asa preliminary step, we.construct in this section a more accessible class
fepresenitations, the indiced representaions, and caloulate their charaeters:



