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Recommended reading

[Bou] N. Bourbaki, Elements of Mathematics: Lie Groups and Algebras.

Not always easy to read from front to back, but it was clearly written by the oracles of
mathematics at the time, with the purpose of containing everything.

[FH] W. Fulton, J. Harris, Representation Theory: A first course.

Written for the non-specialist, but rich with examples and pictures. Mostly, an example-
driven tour of finite-dimensional representations of finite groups and Lie algebras and groups.
Cheap – buy this book.

[Hum] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory.

Lightweight approach to finite-dimensional Lie algebras. Has a lot of the proofs, but not a
lot of examples.

[Ser] J. J. Serre, Complex Semisimple Lie Algebras.

Super lightweight. A tour of the facts, without much proof, but great quick reference.

1. The poster child of CRT: the symmetric group

Combinatorial representation theory is the study of representations of algebraic objects, using
combinatorics to keep track of the relevant information. To see what I mean, let’s take a look at
the symmetric group.

Let F be your favorite field of characteristic 0. Recall that an algebra A over F is a vector space
over F with an associative multiplication

A⊗A→ A

Here, the tensor product is over F , and just means that the multiplication is bilinear. Our favorite
examples for a while will be

(1) Group algebras (today)
(2) Enveloping algebras of Lie algebras (tomorrow-ish)

And our favorite field is F = C.
The symmetric group Sk is the group of permutations of {1, . . . , k}. The group algebra CSk is

the vector space

CSk =

∑
σ∈Sk

cσσ | cσ ∈ C


with multiplication linear and associative by definition:∑

σ∈Sk

cσσ

∑
π∈Sk

dππ

 =
∑
σ,π∈G

(cσdπ)(σπ).

Example. When k = 3,

S3 = {1, (12), (23), (123), (132), (13)} = 〈s1 = (12), s2 = (23) | s21 = s22 = 1, s1s2s1 = s2s1s2〉.

So

CS3 = {c1 + c2(12) + c3(23) + c4(123) + c5(132) + c6(13) | ci ∈ C}
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and, for example,

(2 + (12))(5(123)− (23)) = 10(123)− 2(23) + 5(12)(123)− (12)(23)

= 10(123)− 2(23) + 5(23)− (123) = 3(23) + 9(123) .

1.1. Our best chance of understanding big bad algebraic structures: representations!
A homomorphism is a structure-preserving map. A representation of an F -algebra A is a vector
space V over F , together with a homomorphism

ρ : A→ End(V ) = { F -linear maps V → V }.

The map (equipped with the vector space) is the representation; the vector space (equipped with
the map) is called an A-module.

Example. Favorite representation of Sn is the permutation representation: Let V = Ck =
C{v1, . . . , vk}. Define

ρ : Sk → GLk(C) by ρ(σ)vi = vσ(i)

k = 2:

1 7→
(

1 0
0 1

)
(12) 7→

(
0 1
1 0

)
ρ(CS2) =

{(
a b
b a

) ∣∣ a, b ∈ C
}
⊂ End(C2)

k = 3:

1 7→

1 0 0
0 1 0
0 0 1

 (12) 7→

0 1 0
1 0 0
0 0 1

 (23) 7→

1 0 0
0 0 1
0 1 0



(123) 7→

0 0 1
1 0 0
0 1 0

 (132) 7→

0 1 0
0 0 1
1 0 0

 (13) 7→

0 0 1
0 1 0
1 0 0


ρ(CS3) =


a+ c b+ e d+ f
b+ d a+ f c+ e
e+ f c+ d a+ b

 ∣∣∣ a, b, c, d, e, f ∈ C

 ⊂ End(C3)

A representation/module V is simple or irreducible if V has no invariant subspaces.

Example. The permutation representation is not simple since v1+· · ·+vk = (1, . . . , 1) is invariant,
and so T = C{(1, . . . , 1)} is a submodule (called the trivial representation). However, the trivial
representation is one-dimensional, and so is clearly simple. Also, the orthogonal compliment of T ,
given by

S = C{v2 − v1, v3 − v1, . . . , vk − v1}
is also simple (called the standard representation). So V decomposes as

V = T ⊕ S (1.1)

by the change of basis

{v1, . . . , vk} → {v, w2, . . . , wk} where v = v1 + · · ·+ vk and wi = vi − v1.
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New representation looks like

ρ(σ)v = v, ρ(σ)wi = wσ(i) − wσ(1) where w1 = 0.

For example, when k = 3,

1 7→

 1 0 0

0 1 0

0 0 1

 (12) 7→

 1 0 0

0 -1 -1

0 0 1

 (23) 7→

 1 0 0

0 0 1

0 1 0



(123) 7→

 1 0 0

0 -1 -1

0 1 0

 (132) 7→

 1 0 0

0 0 1

0 -1 -1

 (13) 7→

 1 0 0

0 1 0

0 -1 -1


Notice, the vector space End(C2) is four-dimensional, and the four matrices

ρS(1) =

(
1 0

0 1

)
, ρS((12)) =

(
-1 -1

0 1

)
,

ρS((23)) =

(
0 1

1 0

)
, and ρS((132)) =

(
0 1

-1 -1

)
are linearly independent, so ρS(CS3) = End(C2), and so (at least for k = 3) S is also simple! So
the decomposition in (1.1) is complete.

An algebra is semisimple if all of its modules decompose into the sum of simple modules.

Example. The group algebra of a group G over a field F is semisimple iff char(F ) does not divide
|G|. So group algebras over C are all semisimple.

We like semisimple algebras because they are isomorphic to a direct sum over their simple
modules of the ring of endomorphisms of those module (Artin-Wedderburn theorem).

A ∼=
⊕
V ∈Â

End(V )

where Â is the set of representative of A-modules. So studying a semisimple algebra is “the same”
as studying its simple modules.

Theorem 1.1. For a finite group G, the irreducible representations of G are in bijection with its
conjugacy classes.
Proof.

(A) Show
(1) the class sums of G, given by{∑

h∈K
h | K is a conjugacy class of G

}
form a basis for Z(FG);
Example: G = S3. The class sums are

1, (12) + (23) + (13), and (123) + (132)
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(2) and dim(Z(FG)) = |Ĝ| where Ĝ is an indexing set of the irreducible representations of G.
(B) Use character theory. A character χ of a group G corresponding to a representation ρ is a

linear map

χρ : G→ C defined by χρ : g → tr(ρ(g)).

Nice facts about characters:
(1) They’re class functions since

χρ(hgh
−1) = tr(ρ(hgh−1)) = tr(ρ(h)ρ(g)ρ(h)−1) = tr(ρ(g)) = χρ(g).

Example. The character associated to the trivial representation of any group G is χ1 = 1.

Example. Let χ be the character associate to the standard representation of S3. Then

χ(1) = 2, χ((12)) = χ((23)) = χ((13)) = 0, χ((123)) = χ(132) = −1.

(2) They satisfy nice relations like

χρ⊕ψ = χρ + χψ

χρ⊗ψ = χρχψ

(3) The characters associated to the irreducible representations form an orthonormal basis for
the class functions on G. (This gives the bijection)

Studying the representation theory of a group is “the same” as studying the character theory
of that group.

This is not a particularly satisfying bijection, either way. It doesn’t say “given representation
X, here’s conjugacy class Y , and vice versa.” �

Conjugacy classes of the symmetric group are given by cycle type. For example the conjugacy
classes of S4 are

{1} = {(a)(b)(c)(d)}
{(12), (13), (14), (23), (24), (34)} = {(ab)(c)(d)}
{(12)(34), (13)(24), (14)(23)} = {(ab)(cd)}
{(123), (124), (132), (134), (142), (143), (234), (243)} = {(abc)(d)}
{(1234), (1243), (1324), (1342), (1423), (1432)} = {(abcd)}.

Cycle types of permutations of k are in bijection with partitions λ ` k:

λ = (λ1, λ2, . . . ) with λ1 ≥ λ2 ≥ . . . , λi ∈ Z≥0, λ1 + λ2 + · · · = k.

The cycle types and their corresponding partitions of 4 are

(a)(b)(c)(d) (ab)(c)(d) (ab)(cd) (abc)(d) (abcd)

(1, 1, 1, 1) (2, 1, 1) (2, 2) (3, 1) (4)

where the picture is an up-left justified arrangement of boxes with λi boxes in the ith row.
The combinatorics goes way deep! Young’s Lattice is an infinite leveled labeled graph with

vertices and edges as follows.

Vertices: Label vertices in label vertices on level k with partitions of k.
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Figure 1. Young’s lattice, levels 0–5.

Ŝ0:

Ŝ1:

Ŝ2:

Ŝ3:

Ŝ4:

Ŝ5:

0

1 -1

2 -1 1 -2

3 -1 2 0 -2 1 -3

4 -1 3 0

-2 2 -2 2

0 -3 1 -4

∅

Edges: Draw and edge from a partition of k to a partition of k + 1 if they differ by a box.

See Figure 1.
Some combinatorial facts: (without proof)

(1) The representations of Sk are indexed by the partitions on level k.
(2) The basis for the module corresponding to a partition λ is indexed by downward-moving paths

from ∅ to λ.
(3) The representation is encoded combinatorially as well. Define the content of a box b in row i

and column j of a partition as

c(b) = j − i, the diagonal number of b.

Label each edge in the diagram by the content of the box added. The matrix entries for the
transposition (i i+ 1) are functions of the values on the edges between levels i− 1, i, and i+ 1.

(4) If Sλ is the module indexed by λ, then

Ind
Sk+1

Sk
(Sλ) =

⊕
µ`k+1
λ−µ

Sµ and ResSkSk−1
(Sλ) =

⊕
µ`k−1
µ−λ

Sµ

(where ResSkSk−1
(Sλ) means forget the action of elements not in Sk−1, and Ind

Sk+1

Sk
(Sλ) =

CSk1 ⊗CSk S
λ).

1.2. Where is this all going? Really, where has this all gone? The symmetric group is so nice
in so many ways, that we’ve chased these combinatorial features down many paths.

One path is the categorization of other reflection groups, both finite and not. That took us
to their deformations, called Hecke algebras, and other spin-off Hecke-like algebras and diagram
algebras.
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Another came from Schur-Weyl duality, which showed that the representation theory of Sk as
k ranges, is in duality with the representation theory of GLn(C). Then, later, people got into
Lie algebras, and saw that the same results held there, and that combinatorics controls most of
complex Lie theory as well. Further, there are lots of important deformations of Lie algebras whose
combinatorics is also controlled combinatorially.

2. Lie algebras

A Lie algebra is a vector space g over F with a bracket [, ] : g⊗g→ g (the tensor product implies
that [, ] is bilinear) satisfying

(a) (skew symmetry) [x, y] = −[y, x], and
(b) (Jacobi identity) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0,

for all x, y, z ∈ g. Note that a Lie algebra is not an algebra (“Lie” is not an adjective), as algebras
A are vector spaces with a product under which A becomes a associative ring with identity.

For the rest of time, our favorite field is F = C.

2.1. Favorite Examples.

(1) Mn(C) = {n× n matrices} is a Lie algebra with bracket [x, y] = xy−yx. This is the Lie algebra
gln. This Lie algebra is associated with, but not the same thing as, general linear group

GLn(C) = {X ∈Mn(C) | X is invertible }.

Alternatively, let V be a vector space. Then

gl(V ) = End(V ), with bracket [x, y] = xy − yx.

(2) For V = Cn, define

sln(C) = sl(V ) = {x ∈ gl(V ) | tr(x) = 0}.

This is associated to, but is not the same thing as, SL(V ) = {X ∈ GL(V ) | det(X) = 1}, the
special linear group.
Example: n = 2. If V = C2, then

sl(V ) = sl2(C) =

{(
a b
c −a

) ∣∣∣ a, b, c ∈ C
}

So dim(sl2) = 3, and has basis

x =

(
0 1
0 0

)
y =

(
0 0
1 0

)
and h =

(
1 0
0 −1

)
.
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The relations are

[h, x] = hx− xh =

(
1 0
0 −1

)(
0 1
0 0

)
−
(

0 1
0 0

)(
1 0
0 −1

)
=

(
0 1
0 0

)
−
(

0 −1
0 0

)
= 2x

[h, y] = hy − yh =

(
1 0
0 −1

)(
0 0
1 0

)
−
(

0 0
1 0

)(
1 0
0 −1

)
=

(
0 0
−1 0

)
−
(

0 0
1 0

)
= −2y

[x, y] = xy − yx =

(
0 1
0 0

)(
0 0
1 0

)
−
(

0 0
1 0

)(
0 1
0 0

)
=

(
1 0
0 0

)
−
(

0 0
0 1

)
= h .

So another definition of sl2 is the Lie algebra generated by x, y, and h, with relations

[x, h] = −2x, [y, h] = 2y, and [x, y] = h.

Since gl2 is only one more dimension, choose the basis x, y, and h as above, and

I =

(
1 0
0 1

)
.

Since I ∈ Z(End(C2)) we have

[x, I] = [y, I] = [h, I] = 0,

So as a Lie algebra gl2
∼= C ⊕ sl2. In general, gln is one more dimension than sln, with extra

basis element I. Since I is central,

gln
∼= C⊕ sln.

The center of a Lie algebra g is the maximal subspace Z ⊆ g such that [Z, g] = 0.
(3) For V = Cn, let 〈, 〉 : V ⊗ V → C be a symmetric form on V , i.e. 〈u, v〉 = 〈v, u〉. Then

son(C) = so(V ) = {x ∈ sl(V ) | 〈xu, v〉+ 〈u, xv〉 = 0 for all u, v ∈ V }.

This is related to SO(V ) = {X ∈ SL(V ) | 〈Xu,Xv〉 = 〈u, v〉 for all u, v ∈ V }, the special
orthogonal group.

(4) For V = Cn with n even, let 〈, 〉 : V ⊗ V → C be a skew symmetric form on V , i.e. 〈u, v〉 =
−〈v, u〉. Then

spn(C) = sp(V ) = {x ∈ sl(V ) | 〈xu, v〉+ 〈u, xv〉 = 0 for all u, v ∈ V }.

This is related to Sp(V ) = {X ∈ SL(V ) | 〈Xu,Xv〉 = 〈u, v〉 for all u, v ∈ V }, the symplectic
group.

(5) For V = Cn, let 〈, 〉 : V × V → C be a Hermitian form on V , i.e. for vector spaces over C,
(i) 〈u, c1v1 + c2v2〉 = c̄1〈u, v1〉+ c̄2〈u, v2〉, and

(ii) 〈c1v1 + c2v2, u〉 = c1〈v1, u〉+ c2〈v2, u〉.
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Then

su(C) = su(V ) = {x ∈ sl(V ) | 〈xu, v〉+ 〈u, xv〉 = 0 for all u, v ∈ V }.

This is related to SU(V ) = {X ∈ SL(V ) | 〈Xu,Xv〉 = 〈u, v〉for all u, v ∈ V }, the special
unitary group.

Notice that most of these algebras have the same structure, only with different types of forms.
The families of algebras sl(V ), so(V ), and sp(V ) are the classical Lie algebras, and the above
representations are their standard representations. They’re named by type, as follow, and are
almost always simple (meaning the only ideals of g are 0 and itself, and [g, g] 6= 0):

Type Ar: slr+1(C) (distinct and simple for r ≥ 1)
Type Br: so2r+1(C) (distinct and simple for r ≥ 2)
Type Cr: sp2r(C) (distinct and simple for r ≥ 3)
Type Dr: so2r(C) (distinct and simple for r ≥ 4)

These are in fact all of the simple complex Lie algebras, except for the exceptional Lie algebras,
E6, E7, E8, F4, and G2.

See exercise 1: Calculate good bases for each of the classical types, and
explore how some of the small types are redundant.

Matrix representations of Lie algebras. Sometimes you can deal with Lie algebras as concrete
matrix Lie algebras, like we did above with. But to make general statements, Lie algebras are
often treated as abstract algebraic structures defined with generators and relations, or using forms
as above. Still, faithful (injective, structure-preserving) representations are integral in studying
Lie algebras. Fortunately, we can always pass from an abstract Lie algebra to a faithful matrix
representation via the adjoint representation:

ad : g→ End(g) x 7→ adx = [x, ·], i.e. adx(y) = [x, y].

Just be careful–this is often not the same as the standard representation in general. For example,
since sl2 is 3-dimensional, ad(sl2) is contained in M3(C), not M2(C). Also, this representation is
faithful on simple Lie algebras, but if g has a non-trivial center, additional tricks must be played
to get a faithful representation.

2.2. Categories, Functors, and the Universal Enveloping Algebra. A category is a set of
objects together with morphisms (functions) between them. Our favorite examples are

Alg = (algebras, algebra homomorphisms)
Lie = (Lie algebras, Lie algebra homomorphisms)

A functor is a map between categories
F : C1 → C2

which associates to each object X ∈ C1 an object F (X) ∈ C2, associates to each morphism f :
X → Y ∈ C1 a morphism F (f) : F (X) → F (Y ) ∈ C2, and preserves both identity morphisms and
composition of morphisms.

There is a functor
L : Alg→ Lie

where if A ∈ Alg, then the underlying vector spaces of A and L(A) are the same, but the product
a · b 7→ [a, b] = ab− ba. There is also a functor

U : Lie→ Alg
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where if g ∈ Lie, then the underlying vector space of Ug is that of the algebra generated by the
elements of g with the relation xy − yx︸ ︷︷ ︸

as in Ug

= [x, y]︸ ︷︷ ︸
as in g

. For example, if [x, y] = 0 in g then xy = yx in

Ug. Ug is said to be the universal enveloping algebra of g.
So now we have functors

L : Alg→ Lie

and

U : Lie→ Alg.

It may be tempting to speculate that these two functors are inverses of some kind. However, it is
easy to see that Ug is rather large as compared to g (often infinite dimensional), whereas L(A) is
not that much smaller than A (especially when A is finite dimensional). However, we do have the
following theorem:

Theorem 2.1. The functor U is left-adjoint to the functor L, i.e.,

HomAlg(Ug, A) ∼= HomLie(g, L(A))

as vector spaces.

3. Representations of g: a first try

A representation of g is a representation of Ug. A Ug-module is a vector space M with a
Ug-action

Ug⊗M →M,

where

(u,m) 7→ um

which is bilinear, (i.e., if c1, c2 ∈ C, then

(c1u1 + c2u2)m = c1u1m+ c2u2m

u(c1m1 + c2m2) = c1um1 + c2um2

for u1, u2 ∈ Ug,m1,m2 ∈M) and

u1(u2m) = (u1u2)m.

Again, whenever we’re using tensor products, we’re just forcing bilinearity. Modules and represen-
tations are inseparable concepts–the module is the vector space and the representation tells g how
to act on that vector space.

3.1. Dual spaces and Hopf algebras: lessons from Group theory. Let G be a finite group
and let g be a finite-dimensional Lie algebra.
Trivial modules. The trivial module for a group G is

Cv with action gv = v for all g ∈ G.

Analogously, the trivial module for a Lie algebra g is

Cv with action xv = 0 for all x ∈ g.
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Tensor products. If M and N are G-modules, then M ⊗N is a G-modules with action given by

g(m⊗ n) = gm⊗ gn with g ∈ G,m ∈M,n ∈ N
and extended linearly. Similarly, if M and N are g-modules, the tensor product M ⊗ N is a
g-module with action given by

x(m⊗ n) = xm⊗ n+m⊗ xn with x ∈ g,m ∈M,n ∈ N,
and extended canonically, e.g.

xy(m⊗ n) = x(xm⊗ n+m⊗ xn) = · · · .
Duals. The dual of a vectors space M is M∗ = Hom(M,C). If M is a module over some algebra
A, then M∗ can also be an A-module, with specific actions from A. If A = CG is a group algebra,
the action is given by

(gϕ)(m) = ϕ(g−1m) with g ∈ G,m ∈M,

(check: ((g1g2) · ϕ)(m) = (g1 · (g2 · ϕ))(m) = (g2 · ϕ)(g−11 m) = . . . ), and extended linearly. For
A = Ug an enveloping algebra, the action is analogously given by

(xϕ)(m) = ϕ(−xm) with x ∈ g,m ∈M,

and extended canonically, e.g.

((xy) · ϕ)(m) = (x · (y · ϕ))(m) = (y · ϕ)(−xm) = ϕ((yx)m).

Check:

((xy) · ϕ)(m) = ((yx+ [x, y]) · ϕ)(m) = ϕ((xy − [x, y])m) = ϕ((yx)m).

There are two canonical morphisms

∪ : M∗ ⊗M → C
(ϕ,m) 7→ ϕ(m)

and
∩ : C → M ⊗M∗

1 7→
∑

bi
bi ⊗ b∗i

where the sum is over any basis {bi} of M and {b∗i } is the dual basis in M∗. Usually, we think
we need an inner product to produce dual bases. But in this context, we just need to calculate
Hom(M,C). Notice that the second canonical map looks a lot like the trace, if you think of the
basis vectors are column vectors with a 1 in the ith place, and dual basis vector are row vectors
with a 1 in the ith place.

To summarize, what we’ve really done here is to define a Hopf algebra:

Definition. A Hopf algebra is an algebra U with three maps

∆ : U → U ⊗ U,

ε : U → C,
S : U → U

such that

(1) If M and N are U -modules, then M ⊗N with action

x(m⊗ n) =
∑
x

x(1)m⊗ x(2)n

where ∆(x) =
∑

x x(1) ⊗ x(2), is a U -module. [Note: this notation we’re using is called
Sweedler notation]

(2) The vector space C = vC, with actions xv1 = ε(x)v1 is a U -module.
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(3) If M is a U -module then M∗ = Hom(M,C) with action

(xϕ)(m) = ϕ(S(x)m)

is a U -module.
(4) The canonical maps

∪ : M∗ ⊗M → C
and

∩ : C→M ⊗M∗

are U -module homomorphisms.

Examples.

(1) If G is a group and U = CG = C{g ∈ G} with
∆(g) = g ⊗ g the coproduct
ε(g) = 1 the counit
S(g) = g−1 the antipode

is a Hopf algebra
(2) If g is a Lie algebra, then U = Ug is a Hopf algebra with

∆(x) = x⊗ 1 + 1⊗ x,
ε(x) = 0
S(x) = −x

for x ∈ g

For a very long time, these were the only two examples! But when I hear “Hopf algebra”, I really
hear “tensor products of modules are still modules”.

3.2. Representations of sl2(C). Recall that sl2 is the C-span of elements x, y, h with bracket

[x, y] = h, [h, x] = 2x, and [h, y] = −2y.

Suppose M is an sl2-module. So h acts on M , and morally, h is just a complex-valued matrix.
So h has at least one eigenvalue and eigenvector. Let v be an eigenvector for h, i.e.

hv = λv for some λ ∈ C.

Further,

h(xv) = (xh+ [h, x])v

= (xλ+ 2x)v

= (λ+ 2)xv.

Do it again:

h(x2v) = (xh+ [h, x])xv

= (x(λ+ 2) + 2x2)v

= (λ+ 4)x2v.

In general,
h(x`)v = (λ+ 2`)(x`v).

In short, x generates more eigenvectors for h.
If M is finite dimensional, then x`v = 0 for some ` ∈ Z+. Let v+ be maximally non-zero, i.e. v+

satisfies
xv+ = 0 and hv+ = µv for some µ ∈ C×.
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If M is simple, then v+ generates M , i.e. Ugv+ = M . But h (basically) fixes v+, and x kills v+.
What about y? Similarly to x,

h(yv+) = (yh+ [h, y])v+ = (yµ− 2y)v+ = (µ− 2)(yv+)

and h(y2v+) = (µ− 4)(y2v+), and so on:

h(y`v+) = (µ− 2`)(y`v+).

But again, M is finite-dimensional, y`v+ = 0 for some ` ∈ Z+. Let d ∈ Z+ be such that ydv+ 6= 0
and yd+1v = 0.

Back to x–what’s the action of x on {v+, yv+, . . . , ydv+}?
xv+ = 0

x(yv+) = (yx+ [x, y])v+ = (0 + h)v+ = µv+

x(y2v+) = (yx+ [x, y])yv+ = y(µv+) + h(yv+) = (2µ− 2)(yv+)

x(y3v+) = (yx+ [x, y])y2v+ = y(2µ− 2)yv+ + h(y2v+) = (3µ− 6)(y2v+)

x(y4v+) = (yx+ [x, y])y3v+ = y(3µ− 6)y2v+ + h(y3v+) = (4µ− 12)(y3v+)

and so on:

x(y`v+) = (`µ− 2

(
`

2

)
)y`−1v+ = (`µ− `(`− 1))y`−1v+ = `(µ− (`− 1))

So if M is simple, then {v+, yv+, . . . , ydv+} is a basis of M , which is also a set of simultaneous
eigenvectors for h.

v+ yv+ y2v+ yd−1v+ ydv+

y

x

y

x

y

x

y

x

y

x· · ·

In summary, the sl2-action is given by:

• h is a diagonal matrix with µ, µ− 2, µ− 4, . . . , µ− 2d on the diagonal,
• y has ones on the sub-diagonal and zeros elsewhere, and
• x has the weights µ, 2µ− 2, 3µ− 6, . . . , d(µ− (d− 1)) on the super-diagonal.

h =


µ

µ− 2
µ− 4

. . .

µ− 2d

 y =


0
1 0

1 0

. . .

1 0

 x =


0 µ

0 2µ− 2
0 3µ− 6

. . . d(µ− (d− 1))
0


But h = [x, y] = xy − yx, so if we multiply these matrices together, we get the relation that

µ− 2d = 0− d(µ− (d− 1))

which is the same as
(d+ 1)µ = d(d− 1 + 2) = d(d+ 1),

and so
µ = d = dim(M)− 1.
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Theorem 3.1. The irreducible finite dimensional sl2 modules L(d) are indexed by d ∈ Z≥0 with
basis {v+, yv+, y2v+, . . . , ydv+} and action

h(y`v+) = (d− 2`)(y`v+), x(y`v+) = `(d+ 1− `)(y`−1v+), y(y`v+) = y`+1v+.

Suppose you’ve got some mystery finite-dimensional sl2-module, M . How do we know what
module we’re talking about? Since h is diagonalizable on each irreducible component, M decom-
poses as a Ch-module into one-dimensional summands. Namely, it has a decomposition into weight
spaces (otherwise known as eigenspaces):

M =
⊕
µ∈C

Mµ where Mµ = {m ∈M | hm = µm}.

We call Mµ the µ-weight space. We know the irreducible summands have weight spaces that are
symmetric and have the same parity. So we can unpack them one at a time, starting with the
longest strings. For example, if the weight spaces of M look like

µ i < −5 −5 −4 −3 −2 −1 0 1 2 3 4 5 5 < i
dim(Mµ) 0 1 0 1 2 1 2 1 2 1 0 1 0

−5 −4 −3 −2 −1 0 1 2 3 4 5

then M ∼= L(5)⊕ 2L(2).
Let M and N be finite-dimensional sl2-modules. Again, Theorem 3.1 tells us that we can pick

weight bases for M and N ,

M = C{m1, . . . ,mr} and N = C{n1, . . . , ns},
with

hmi = h(mi)mi and hnj = h(nj)nj with h(mi), h(nj) ∈ C.
So

h · (mi ⊗ nj) = hmi ⊗ nj +mi ⊗ hnj = (h(mi) + h(nj))(mi ⊗ nj).
So M ⊗N has weight basis

{mi ⊗ nj | i = 1, . . . , r, j = 1, . . . , s}.
Further, if the weight space decompositions of M and N are

M =
⊕
α

Mα and N =
⊕
β

Nβ,

then the weight space decomposition of M ⊗N is

M ⊗N =
⊕
α,β

(Mα ⊗Nβ), where (M ⊗N)γ =
⊕
α,β

α+β=γ

(Mα ⊗Nβ). (3.1)

For example, since the weight spaces of M = L(2) and N = L(1) are given by

M = M−2 ⊕M0 ⊕M2 and N = N−1 ⊕N1,

the weight space decomposition of L(2)⊗ L(1) is

−5 −4 −3 −2 −1 0 1 2 3 4 5

and so L(2)⊗ L(1) ∼= L(3)⊕ L(1). For a general decomposition, see homework.
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Example. For any d > 0, L(d)⊗L(1) = L(d+ 1)⊕L(d− 1). So the dimension of L(a) in L(1)⊗k

is given by the number of downward-moving paths from L(1) on level on, to L(a) on level k in the
lattice

L(1)

L(0) L(2)

L(1) L(3)

L(0) L(2) L(4)

L(1) L(3) L(5)

...
...

...

k = 1:

k = 2:

k = 3:

k = 4:

k = 5:

∅

∅

...
...

...

See exercise 2: Play around with some sl2-modules.

Where we’re headed: This characterization was pretty nice. It makes us feel like sl2 was special,
and made characterizing its representation theory easy. But actually, there’s a much broader class of
Lie algebras (finite dimensional complex semisimple Lie algebras) which inherits its representation
theory all from sl2. We’ll see that this class has lots of sl2’s as subalgebras, and how we can
construct their representation theory by pasting strings of weight spaces together.

Remark 3.2. If we remove the requirement that M be finite-dimensional, a couple of things can
happen.

(1) Suppose M has a non-zero element v+ with xv+ = 0 and hv+ = µv+ for some µ ∈ C (we
call v+ primitive). Then M is simple if and only if it is generated by v+, and we still call v+

a highest weight vector. But we showed that M is finite-dimensional if and only if µ ∈ Z≥0.
So there are lots of simple highest weight modules that are not finite-dimensional. These
still have reasonable tensor product rules and are reasonable to identify.

(2) If M doesn’t have a primitive element but h still has an eigenvector v with weight λ, then
{v, y`v, x`v | ` ∈ Z0} form a weight basis with weights amongst λ+ Z. These are trickier.

4. Finite dimensional complex semisimple Lie algebras

The most common phrase to all of my research is

“Let g be a finite dimensional complex semisimple Lie algebra.”

It’s a powerful phrase, with a lot of content, so let’s unwind. It means

(∗) g is a finite dimensional vector space,
(∗) g is a vector space over C,
(∗) g is a Lie algebra, and
(∗) g is semisimple.

What’s semisimple?
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Definition 1: semisimple Lie algebras decompose into simple pieces. An ideal of g is a
subspace a such that if x ∈ g, a ∈ a, then [x, a] ∈ a. A simple Lie algebra is a Lie algebra with no
non-trivial proper ideals and [g, g] 6= 0. A Lie algebra g is semisimple if it is a direct sum of simple
Lie algebras,

g = g1 ⊕ g2 ⊕ · · · ⊕ g`

as Lie algebras. A Lie algebra g is reductive if it is a direct sum of simple and abelian Lie algebras.
Definition 2: semisimple Lie algebras let their modules decompose into simple pieces.
A g-module is simple if it has no non-trivial proper submodules. A g-module M is semisimple if
M is a direct sum of simple g-modules:

M ∼= M1 ⊕ · · · ⊕M`

as g-modules. A Lie algebra g is semisimple if it has trivial center and all of the finite dimensional
g-modules are semisimple.

Are these two the same? Well, first, g is a g-module, so one is a special case of two. But in
some sense, all g-modules are controlled by g, i.e. g and {g-modules} are the same data. There
are reconstruction theorems explaining how to “reconstruct” g only from information about the
category of g-modules. So yes!

4.1. Forms: symmetric, bilinear, invariant, and non-degenerate. A symmetric bilinear
form is a map

〈, 〉 : M ⊗M → C
such that

〈x, y〉 = 〈y, x〉
for x, y ∈M . Given such a form, notice that

M →M∗ via m 7→ 〈m, ·〉
is a vector space homomorphism.

Let U be a Hopf algebra, and M be a U -module. An invariant symmetric bilinear form on M
is a map 〈, 〉 : M ×M → C such that

〈xm1,m2〉 = 〈m1, S(x)m2〉, for x ∈ U,m1,m2 ∈M.

If G is a group, this means

〈gm, n〉 = 〈m, g−1n〉 i.e. 〈gm, gn〉 = 〈m,n〉.
The invariant part means is that

M →M∗ via m 7→ 〈m, ·〉
is a U -module homomorphism! On the level of vector spaces, the symmetric form doesn’t know
anything about multiplications in U , but an invariant form does.

Now let U = Ug. Notice g is a g-module under the adjoint action:

x · y = adx(y) = [x, y].

An invariant form for a Lie algebra is an ad-invariant form, meaning 〈, 〉 : g⊗ g→ C satisfies

〈adx(y), z〉 = −〈y, adx(z)〉 i.e. 〈[x, y], z〉 = −〈y, [x, z]〉.
We say 〈, 〉 is nondegenerate if for all x ∈ g,

〈x, g〉 6= 0.
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Notice that rad〈, 〉 = {x ∈ g | 〈x, g〉 = 0} is an ideal of g, so if g is simple, rad〈, 〉 is zero or the
whole thing. So nondegenerate forms give us an isomorphism

g→ g∗

x 7→ 〈x, ·〉. (4.1)

In particular, on each simple piece, the only endomorphisms are constant multiples of the identity,
so they’re almost unique.

Every finite-dimensional semisimple complex Lie algebra has a canonical nondegenerate invariant
bilinear symmetric (NIBS ) form, the Killing form, given by

〈x, y〉 = Tr(adxady).

Since (4.1) is an isomorphism, any other NIBS form is a constant multiple of the Killing form.
Other forms can be gotten by taking a faithful representation ρ : g→ gl(V ) and setting

〈x, y〉 = Tr(ρ(x)ρ(y)).

A convenient choice is often the standard representation.
What if g isn’t semisimple? Reductive is actually good enough. In general, take g = g0 ⊕ a
where g0 is semisimple and a is abelian. Let ρ be the adjoint representation on g0 and the faithful
diagonal representation on a; then the trace form on ρ is NIBS. Often there’s something more
computationally easy though.

Example. Let g = gln(C) = {n× n matrices with entries in C} with bracket

[x, y] = xy − yx.
Unfortunately, gln is not simple or semisimple (it has a non-trivial center), but it is reductive,
meaning that it is the sum of a semisimple Lie algebra and an abelian Lie algebra. The Killing form
is degenerate, but we can build another symmetric invariant bilinear form which is nondegenerate
as follows. One basis of gln is {Eij | 1 ≤ i, j,≤ n} where Eij has a 1 in the (i, j) entry and 0’s
elsewhere. This gives gln a natural action on V = C{v1, . . . , vn}. So define 〈, 〉 : gln × gln → C by

〈x, y〉 = Tr(xV yV )

where xV is the matrix of x acting on V . The dual basis with respect to 〈〉 is E∗ij = Eji. Ugln is
generated by the symbols Eij. So EijEij 6= 0 in Ugln.

4.2. Jordan-Chevalley decomposition, and lots of sl2’s. Way back when we looked at the
representations of sl2, I claimed that we would be able to past together strings of sl2-representations
to build the representation theory of other semisimple complex Lie algebras. That’s because they
contain a bunch of copies of sl2! How?

Suppose V is a finite-dimensional vector space. If F is algebraically closed, every endomorphism
x ∈ End(V ) can be put into Jordan canonical form: the matrix form (which amounts to a good
choice of basis) which consists of blocks corresponding to the eigenvalues λ of x, with λ’s along the
diagonal and 1’s on the super-diagonal. So each block looks like

λ 1 0
λ 1

. . .

1
0 λ

 = λI︸︷︷︸
s

+


0 1 0

0 1
. . .

1
0 0


︸ ︷︷ ︸

n
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The first summand s is semisimple, meaning the same thing as diagonalizable, i.e. that the roots
of its minimal polynomial are distinct. The second summand n is nilpotent, meaning n` = 0 for
some ` ∈ Z≥0. Moreover, s is central, meaning that ns = sn. Now, block-by-block, perform this
decomposition, so that

x = xs + xn where
xs consists of eigenvalues on the diagonal and 0’s elsewhere, and
xn consists of the 1’s above the diagonal and 0’s elsewhere.

We call xs the semisimple part (since it’s semisimple) and xn the nilpotent part (since xn is indeed
nilpotent). Since xs and xn commute block-by-block, xsxn = xnxs. Note that these properties
(semisimple, nilpotent, and commuting) are not basis dependent–it’s just that this is the easiest
way to see what we call the (additive) Jordan-Chevalley decomposition:

For every x ∈ End(V ), then there exist unique xs semisimple and xn nilpotent,
with x = xs + xn and [xs, xn] = 0.

(see [Hum, §4.2] or [Ser, §I.5]). It can further be shown that any endomorphism commuting with
x also commutes with xs and xn.

In a Lie algebra, an element x is nilpotent (resp. semisimple) if adx is nilpotent (resp. semisimple).

Theorem 4.1 (Jasobson-Morozov). If x is a nilpotent element of a finite-dimensional complex
semisimple Lie algebra g, then there exist nilpotent y and semisimple h in g such that

[x, y] = h, [h, x] = 2x, [h, y] = −2y.

This choice is relatively unique (with some changes in constants). We call {x, y, h} an sl2 triple.

Proof. (sketch) Proof starts with using the Killing form to show the existence of an h, then uses
Jordan-Chevalley to get a semisimple h. That semisimple h breaks g into weight spaces, and derives
a y that completes the triple.

Later, we’ll see how to produce these more concretely. �

4.3. Cartan subalgebras and roots. Let g be a finite-dimensional complex semisimple Lie alge-
bra. A maximal abelian subalgebra h consisting of semisimple elements is called a Cartan subalgebra.

Example. For example, sln has basis

{xij = Eij , yij = Eji, h` = E`` − E`+1,`+1 | 1 ≤ i < j ≤ n, 1 ≤ ` ≤ n− 1}.

Our favorite Cartan subalgebra is

h = C{h` | ` = 1, . . . , n− 1}.

Example. With a little bit of Jordan canonical form analysis, you showed on the homework that
each of the Lie algebras of type Ar, Br, Cr, and Dr all have Cartan subalgebras of dimension r.

Some facts about Cartans.

1. Cartan subalgebras are generated by taking a (nice) semisimple element h and taking

h = {g ∈ g | adh(g) = 0}

2. Cartan subalgebras exist and are unique up to inner automorphisms.
3. The centralizer of h is h.
4. All elements of h are semisimple.
5. The restriction of the Killing form to h is non-degenerate.
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For a quick tour, see [Ser, Ch. III]. The second property tells us that the rank of a semisimple Lie
algebra, defined by

rank(g) = dim(h)

is well-defined.

The weights of a Cartan h is the dual set

h∗ = {µ : h→ C}.

As before, since h consists of semisimple elements, any finite-dimensional g module M decomposes
into h weight spaces

M =
⊕
µ

Mµ where Mµ = {m ∈M | hm = µ(h)m}.

In particular, h acts on g by the adjoint action, and with respect to this action, g decomposes into
weight spaces as

g = h⊕

(⊕
α

gα

)
where gα = {x ∈ g | adh(x) = α(h)x}.

The set of weights

R = {α ∈ h∗ | α 6= 0, gα 6= 0}
is called the set of roots of g.

Example. For example, with h as above, and i 6= j,

[h`, Eij ] = (E`` − E`+1,`+1)Eij − Eij(E`` − E`+1,`+1)

= (δ`,i − δ`+1,i − δ`,j + δ`+1,j)Eij

So as a h-module,

sln ∼= h⊕

⊕
αi,j
i 6=j

gαi,j

 = h⊕

⊕
αi,j
i<j

gαi,j ⊕ g−αi,j


where

αi,j(h`) = δ`,i − δ`+1,i − δ`,j + δ`+1,j = −αj,i(h`)
(extended linearly) and

gαij = C{xij} and g−αij = C{yij}.

Define

εi : h→ C for i = 1, . . . , n

h 7→ tr(Eiih)

(i.e. it picks the ith diagonal element). So

εi(h`) = δi,` − δi,`+1 and αij = εi − εj .

So the set of roots for sln is

R = {±(εi − εj) | 1 ≤ i < j ≤ n}.
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Let 〈, 〉 be a symmetric invariant nondegenerate bilinear form on g. Then the map

h −→ h∗

h 7→ 〈h, ·〉
hµ 7→ µ

is an isomorphism, (4.2)

where hµ is the unique element of h such that

〈hµ, h〉 = µ(h) for all h ∈ h.

Abusing notation, define a form 〈, 〉 : h∗ ⊗ h∗ → C by

〈λ, µ〉 = 〈hλ, hµ〉.
Then 〈, 〉 is also symmetric, bilinear, and non-degenerate on h∗, and

〈λ, µ〉 = µ(hλ) = λ(hµ).

Example. Let 〈, 〉 be trace form on the standard (defining) representation, and

hij = Eii − Ejj and αij = εi − εj
as before. Then hαij = hij. Further, i < j, we have

〈hij , hk`〉 =


2 i = k and j = `

1 i = l or j = `

−1 i = ` or j = k

0 otherwise.

So

〈εi − εj , εk − ε`〉 =


2 i = k and j = `

1 i = l or j = `

−1 i = ` or j = k

0 otherwise.

This is concurrent with {ε1, . . . , εn} being an orthonormal basis for Cn, a fact which we will exploit
later.

You have to be careful about the choices you make, though, when drawing these correspondences.
As you’ll see on the homework, if (, ) is the Killing form, then

(a, b) = 2n〈a, b〉.
This can affect choices in a couple of ways, but with εi as above, {ε1, . . . , εn} is not an orthonormal
basis with respect to (, ).

4.3.1. Some facts about roots. Let 〈, 〉 be a NIBS form on g.

1. The adjoint action of gα sends gβ to gα+β:

for xα ∈ gα, adxα : gβ → gα+β.

In particular, [gα, g−α] ⊆ h.

Proof. For h ∈ h, xα ∈ gα, xβ ∈ gβ, we have

[h, [xα, xβ]] = −[xα, [xβ, h]]− [xβ, [h, xα]]

= −[xα,−β(h)xβ]− [xβ, α(h)xα]

= (α(h) + β(h))[xα, xβ] = (α+ β)(h)[xα, xβ].



MATH 128, SPRING 2014 21

�

2. If xα ∈ gα with α 6= 0, then xα is nilpotent.

Proof. An element x of a Lie algebra is nilpotent if adx is nilpotent. But

ad`xα : gβ → gβ+`α.

Since g is finite-dimensional, then for all β ∈ h∗, gβ+`α = 0 for some ` ∈ Z>0. �

3. If α 6= −β, then 〈gα, gβ〉 = 0.

Proof. Let h ∈ h satisfy (α+ β)(h) 6= 0. Then

α(h)〈xα, xβ〉 = 〈[h, xα], xβ〉
= −〈xα, [h, xβ]〉
= −β(h)〈xα, xβ〉.

So 〈xα, xβ〉 = 0. �

4. The set of roots R is symmetric, i.e. if α ∈ R, then −α ∈ R.

Proof. If α ∈ R, but g−α = 0, then 〈gα, g〉 = 0 which contradicts the nondegenerance of the
Killing form. �

Since R is symmetric, we can make a choice of the positive and negative roots

R = R+ tR− where R− = {−α | α ∈ R+}
For example, a standard choice for sln is

R+ = {εi − εj | i < j}.

5. The set {hα | α ∈ R} spans h, and so R spans h∗.

Proof. If it doesn’t, then there’s some h ∈ h such that α(h) = 0 for all α ∈ R. This means that
[h, gα] = 0 for all α ∈ R, and so h ∈ Z(g) = 0, which is a contradiction. �

This says that we can choose a basis B for h∗ from R, of size r = rank(g). More so, once
we’ve chosen R+, we can choose a basis from R+. We’ll see further that we can make this choice
such that every root in R+ is a positive integral combination of elements of B. Once this is
done, we call B a base for R , and the elements of B are called the simple roots.

For example, a standard choice for sln is

B = {βi = εi − εi+1 | i = 1, . . . , n− 1}.

6. If xα ∈ gα and yα ∈ g−α then [xα, yα] = 〈xα, yα〉hα with hα as in (4.2). So [gα, g−α] = Chα.

Proof. For any h ∈ h,

〈h, [xα, yα]〉 = 〈[h, xα], yα〉 = α(h)〈xα, yα〉
= 〈h, hα〉〈xα, yα〉 = 〈h, 〈xα, yα〉hα〉,

showing
〈h, [xα, yα]− 〈xα, yα〉hα〉 = 0.

�



22 MATH 128, SPRING 2014

7. For all α ∈ R, 〈hα, hα〉 6= 0.

Proof. (Show if 〈hα, hα〉 = 0, then hα ∈ Z(g), which is a contradiction.) �

8. Every non-zero xα ∈ gα is part of an sl2-triple,

sα = 〈xα, yα, hα∨〉

with

yα ∈ g−α and hα∨ =
2hα
〈hα, hα〉

.

Proof. Since 〈hα, hα〉 6= 0, it’s possible to choose a yα ∈ g−α such that

〈xα, yα〉 =
2

〈hα, hα〉
so that [xα, yα] =

2hα
〈hα, hα〉

= hα∨ .

Moreover,

[hα∨ , xα] =
2

〈hα, hα〉
[hα, xα] = 2

α(hα)

α(hα)
xα = 2xα.

Similarly, [hα∨ , yα] = −2yα. �

9. If α ∈ R and cα ∈ R, then c = ±1.

Proof. Consider the sα-module V spanned by h and {gcα | c ∈ C×}. The weights of hα∨ on V
are given by

0 and cα(hα) = c
2

α(hα)
α(hα) = 2c

(for non-zero c such that gcα 6= 0). But sα ∼= sl2, so these weights are all integers! So the only
nonempty weight spaces gcα are where c ∈ 1

2Z.
Now since the image of α : h→ C is one-dimensional, its kernel has co-dimension 1, so is equal

to the orthogonal complement of Chα–and most importantly, sα acts trivially on this kernel.
Next, sα acts simply on itself. So the only subfactors of V with even sα weights are sα itself,
and the one-dimensional modules in ker(α). In particular, since hα∨ acts on gα by 2, gcα = 0
for all c ∈ Z>1. Further, if 1

2α ∈ R, this implies that α /∈ R, which is a contradiction.
�

10. For α 6= 0, gα is one-dimensional.

Proof. A direct consequence of the previous proof is that as vector spaces, sα is spanned by
Chα, gα, and g−α. �

So far, we’ve learned that all semisimple finite-dimensional Lie algebras g look a whole lot
like sln. Namely, they admit a triangular decomposition of g, given by

g = n− ⊕ h⊕ n+ where n± =
⊕
α∈R±

gα.

Notice that while they are not ideals,

n−, h, n+, and b = h⊕ n+
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are all subalgebras (b is called the Borel subalgebra). Here,

n− = behave like strictly lower triangular matrices,

h = behave like diagonal matrices,

n− = behave like strictly upper triangular matrices.

On a basis of g which respects the triangular decomposition decomposition, h are diagonal
matrices with diagonal entries{

0 on basis elements in h, and

α(h) on basis elements in gα.

In particular, since gα is one-dimensional, if (, ) is the Killing form, then for any a, b ∈ h,

(a, b) =
∑
α∈R

α(a)α(b) (4.3)

Also, a triangular decomposition of g also gives the enveloping algebra a triangular decom-
position

Ug = U− ⊗ U0 ⊗ U+ with U± = Un± and U0 = Uh.

The Poincaré-Birkhoff-Witt theorem tells us that if I put an ordering on R+, there are bases ∏
α∈R+

ymαα

∣∣∣ yα ∈ g−α,mα ∈ Z≥0

 of U−, (4.4)

∏
β∈B

h
mβ
β

∣∣∣ mβ ∈ Z≥0

 of U0, and (4.5)

 ∏
α∈R+

xmαα

∣∣∣ xα ∈ gα,mα ∈ Z≥0

 of U+. (4.6)

Therefore, Ug has basis consisting of elements

ym1
α1
· · · ym`α` h

m′1
β1
· · ·hm

′
r

βr
x
m′′1
α1 · · · y

m′′`
α`

where R+ = {α1, . . . , α`} and B = {β1, . . . , βr}.
11. For α, β ∈ R,

(a) β(hα∨) ∈ Z,
(b) β − β(hα∨)α ∈ R, and
(c) if β 6= ±α, and a and b are the largest non-negative integers such that

β − aα ∈ R and β + bα ∈ R,

then β + iα ∈ R for all −a ≤ i ≤ b and β(hα∨) = a− b.

Proof. These are consequences of V =
∑

i gβ+iα being an irreducible sα-module. See homework.
�
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This last bit says that there’s symmetry in strings of roots. Rewriting these properties in
terms of just roots,

β(hα∨) = 2
〈α, β〉
〈α, α〉

so β − 2
〈α, β〉
〈α, α〉

α ∈ R.

Further, if sα is defined on the operator on R that acts by

sα(β) = β − 2
〈α, β〉
〈α, α〉

α, (4.7)

then since 〈
α, β − 2

〈α, β〉
〈α, α〉

α

〉
= 〈α, β〉 − 2

〈α, β〉
〈α, α〉

〈α, α〉 = −〈α, β〉

sα(β)2(β) = sα

(
β − 2

〈α, β〉
〈α, α〉

α

)
= β − 2

〈α, β〉
〈α, α〉

α+ 2
〈α, β〉
〈α, α〉

= β.

So s2α = 1. Geometrically, sα is a reflection across the hyperplane in h∗ given by hα = {λ ∈
h∗ | 〈α, λ〉 = 0.

12. (Rationality) Let B ⊆ R is a basis for R, and assume 〈, 〉 is a positive rational multiple of the
Killing form on each simple piece of g.
(a) R ⊆ QB.
(b) For any α, β ∈ R, 〈α, β〉 ∈ Q.
(c) The restriction of 〈, 〉 to

h∗Q = QB and h∗R = R⊗Q h∗Q

is positive definite. Therefore h∗Q and h∗R (and thus hQ and hR) are Euclidean spaces with

inner product 〈, 〉.

Proof. For (a), let α =
∑

β∈B cββ ∈ R. Since B is a basis, there is some γ ∈ B for which

α(hγ∨) 6= 0. With such a γ,

α(hγ∨) = 2
〈α, γ〉
〈γ, γ〉

=
∑
β∈B

cβ2
〈β, γ〉
〈γ, γ〉

=
∑
β∈B

cββ(hγ∨).

So since α(hα′) ∈ Z for any α, α′ ∈ R, this says the linear combination of integers with coefficients
cβ is an integer. Since this is true for any α, γ, we have cβ ∈ Q for each β.

For (b), recall that every NIBS form is a constant multiple of the Killing form on each simple
piece of g; let rα ∈ Q be such that (4.3) gives

〈a, b〉 =
∑
α∈R

rαα(a)α(b).

Then for any to λ, µ ∈ h∗, we have

〈λ, µ〉 = 〈hλ, hµ〉 =
∑
α∈R

rαα(hλ)α(hµ) =
∑
α∈R

rα〈α, λ〉〈α, µ〉.
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In particular, by 11(a), for any β ∈ R,

1

〈β, β〉
=
〈β, β〉
〈β, β〉2

=
∑
α∈R

rα
〈α, β〉2

〈β, β〉2
=
∑
α∈R

rα
4

(
2
〈α, β〉
〈β, β〉

)2

∈ Q.

So 〈β, β〉 ∈ Q, and so 〈α, β〉 ∈ Q.
For (c), for any λ ∈ h∗Q (resp. hR), it follows similarly that 〈λ, λ〉 is the sum of squares of

rational numbers (resp. real), and is therefore positive unless λ = 0. �

This last part says that sα acts not just on R, but on h∗R by the reflection across the hyperplane
hα = {λ ∈ h∗R | 〈λ, α〉 = 0}. Note that sα = s−α and hα = h−α, so we only need to consider
reflections associated to positive roots. The group W generated by {sα | α ∈ R+} is called the
Weyl group associated to g.

Example. Roots and weights of sl3 Consider g = sl3, and let 〈, 〉 be the trace form on the standard
representation. Then

h =


a 0 0

0 b 0
0 0 −(a+ b)

 = C

h1 = hβ1 =

1 0 0
0 −1 0
0 0 0

 , h2 = hβ2 =

0 0 0
0 1 0
0 0 −1


with β1 = ε1 − ε2 and β2 = ε2 − ε3. The roots of sl3 are

{εi − εj | i 6= j}

with

gεi−εj = CEij .
Then we can choose B = {β1, β2} to be the simple roots, and

R+ = {εi − εj | 1 ≤ i < j ≤ 3} = {β1, β2, β1 + β2},

so that R+ has the nice feature that it’s made up of positive integral combinations of elements of
B.

The rest of the triangular decomposition is given by

n+ =
∑
α∈R+

gα, where gα = Cxα with
xβ1 = E1,2

xβ2 = E2,3

xβ1+β2 = E1,3

(check: [xβ1 , xβ2 ] = xβ1+β2) and

n− =
∑
α∈R−

gα, where gα = Cyα with yα = xTα .

For each of α ∈ R+, notice that 〈α, α〉 = 2, so that hα = hα∨. Thus, we can check that sα =
〈xα, yα, hα〉 is the sl2 triple associated with α.

Although before we thought of {ε1, ε2, ε3} as an orthonormal basis for R3,

hR = R{β1 = ε1 − ε2, β2 = ε2 − ε3} = R2

is two dimensional. In particular,

β1∠β2 = arccos
〈ε1 − ε2, ε2 − ε3〉√

〈ε1 − ε2, ε1 − ε2〉〈ε2 − ε3, ε2 − ε3〉
= arccos

−1

2
=

2π

3
.
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So we can can plot R as

β1

β2

-β1

−β2

β1 + β2

−(β1 + β2)

Throwing in the hyperplanes hβ1, hβ2, and hβ1+β2, we have

hβ1

hβ2hβ1+β2

β1

β2

-β1

−β2

β1 + β2

−(β1 + β2)

Notice that the positive roots α define a positive side of each hyperplane, given by the side that α
sits on. We call the fundamental chamber the set of points which lie on the positive side of every
hyperplane hα.
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Let s1 = sβ1 and s2 = sβ2. Then for any λ ∈ h∗R (not laying on a hyperplane), the W -orbit of λ
looks like

hβ1

hβ2hβ1+β2 λ

s2(λ)

s1(λ)

s1s2(λ)

s2s1(λ)λs1s2s1(λ)

In particular, Wα = R for any α ∈ R. Also, it’s now easy to see that

W = 〈sα | α ∈ B〉 = 〈s1, s2 | s21 = s22 = 1, s1s2s1 = s2s1s2〉 ∼= S3.

In general, if sα and sβ are reflections across hyperplanes that have an angle of 2π/3 between them,
they’ll satisfy sαsβsα = sβsαsβ. Reflection across perpendicular hyperplanes commute.

5. Highest weight representations

Fix a finite-dimensional complex semisimple Lie algebra g and a NIBS form 〈, 〉.

Remark 5.1. I said before that we’ll be able to find a really nice basis of roots for h∗. Namely,
there exists a basis B comprised of linearly independent roots, such that every element of R is
either a non-negative or a non-positive integral combination of elements of B. Any such basis is
called a base. The elements of the base are called the rootssimple roots. More, this says that we
can choose R+ so that for all α ∈ R+, α =

∑
β∈B zββ such that zβ ∈ Z≥0. We’re going to put off

the proof of the existence of a base for just a little longer (see Proposition 6.2), and assume it for
now.

Taking Remark 5.1 for granted, we can classify the finite-dimensional representation theory of g.
Since h consists of pairwise commuting semisimple elements, their action is simultaneously di-

agonalizable on any representation. So just like the adjoint action of g on itself, if V is a simple
finite-dimensional g-module, V decomposes into weight spaces for h:

V =
⊕
λ∈h∗

Vλ where Vλ = {v ∈ V | hv = λ(h)v}.

Further, for any h ∈ h, v ∈ Vλ and x ∈ gα 6= 0, we have

hxv = (xh+ [h, x])v = (λ(h) + α(h))xv, and so hx`v = (λ(h) + `α(h))x`v. (5.1)

Similarly, for αi ∈ R (not necessarily distinct) and xi ∈ gαi ,

hx1 · · ·xmv =

(
λ(h) +

m∑
i=1

αi(h)

)
x1 · · ·xmv. (5.2)
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The difference between the general case and the case of sl2 in Section 3.2 is that there are multiple
positive root spaces for most g. So to force the existence of a highest weight vector, we need to find
a basis of h for which for every basis element h,

∑m
i=1 αi(h) weakly increases as x1 · · ·xm acquires

more terms from positive root spaces. If B is a base for R as in Remark 5.1, then {hβ | β ∈ B} is
one basis of h. However, this will not do the trick in general–what we need is basis of h∗ such that

for any α ∈ R+, 〈α, ω〉 ≥ 0 for all basis elements ω (5.3)

so that α(hω) ≥ 0 for all basis elements hω of h.
Fix a base B = {β1, . . . , βr} and R+ = R ∩ Z≥0B. Let Ω = {ω1, . . . , ωr} be a set of roots

satisfying
〈ωi, βj〉 = ciδi,j for βj ∈ B, with ci ∈ R>0.

Since 〈, 〉 is NIBS, {ω1, . . . , ωr} is unique up to choice of the ci’s. Then Remark 5.1 ensures (5.3).

Example. In sl4, if the simple roots are given by

β1 = ε1 − ε2, β2 = ε2 − ε3, β3 = ε3 − ε4,
then if ν = 1

4(ε1 + ε2 + ε3 + ε4), we have

ω1 = c1(ε1 + ν), ω2 = c2(ε1 + ε2 + 2ν), ω3 = c3(ε1 + ε2 + ε3 + ν).

Now if xα ∈ gα for α ∈ R+, ω ∈ Ω, and vλ a weight vector of weight λ, the (5.2) tells us that xα
pushes the eigenvalue of hω on vλ in the positive direction along the number line λ(hω) + R. Since
V is finite-dimensional, only finitely many of the resulting weight vectors can be non-zero. So there
exists some v+ ∈ V , called the highest weight vector, which satisfies

hv+ = µ(h)v+ for some µ ∈ h∗ and xv+ = 0 for all x ∈ n+.

If V is simple, then any non-zero element of V generates V , and so V = Ugv+.

Lemma 5.2. Let V be a finite-dimensional simple g-module.

(a) Then there is a highest weight vector v+ ∈ V satisfying

hv+ = µ(h)v+ for some µ ∈ h∗, n+v+ = 0, and Un−v+ = V.

(b) V is spanned by weight vectors

{ym1
α1
· · · ym`α` v

+ | mi ∈ Z≥0} with
R+ = {α1, . . . , α`}, and
yα ∈ g−α,

and

hyv+ =

(
µ−

∑
i

miαi

)
(h)yv+ for y = ym1

α1
· · · ym`α` .

(c) The weight spaces of V are

Vλ with λ = µ−
r∑
i=1

`iβi, `i ∈ Z≥0,

where B = {β1, . . . , βr} is a base for the roots of g. Further, dim(Vµ) = 1.

Proof. (a) We have already shown that every such V has a vector satisfying n+v+ = 0 and hv+ =
µ(h)v+ for some µ ∈ h∗. Recall that Poincaré-Birkhoff-Witt (4.4) says

Un− = C{ym1
α1
· · · ym`α` | mi ∈ Z≥0} with

R+ = {α1, . . . , α`}, and
yα ∈ g−α.

So it remains to show that for any x ∈ n+, h ∈ h, and y a monomial in Un−,
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(i) hyv+ = ν(h)yv+ for some ν ∈ h∗, and
(ii) xyv+ ∈ Un−v+.

Both can be done inductively on the degree of y. So let y = yαy
′ be a monomial in Un−.

For (i), assume inductively that y′v+ is a weight vector with weight λ. Then

h(yv+) = (yαh+ [h, yα])(y′v+) = (λ(h)yα − α(h)yα)y′v+ = (λ− α)(h)yv+. (5.4)

So each yα pushes the weight of v+ in the −α direction.
For (ii), assume inductively that n+y′v+ ⊆ Un−v+, and consider

xβ(yv+) = (xβyα)(y′v+) = yαxβ(y′v+) + [xβ, yα](y′v+).

By the induction hypothesis, if xβ ∈ gβ for β ∈ R+, then xβ(y′v+) ∈ Un−v+. And since
[xβ, yα] ⊆ gβ−α, then either

β − α ∈ R− so that [xβ, yα] ∈ n−,

β − α = 0 so that [xβ, yα] ∈ h and so [xβ, yα](y′v+) = cy′v+, or

β − α ∈ R+ so that [xβ, yα] ∈ n+.

In all three cases, the desired result follows directly or inductively.
(b) Poincaré-Birkhoff-Witt and part (a) shows that {ym1

α1
· · · ym`α` | mi ∈ Z≥0} forms a spanning set.

The fact that these are weight vectors of the weight (µ−
∑

imiαi) follows inductively from
(5.4).

(c) Since R+ are all positive integral linear combinations over B, we have
∑

jmjαj =
∑r

i=1 `iβi.
So all of the weights of V differ from µ by integral linear combinations of the simple roots.
Further, since

∑r
i=1 `iβi = 0 if and only if y = 1, dim(Vµ) = 1.

�

In general, we say an element v of a g-module V is a primitive element (of weight µ ∈ h∗) if

hv = µ(h)v and n+v = 0.

For the following lemma, no assumptions about V being finite-dimensional or simple are made.

Lemma 5.3. Let V be generated by primitive element vµ of weight µ.

(1) Parts (a)–(c) from Lemma 5.2 hold for V as well.
(2) V is indecomposable, and therefore simple.
(3) There is a unique (up to scaling) primitive element of V .

(4) Two modules V (µ) and V (λ) generated by primitive elements vµ and vλ, respectively, are iso-
morphic if and only if µ = λ.

Proof. (1) Everything in the proof following Lemma 5.2 depended only on the existence of a prim-
itive element (whose existence was gleamed from V ’s irreducibility).

(2) From part (c) of Lemma 5.2, dim(Vµ) = 1. Now suppose V = A⊕B as an g-module. Then

1 = dim(Vµ) = dim(Aµ) + dim(Bµ).

So either vµ ∈ Aµ, in which case V = Ugv ⊆ A ⊆ V , or vµ ∈ B, in which case V = Ugvµ ⊆
B ⊆ V . Both are contradictions.

(3) Let vλ be a second primitive element of V with weight λ. By part (c) of Lemma 5.2,

λ = µ−
r∑
i=1

`iβi and µ = λ−
r∑
i=1

niβi,
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with `i, ni ≥ 0. So `i = −ni, which is only possible if `i = nj = 0. So µ = λ. Further,
dim(Vµ) = 1, so vλ = cvµ.

(4) Part (3) tells us µ = λ is necessary. To show sufficiency, let A,B be generated by primitive va
and vb respectively, both of weight µ, and consider V = A ⊕ B. Since vc = va + vb ∈ V also
has weight µ and is annihilated by n+, it is also a primitive element of V of weight µ. Let C
be the submodule generated by vc. The projections

πA : V → A and πB : V → B

are both g-module homomorphisms. Since πA(vc) = va and πB(vc) = vb, so

A ⊆ πA(C) and B ⊆ πB(C).

But by part (2), C is simple, and so A ∼= πA(C) ∼= C ∼= πB(C) ∼= B.
�

So far, we know that every finite dimensional simple g-module is generated by a primitive element,
and two such modules are isomorphic if and only if they are generated by primitive elements of
the same weight. All that remains is to understand which weights appear as highest weights for
g-modules (e.g. if g = sl2, the highest weights are non-negative integers), and what the structure
of the corresponding highest weight module is (e.g. if g = sl2, the highest weight module of weight
d is the d+ 1-dimensional module satisfying. . . ).

To this end, we’re going to think for a couple paragraphs about the ramifications of the presence
of an isomorphic copy of sl2 associated to each α ∈ R+:

sα = 〈xα, yα, hα∨ | xα ∈ gα, yα ∈ g−α, hα∨ ∈ h〉.

The result of this rambling follows the example below, in Proposition 5.4.
The action of sα means that for each positive root α, not only does yα push the weight of a

weight vector one unit in the −α direction, but V restricts to an sl2 module. This means that the
α string is symmetric around the hyperplane hα, and xα reverses each step made by yα. (Aside:
You might think “wait, I thought the weights of the sl2-modules were integers!”–but it’s ok since
α(hα∨) = 2.) So any weight of V is either an integer or half-integer multiple of α away from the
hyperplane hα. Since every positive root is a positive integer linear combination of simple roots,
we only need consider the simple roots.

More, if v+ has weight µ, µ has to sit to the positive side of each hyperplane hβi (the side
that the positive root lies on), so that µ is in the closure of the fundamental chamber C. If µ is
at a distance of `i||βi|| for some integer or half integer `i, this distance determines the string of
weights in the βi-direction. Multiplicities are a little more complicated, given by recursive formula
of Freudenthal. But we will see that dim(Vλ) = dim(Vσλ) for all σ ∈W the Weyl group associated
to g. In particular, all the extremal weight spaces have dimension 1 (see the picture in the following
example).

Example. Let g = sl3, and V be the highest weight module generated by v+ with hv+ = λv+. Then
the highest weight has to be in the fundamental chamber, in a half-integral number of βi-steps from



MATH 128, SPRING 2014 31

each hβi :

hβ1

hβ2hβ1+β2

hβ1

hβ2hβ1+β2

So picking a highest weight determines all the other weights of V :

hβ1

hβ2hβ1+β2

hβ1

hβ2hβ1+β2

Formalizing this description, we have the following proposition.

Proposition 5.4. Let V be a highest weight module generated by primitive v+ of weight µ.

(a) If V is finite-dimensional, then 〈µ, β∨〉 ∈ Z≥0 for all β ∈ B.
(b) If 〈µ, α∨〉 ∈ Z≥0, then for each α ∈ R+, as a sα-module, V is the sum of finite-dimensional

sα-modules.
(c) The set of weights of V is invariant under the action of W . In particular, there is a bijection

exchanging Vλ and Vsα(λ), and so dim(Vλ) = dim(Vsα(λ)).

Proof. (a) For every α ∈ R+, let sα be the corresponding submodule isomorphic to sl2. Then since
xαv

+ = 0 and hα∨v
+ = 〈α∨, λ〉v+. So if V is finite dimensional, so is Usαv

+, and thus

〈α∨, λ〉 ∈ Z≥0 and Usαv
+ ∼= L(〈α∨, λ〉).

So this necessitates 〈α∨, λ〉 ∈ Z≥0 for all α ∈ R+. In proving Remark 5.1, we will show as a
corollary (see Corollary 6.3) that if B is a base for R, then B∨ = {β∨ | β ∈ B is a base for
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R∨ = {α∨ | α ∈ R} (where the definition is as you would guess, even if R∨ isn’t a set of roots).
So it suffices to require that 〈β∨, λ〉 ∈ Z≥0 for all β ∈ B.

(b) Let V̂ be the set of finite dimensional sα-modules in V , and let V α =
∑

M∈V̂ M. Since Usαv
+ has

highest weight 〈µ, α∨〉 ∈ Z≥0, Usαv
+ ∼= L(〈µ, α∨〉) is finite-dimensional, and so Usαv

+ ⊆ V α.

So V α is non-empty. Further, for M ∈ V̂ ,
∑

γ∈R xγM is finite dimensional, and is stable under

the action of sα (for example,

xαxγM = xγxαM + [xα, xγ ]M ⊆ xγM + xα+γM ⊆
∑
γ∈R

xγM),

so
∑

γ∈R xγM ∈ V̂ . Therefore, V α is a g-module. But V was simple, and so V α = V .

(c) Let vλ ∈ Vλ 6= 0. By the previous part, all weight vectors of V are contained in some finite sum
of finite-dimensional sα-modules. In particular, 〈λ, α∨〉 ∈ Z, and either

(i) 〈λ, α∨〉 = 0, in which case λ ⊥ α, and sα(λ) = λ;

(ii) 〈λ, α∨〉 > 0, in which case uλ = y
〈λ,α∨〉
α vλ 6= 0; or

(iii) 〈λ, α∨〉 < 0, in which case uλ = x
〈λ,α∨〉
α vλ 6= 0.

In cases (ii) and (iii), the weight of uλ (by (5.2)) is λ− 〈λ, α∨〉α = sα(λ).
The bijection follows from the fact that

τα = exαe−yαexα , where eX =

∞∑
n=0

Xn/n!,

is (1) well-defined on finite-dimensional modules since yα and xα are nilpotent, and (2) swaps
weight spaces ν and −ν in any finite-dimensional sα-module, since

τα ◦ xα = −yα ◦ τα, τα ◦ yα = −xα ◦ τα, and τα ◦ hα∨ = −hα∨ ◦ τα.

So dim(Vλ) = dim(Vsα(λ)) for all α ∈ R+.
�

Finally, we can describe the weights in the fundamental chamber more explicitly than just the
intersection of 1

2βi-shifts of the hβi hyperplanes. First, those weights are the vectors λ whose
projection onto each of the simple roots βi has a length of a half integer multiple of ||βi||. This is
an integer lattice generated by λi, i = 1, . . . , r satisfying

0 = 〈λi, βj〉 for i 6= j, and 1
2 ||α|| = ||projβi(λi)||.

But

projβi(λi) =
〈βi, λi〉
〈βi, βi〉

βi,

so this is the same as

〈λi, βj〉 = δij
1
2〈βj , βj〉, or 〈λi, β∨j 〉 = δij where α∨ =

2

〈α, α〉
.

Note: We’ve seen α∨ before, from the sl2-triples! The set {α∨ | α ∈ R} are called the co-roots. The
set of weights

Ω = {ω1, . . . , ωr} satisfying 〈ωi, β∨j 〉 = δij (5.5)

for βj ∈ B are called the fundamental weights.
The lattice of weights appearing in finite-dimensional modules, P = ZΩ is called the integral

weight lattice. If C is the fundamental chamber, then P+ = P ∩ C̄ is called the dominant integral
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weight lattice, and P ∩ C is the strongly dominant integral weight lattice. Note that P = WP+..
The weight lattice P also contains the root lattice ZR = ZB.

Theorem 5.5. The simple finite-dimensional g-modules are highest weight modules L(µ) indexed
by µ ∈ P+ = Z≥0Ω.

Proof. This almost follows from Proposition 5.4. We will need more a little more machinery con-
cerning Weyl groups before we can prove that the set of weights of V is finite in general, but this
simply amounts to the fact that there are only finitely many dominant integral weights “less than”
µ. For now we will assume this. See Lemma 7.1. �

Example. Let g = sln, with base

B = {βi = εi − εi+1 | i = 1, . . . , n− 1}.

Then since 〈βi, βi〉 = 2, the simple co-roots are β∨i = βi and the fundamental weights are

ωi = ε1 + · · ·+ εi −
i

r + 1
(ε1 + · · ·+ εr+1), for 1 ≤ i ≤ r.

So

P = Z≥0{ω1, . . . , ωr}

= {λ1ε1 + · · ·+ λrεr −
|λ|
r + 1

(ε1 + · · ·+ εr+1)}

where

λi ∈ Z, λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0, and |λ| = λ1 + · · ·+ λr.

In other words, the integral weights are in bijection with partitions λ = λ1, λ2, . . . of length ≤ n−1,
where |λ| ranges over all non-negative integers. In short, the finite-dimensional representations of
sn are indexed by partitions of length n− 1.

Remark 5.6. What falls apart when we drop the requirement that V be finite-dimensional? (See
Remark 3.2)

(1) If V is not finite-dimensional, it need not contain a primitive element. Such modules exist,
and are hard to handle.

(2) If V does contain a primitive element v of weight µ, V is generated by v if and only if V is
simple, and we call V = L(µ) a highest weight module of weight µ. One such module exists
for every µ ∈ h∗, but is not finite-dimensional unless µ ∈ P .

6. More on roots and bases

Let R be the set of root associated to a semisimple finite dimensional complex Lie algebra g with
respect to Cartan h. Recall that h∗R = RR is a Euclidean space with inner product induced by 〈, 〉.
As before, for any weight λ ∈ h∗R, let hλ = {µ ∈ h∗R | 〈µ, λ〉 = 0} be the hyperplane orthogonal to
λ. As in (4.7), let sα be the reflection across hα,

sα(λ) = λ− 2projα(λ) = λ− 2
〈α, λ〉
〈α, α〉

α.

Recall that if θ is the angle between two roots α and β, we have

〈α, β〉 = ||α||||β|| cos(θ) = cos(θ)
√
〈α, α〉〈β, β〉.
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But recall from 4.3.1, no. 11, that β(hα∨) = 〈β, α∨〉 is an integer for any α, β ∈ R. So

〈β, α∨〉 = 2
〈β, α〉
||α||2

= 2
||α||
||β||

cos(θ)

and

〈α, β∨〉〈β, α∨〉 = 4 cos2(θ)

are also both integers! But 0 ≤ cos2(θ) ≤ 1, so the only possibilities given the second equality are

cos(θ) = 0,±1/2,±
√

2/2,±
√

3

2
± 1.

Therefore, assuming ||β|| ≥ ||α||, the only possibilities are

〈α, β∨〉〈β, α∨〉 〈α, β∨〉 〈β, α∨〉 θ
0 0 0 π/2
1 1 1 π/3

−1 −1 2π/3
2 1 2 π/4

−1 −2 3π/4
3 1 3 π/6

−1 −3 5π/6

(6.1)

For the case where 〈α, β∨〉〈β, α∨〉 = 4, this says that cos2(θ) = 1, so cos(θ) = ±1. But then
α = ±β, in which case 〈α,±α∨〉 = ±2. We will later return to these values for classifying all
complex finite-dimensional simple Lie algebras, but first we will develop more about root systems
and Weyl groups. The fact that for any two non proportional roots α and β, 〈α, β∨〉 is so limited
is extremely powerful, and yields unexpected results.

Lemma 6.1. Let α, β ∈ R be non-proportional. If the angle θ between α and β is acute (〈α, β〉 > 0)
then α− β is also a root. Otherwise, α+ β is a root.

Proof. From the table in (7.2), one of 〈α, β∨〉 or 〈β, α∨〉 must be 1 if θ is acute or −1 if θ is obtuse.
Suppose 〈α, β∨〉 = ±1. Then σβ(α) = β∓α ∈ R with σβ(α) = α−β if θ is acute and σβ(α) = α+β
if θ is obtuse. �

We say a weight is regular if it does not sit on any of the hyperplanes determined by a root, i.e.

γ /∈
⋃
α∈R

hα.

Any regular γ will choose a positive and negative set of roots for us. Namely, the hyperplane hγ
partitions R in half, as R = R+ tR−, with

R+ = R+(γ) = {α ∈ R | 〈α, γ〉 > 0} and R− = R−(γ) = {−α | α ∈ R+(γ)}.
With respect to this decomposition, we say a root α ∈ R+ is decomposable if α = β1 + β2 for some
β1, β2 ∈ R+, and that it is indecomposable otherwise.

Recall that a base B for a set of roots R is a subset of R forming a basis of h∗ which additionally
satisfies

α = ±
∑
β∈B

zββ with zβ ∈ Z≥0 for all α ∈ R. (6.2)

Proposition 6.2. Given a regular γ ∈ h∗R, the set B = B(γ) consisting of all indecomposable
β ∈ R+(γ) is a base of R.
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Proof.
Each root in R+ is a positive integral combination of elements of B.
Suppose there is some α ∈ R+ which is not a positive integral combination of elements of B. Pick
one such root with 〈α, γ〉 minimal. Trivially, α /∈ B, so α = β1 + β2 for some β1, β2 ∈ R+. Then

〈α, γ〉 = 〈β1, γ〉+ 〈β2, γ〉 > 〈βi, γ〉

for i = 1 and 2. So, by the minimality of 〈α, γ〉, β1 and β2 are both positive integral combinations
of elements of B, which is a contradiction.

B is a linearly independent set.
Recall from 4.3.1, no. 12, for any set A spanning R, R ⊆ QA. Suppose

0 =
∑
β∈B

cββ =
∑
β∈B
cβ>0

pββ

︸ ︷︷ ︸
p

−
∑
β∈B
cβ<0

nββ

︸ ︷︷ ︸
n

,

where cβ ∈ Q and

pα =

{
cα if cα > 0,

0 if cα ≤ 0,
and nα =

{
−cα if cα < 0,

0 if cα ≥ 0.

So that p = n, and have non-zero coefficients over disjoint sets of roots.
Now, let α, β ∈ B be distinct. By Lemma 6.1, if 〈α, β〉 > 0, then ±(α − β) ∈ R. But then

if α − β ∈ R+, α = β + (α − β) is decomposable; otherwise, β = α + (β − α) is decomposable.
Therefore 〈α, β〉 ≤ 0 for distinct elements of B.

Thus

0 ≤ 〈p, p〉 = 〈p, n〉 =
∑
β,β′

pβnβ′〈β, β′〉 ≤ 0.

So 〈p, p〉 = 0, which implies 0 = p = n. Thus cβ = 0 for all β. �

It is additionally straightforward to show that every base B of R is of the form B = B(γ) for any
regular γ satisfying 〈β, γ〉 > 0 for all β ∈ B (see, for example [Hum, Theorem 2, §10.1]). So there
is a base corresponding to every Weyl chamber (connected subset of h∗R −

⋃
α∈R). In particular,

the regular value determining the base sits in the fundamental chamber, whose walls are exactly
{hβ | β ∈ B} (see, for example, [Bou, Ch VI, §1, no. 9, Thm 2]). In short, choosing a base, and
therefore the positive roots, is the same thing as choosing a fundamental chamber.
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Example. For example, there are six different bases of the root system for sl3, one for each choice
of Weyl chamber:

hε1−ε2

hε2−ε3hε1−ε3

ε1−ε2

ε2−ε3 ε1−ε3
C1 : B = {ε1 − ε2, ε2 − ε3}

C1

C2 : B = {ε2 − ε1, ε1 − ε3}

C2

C3 : B = {ε2 − ε3, ε3 − ε1}C3 C4 : B = {ε2 − ε1, ε3 − ε2}

C4

C5 : B = {ε1 − ε2, ε3 − ε1}

C5

C6 : B = {ε1 − ε3, ε3 − ε2}

C6

Further, with R∨ = {α∨ | α ∈ R}, the elements of R are all scalars of elements of R∨, and so
the following corollary is immediate.

Corollary 6.3. Let R∨ = {α∨ | α ∈ R}. If γ ∈ h∗ is a regular weight, then B∨(γ) = {β∨ | β ∈
B(γ)} is a base of R∨ (is a basis of h contained in R∨ satisfying (6.2)).

A choice of fundamental chamber C, and therefore base and positive roots, also determines a
partial order on h∗R. Namely, with µ, λ ∈ h∗R, let

λ > µ if λ− µ is the sum of simple roots. (6.3)

Note that this means α ∈ R is a positive root if and only if α > 0.
Finally, a couple of loose ends.

Lemma 6.4. Let B be a base of R.

(1) For every β, β′ ∈ B, 〈β, β′〉 ≤ 0 and β − β′ /∈ B.
(2) Each α ∈ R+ can be written as α = γ1 +γ2 + · · ·+γm with γi ∈ B (not necessarily distinct)

in such a way that γ1 + · · ·+ γj ∈ R+ for each 1 ≤ j ≤ m.

Proof. Part (1) is a direct consequence of Lemma 6.1.
For part (2), if α ∈ B, then this is trivial. If not, in the proof of linear independence in Proposition

6.2, we actually showed that any set of pairwise obtuse weights sitting to one side of a hyperplane
forms a linearly independent set. But since B is a basis, {α} ∪B is not linearly independent, and
so 〈α, β〉 > 0 for some β ∈ B, and so α− β ∈ R.

So inductively, since R is finite, α can be written as α = γ1 + γ2 + · · · + γm with γi ∈ B (not
necessarily distinct) in such a way that α(j) = γ1 + · · · + γj ∈ R+ for each 1 ≤ j ≤ m. Further,

since α(j) is the positive sum of simple roots, β ∈ R+.
�

6.1. Abstract root systems, Coxeter diagrams, and Dynkin diagrams. In light of the table
in (7.2), we can now classify all possible sets of roots. Often in the literature, roots are handles
completely abstractly, and then root systems associated to Lie algebras are presented as examples.
Here, we have mostly avoided this abstraction until now. However some abstraction will help us
with classification, so we start with some axiomatics about roots in general.
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Let E be a euclidean space over R with inner product 〈, 〉. A symmetry sλ associated to λ ∈ E
is an automorphism of E satisfying

sλ(λ) = −λ and Eλ = {v ∈ E | sλ(v) = v} is a hyperplane in E.

It is immediate that E⊥λ = Rλ, and sλ has order 2 and is determined by Rλ. With λ∨ the element
which is uniquely determined by

〈λ∨, Eλ〉 = 0 and 〈λ∨, λ = 2〉,
we have sλ(µ) = µ− 〈λ∨, µ〉λ.

A subset R ⊂ E is called a root system in E if

(R1) R is finite, spans E, and does not contain 0;
(R2) if α ∈ R, then there is a symmetry sα acting on E leaving R invariant; and
(R3) for each α, β ∈ R, sα(β)− β is an integer multiple of α.

Note that sα(α) = α− 2α = −α ∈ R necessarily. Also, for any finite spanning set Rfor E, there
is at most on symmetry associated to any vector λ which leaves R invariant (this follows from an
analysis of eigenvalues associated to the product of any two such symmetries).

A root system is said to be reduced if for all α ∈ R, the roots proportional to α are ±α. If a root
system is not reduced, then it R contains a pair α, tα ∈ R with 0 < t < 1. Then (R3) forces t = 1

2 .

So for any α ∈ R, the only roots proportional to α are ±α and either ±1
2α or ±2α.

Theorem 6.5. The roots associated to finite-dimensional semisimple complex Lie algebras form
reduced root systems.

In particular, everything we’ve shown about roots associated to Lie algebras apply to reduced
root systems. The non-reduced root systems arise for Lie algebras generated over non-algebraically
closed fields, such as R.

A subset of B a root system R is called a base if S is a basis for E and for all α ∈ R,

α = ±
∑
β∈B

zββ with zβ ∈ Z≥0.

The elements of B are called the simple roots. Our proof of existence of bases in the previous
section holds here as well.

Let E be a euclidean space/R with inner product 〈, 〉 (of any big dimension). Call a finite subset
A = {α1, . . . , αr} ⊂ E admissible if

(i) A is a set of linearly independent unit vectors (〈αi, αi〉 = 1),
(ii) 〈αi, αj〉 ≤ 0 whenever i 6= j, and

(iii) 4〈αi, αj〉2 ∈ {0, 1, 2, 3} whenever i 6= j.

Associate to any admissible set A a graph Γ(A) (called the Coxeter diagram) with vertices labeled
by elements of A (or i short for αi), with mi,j = 4〈αi, αj〉2 edges connecting i to j:

i j
if 4〈αi, αj〉2 = 0,

i j
if 4〈αi, αj〉2 = 1,

i j
if 4〈αi, αj〉2 = 2,

i j
if 4〈αi, αj〉2 = 3.
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Note that by normalizing the elements of any base B for a set of roots R, you get an admissible set
A. The Coxeter diagram associated to a root system R is the graph associated to the normalization
of a base B. In particular, the diagram does not depend on the chosen base (we will see that the
Weyl group acts transitively on Weyl chambers, and so all Weyl chambers have the same set of
angles between pairs of chamber walls).

Theorem 6.6 ([Ser, §11,12]). Every root system is a sum of irreducible root systems, and a root
system is irreducible if and only if the associated Coxeter diagram is connected.

This follows because R1 decomposes into R1 and R2 if and only if R1 and R2 are orthogonal to
each other, in which case there are no edges connecting to the vertices for R1 to the vertices for
R2.

A Dynkin diagram associated to a base B for a root system is a decorated Coxeter graph for the
associated normalized admissible set. If αi is adjacent to αj , and the root βi associated to αi is
longer than the root βj associated to αj , decorate the mi,j edges connecting αi to αj with an arrow
pointing to αi (the normalization of the longer root).

Suppose that E is the direct sum of (non-trivial) subspaces Ei, i = 1, . . . , `, such that R ⊂⋃`
i=1Ei. Then Ri = Ei ∩ R is a root system for Ei. We say R is the sum of subsystems Ri. If

the only decompositions trivial (` = 1), we say R is irreducible. For example, the root systems
associated to simple Lie algebras are irreducible, while semisimple but not simple Lie algebras have
reducible root systems.

The Cartan matrix associated with R is the matrix (〈α, β∨〉)α,β∈B. In particular, since 〈α, α∨〉 =
2, the diagonal entries are all 2, and since 〈α, β〉 ≤ 0 for α 6= β, the off-diagonal entries are all
0,−1,−2, or −3.

Proposition 6.7 ([Ser, §11, Prop 8 and §15, Prop 13]). A reduced root system is determined (up
to isomorphism) by its Cartan matrix and vice versa. A root system is also determined (up to
isomorphism) by its dynkin diagram.

Then due to the triangular decomposition of any finite-dimensional semisimple Lie algebra, the
Lie algebra is determined by its root system. So to classify all simple finite-dimensional Lie algebras,
one must simply classify all connected Dynkin diagrams (of finite type). On the homework, you’re
asked to (1) narrow down the possible connected Coxeter diagrams, (2) show existence of admissible
sets for the leftover graphs, and (3) classify the connected Dynkin diagrams (of finite type).

Exercise 6: Some things about classification.

(1) Let A = {α1, . . . , αr} be an admissible set yielding a connected graph Γ(A).
(a) Show that the number of pairs of vertices connected by at least one edge strictly less

than r.
[What is the condition on vertices being adjacent? Consider 〈α, α〉 where α =

∑
A αi.]

(b) Show that Γ(A) contains no cycles. [Note that any subset of an admissible set is
admissible. ]

(c) Show that the degree (counting multiple edges) of any vertex in Γ(A) is no more than
three.
[Take a vertex α ∈ A, and let S be the set containing α together with its neighborhood
(the vertices adjacent to it). Note that in the span of S is a unit vector β which is
orthogonal to S − {α}, so that α =

∑
γ∈S−{α}+{β}〈α, γ〉γ and 〈α, β〉 6= 0 (why??).]

(d) Show that if S ⊆ A has graph

Γ(S) = · · · ,
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then A′ = A− S + {
∑

S α} is admissible (with graph Γ(A′) obtained by collapsing the
subgraph Γ(S) to a single vertex).

(e) Show that Γ(A) cannot contain any of the following graphs as subgraphs:

· · ·

· · ·

· · ·

[Use the previous part]
(f) Show that the only remaining possible graphs associated to admissible sets are of one

of the following four forms:

· · ·

· · · · · ·

· · ·
· · ·

· · ·

(g) Show the only possible graphs of the third type are

· · · and

[Suppose the vectors corresponding to the vertices to the left of the double bond are
λ1, . . . , λ` (from left to right) and the vertices to the rights of the double bond are
µ1, . . . , µm (from right to left). Let λ =

∑
i iλi and µ =

∑
i iµi. Show that 〈λ, λ〉 =

`(` + 1)/2, 〈µ, µ〉 = m(m + 1)/2, and 〈λ, µ〉2 = `2m2/2, and use the Cauchy-Schwarz
inequality for inner products.]

(h) Bonus: Show the only graphs of the fourth kind are

· · · and
· · ·

4 ≤ ∗ ≤ 6

[This is like the previous part, only more so]
(2) Show that there’s an admissible set associated to every remaining graph by displaying

existence. Namely, associate most of the remaining possible graphs to a classical root
systems (showing existence), and take for granted that the remaining five are associated to
the exceptional simple Lie algebras, E6, E7, E8, F4, and G2:

E6, E7, E8 : · · ·

F4 :
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G2 :

(3) Classify all (finite type) connected Dynkin diagrams.

7. Weyl groups

Now that we’re armed with all this great structure on R and understand a little more about
Weyl chambers and roots, let’s explore some properties of Weyl groups.

Fix a fundamental chamber C, and therefore a base B and positive set of roots R+. With
B = {β1, . . . , βr}, let si = sβi . Let W be the group generated by {sα | α ∈ R}.

Lemma 7.1.

(1) The Weyl group W is finite.
(2) The form 〈, 〉 on h∗R is W -invariant, i.e.

〈w(α), β〉 = 〈α,w−1(β)〉, for all α, β ∈ R,w ∈W.

(3) For all α ∈ R, w ∈W ,

wsαw
−1 = sw(α).

Also, w(α∨) = w(α)∨.
(4) The reflection associated to a simple root β setwise fixes R+ − {β} and R− − {−β}.
(5) If w = si1si2 · · · si`−1

sends βi` to a negative root, then wsi` = si1 · · · sim−1sim+1 · · · si`−1
for

some 1 ≤ m < `.
(6) If w = si1si2 · · · si` with ` minimal, then w(βi`) < 0.

Proof. (1) Since W a reflection group in GL(h∗R) which is defined by its action on R, it can be
identified with a subgroup of SR, the group of permutations on the set R. But R is finite,
so W is finite.

(2) Reflections are rigid motions, and so preserve lengths of and angles between vectors. So
since

〈α, β〉 = ||α||||β|| cos(α∠β),

we have 〈wα,wβ〉 = 〈α, β〉. Further, since w(cα) = cw(α), we have

w(α∨) = w

(
2

〈α, α〉
α

)
=

2

〈α, α〉
w(α) =

2

〈w(α), w(α)〉
w(α) = w(α)∨.

(3) Notice for any γ ∈ R, since w(γ) ∈ R, so is

wsαw
−1(w(γ)) = wsα(γ) = w(γ − 〈γ, α∨〉α) = w(γ)− 〈γ, α∨〉w(α).

Since reflections are 1-1, as γ runs over R, so does w(γ). So wsαw
−1 is the reflection which

acts by

wsαw
−1γ = γ − 〈w−1(γ), α∨〉w(α) = γ − 〈γ,w(α)∨〉w(α)

on all γ, it must be the reflection sw(α). (See [Hum, Lem. 1] for a detailed proof of this last
conclusion).

(4) Let α ∈ R+ and write α =
∑

γ∈B zγγ with zγ ∈ Z≥0. So

σβ(α) = α− 〈α, β∨〉β

= (zβ − 〈α, β∨〉)β +
∑

γ∈B−{β}

zγγ.
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Therefore, either α = β, in which case σβ(β) = −β ∈ R−, or α 6= β, so that zγ 6= 0 for
some γ 6= β. In the later case, since the coefficient of some γ ∈ B in σβ(α) is positive, all
of them are. So σβ(α) ∈ R+.

(5) Let wj = sij · · · si`−1
so that w` = 1 and w1 = w. But since w1(βi`) < 0 and w`(βi`) > 0,

there is some index where wm+1(βi`) is positive and wm(β`) = simwm+1(βi`) is negative.
But by part (4), the only positive root that gets sent to a negative root by the simple
reflection sim is βim . So wm+1(βi`) = βim . Therefore, by part (3),

sim = wim+1si`w
−1
im+1

= sim+1 · · · si`−1
si`si`−1

· · · sim+1 ,

so that

wsi` = si1 · · · sim−1simsim+1 · · · si` = si1 · · · sim−1sim+1 · · · si`−1
.

(6) Either w(βi`) < 0, or wsi`(βi`) < 0. If wsi`(βi`) < 0, then part (5) applied to wsi` =
sij · · · si`−1

says that w can be written as a shorter word, which is a contradiction.
�

A direct consequence of Lemma 7.1(4) is that with

ρ =
1

2

∑
α∈R+

α, (7.1)

we have sβ(ρ) = ρ − β. Notice that sβ(ρ) = ρ − β implies that 〈ρ, β∨〉 = 1 for all β ∈ B. So
ρ =

∑r
i=1 ωi, and ρ is a (strongly) dominant integral weight.

Example. In the case where g is type Ar, let B = {βi = εi − εi+1 | i = 1, . . . , r}, so that
ωi = ε1 + ε2 + · · ·+ εi − i

r+1(ε1 + · · ·+ εr+1). So

ρ = 1
2

∑
i<j

εi − εj

= 1
2 ((r − 0)ε1 + (r − 1− 1)ε2 + (r − 2− 2)ε3 + . . . (0− r)εr+1)

= 1
2

r+1∑
i=1

(r + 2− 2i)εi

=
r∑
i=1

(ε1 + ε2 + · · ·+ εi)−
1

r

(
r∑
i=1

i

)
(ε1 + · · ·+ εr+1)

=

r∑
i=1

ωi.

Now for the big theorem on Weyl groups!

Theorem 7.2.

(1) W acts transitively on Weyl chambers.
(2) Fix a base B. For all α ∈ R there is some w ∈W with w(α) ∈ B.
(3) For any base B, W is generated by simple reflections (reflections associated to simple roots).
(4) W acts simply transitively on bases B of R.

Proof. Let G ∈W be the group generated by the simple reflections. Since W is finite, so is G.
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(1) Fix a fundamental chamber C, and therefore a base B. Let C ′ be any Weyl chamber and
let γ ∈ C ′ be a regular element. We will show that there is some w ∈ G sending C ′ to C.

With ρ as in (7.1), pick w ∈ G with 〈w(γ), ρ〉 maximal. Then for all β ∈ B,

〈w(γ), ρ〉 ≥ 〈sβw(γ), ρ〉 = 〈w(γ), sβ(ρ)〉
= 〈w(γ), ρ〉 − 〈w(γ), β〉.

So 〈w(γ), β〉 ≥ 0 for all β ∈ B. But γ was regular, and so w(γ) is as well. Therefore
〈w(γ), β〉 > 0 for all β ∈ B, and so w(γ) ∈ C. So w sends C ′ to C.

(2) Since G acts transitively on chambers, it acts transitively on bases as well. So it suffices
to show every root α lies in some base. To show that, we can find a regular γ so that
α ∈ B(γ). Any regular γ close enough to the hyperplane hα (depending on its distance
from the origin) and on the same side as α so that |〈α′, γ〉| ≥ 〈α, γ〉 > 0 for all α′ 6= ±α will
suffice.

(3) For a fixed base B, let w ∈ G send some fixed α ∈ R into B, i.e. w(α) = β ∈ B. Then by
Lemma 7.1(3), sα = wsβw

−1 ∈ G. So W ⊆ G ⊆W , and thus G = W .
(4) Again, since since G = W acts transitively on chambers, it acts transitively on bases as

well. So we only need show that

w(B) = B if any only if w = 1.

But by writing w as a minimal product of simple reflections (by part (3)), this is a direct
result of Lemma 7.1(6).

�

So the Weyl group is generated by reflections coming from the base B = {β1, . . . , βr}. The
relations are given by the angles between the corresponding hyperplanes. Let ni,j = 〈βi, β∨j 〉〈β∨i , βj〉,
θi,j = βi∠βj , and si = sβi . So returning to table (7.2), we have that the relation

sisj · · ·︸ ︷︷ ︸
mi,j terms

= sjsi · · ·︸ ︷︷ ︸
mi,j terms

,

where mi,j , ni,j , and θi,j are connected as

θij = arccos(±
√
ni,j/4) = π/mi,j :

Coxeter subgraph ni,j θi,j mi,j

i j
0 π/2 2

i j
1 π/3 3

i j
2 π/4 4

i j
3 π/6 6

(7.2)

Example. Let g = Ar. One base for R = {±αi,j = ±(εi − εj) | 1 ≤ i < j ≤ r} is B = {βi =
εi − εi+1 | 1 ≤ i ≤ r} = B∨. Since

〈βi, β∨i±1〉 = −1 and 〈βi, β∨j 〉 = 0 for j 6= i± 1,
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the Coxeter diagram looks like

· · ·
1 2 3 r − 1 r

So the Weyl group is

W =
〈
s1, . . . , sr | s2i = 1, sisi+1si = si+1sisi+1, sisj = sjsi for i 6= j ± 1

〉 ∼= Sr+1,

the symmetric group on r + 1 letters.

Example. The lie algebras Br and Cr have different root systems (because they’re not isomorphic),
so they have different Dynkin diagrams. But they have the same Coxeter diagram, and therefore
the same Weyl group. This is because the difference between their root systems comes in the relative
lengths of the roots, not in the angles between them. Nice bases for Br and Cr, respectively, are

BBr = {β0 = ε1, βi = εi+1 − εi | 1 ≤ i ≤ r − 1}

and

BCr = {β0 = 2ε1, βi = εi+1 − εi | 1 ≤ i ≤ r − 1},
with B∨Br = BCr and B∨Cr = BBr . We have

〈βi, β∨i+1〉 = −1 for i ≥ 1, 〈βi, β∨j 〉 = 0 for j 6= i± 1,

〈2ε1, ε1〉 = 2.

So since ε∨1 = 2ε1 and (2ε1)
∨ = ε1, both Br and Cr have Coxeter diagrams

· · ·
0 1 2 r − 2 r − 1

So the Weyl group of type BCr is

W =

〈
s1, . . . , sr

∣∣∣∣∣∣
s2i = 1, sisj = sjsi for i 6= j ± 1
sisi+1si = si+1sisi+1 for i ≥ 1

s0s1s0s1 = s1s0s1s0

〉
∼= Z2 n Sr,

the group of signed permutations on r letters (the subgroup generated by s1, . . . , sr−1 is the group
of permutations; then let s0 act by flipping the sign of the first element in the permutation).

Given that W is generated by simple reflections with various relations, there might be several
ways to write a given element of W . So the length of any expression w = si1si2 . . . sim might change,
but there is certainly at least one shortest expression. Define the length `(w) of an element w ∈W
to be the length of the shortest expression of w in terms of simple reflections. For example, in type
Ar as in Example 7,

s1s2s1 = s2s1s2, so `(s1s2s1s1) = `(s2s1s
2
2) = `(s2s1) = 2,

since there is no shorter expression for s2s1. While it may take some work to calculate the length
of any given w ∈ W , any two expressions for w will have the same parity in length. Namely, the
possible relations in W , given by

s2i = 1, taking a length 2 expression to a length 0 expression, and

sisj · · ·︸ ︷︷ ︸
mi,j terms

= sjsi · · ·︸ ︷︷ ︸
mi,j terms

, taking a length mi,j expression to a length mi,j expression,
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both preserve parity. More broadly, one can still see the same parity by generating w with any root
reflections because all root reflections are conjugate to simple reflections (as we saw in Theorem
7.2(3)). So the map

det : W → {±1} given by det(w) =

{
1 if w is the product of an even number of reflections,

−1 if w is the product of an odd number of reflections,

(7.3)
is well defined. In fact, this is what we call the alternating representation or the sign representation
of W . In the case where W = Sr+1, this is the representation indexed by the single column partition
(1r+1) of r + 1. In the literature, this map most often goes by the notation det(w) or ε(w).

For each Weyl group, there is a unique longest word w0 (i.e. `(w0) > w for all w ∈ W − {w0}).
This is the element which sends the fundamental chamber C to its opposite, so that w0C is the
unique Weyl chamber on the negative side of all hyperplanes (corresponding to the base −B). This
is also the map which takes ρ to −ρ.

8. Back to representation theory

We know from section 5 that the finite dimensional simple g-modules L(λ) are highest weight
modules with highest weight in P+, the set of weights λ satisfying 〈λ, α∨〉 ∈ Z≥0 for all α ∈ R+. We

know they’re generated by a primitive v+λ , and spanned by {y`11 · · · y`mm v+λ | R
+ = {α1, . . . , αm}, yi ∈

g−αi , `i ∈ Z≥0} But which of these are lineally independent? In other words, what are the dimen-
sions go the weight spaces in L(λ)?

We have a few clues. First, we know which weight spaces are non-trivial. For any finite-
dimensional g-module, let PV = {λ ∈ P | Vλ 6= 0} be the set of weights of V ; when V = L(λ), write
Pλ for short. We learned in Proposition 5.4 that Pλ consists of integral weights µ in the convex
hull of Wλ which are congruent to λ modulo R+, i.e.

µ = λ−
∑
α∈R+

`αα.

We also learned that dim(L(λ)µ) = dim(L(λ)wµ) for all w ∈W .
So one circumstance where we know the exact dimensions is when Pλ = Wλ, i.e. where all

weights in L(λ) are in the W -orbit of λ. We call such weights λ minuscule, referring to the fact
that they are the weights of P+ closest to the origin. Some people include 0 in the set of minuscule
weights, some do not.
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Example. Let g = A2. The weight ω1 has W -orbit {ω1,−ω2, ω2−ω1}, whose convex hull contains
no other R-shifts:

hβ1

hβ2
ω1

ω2−ω1

−ω2
β1

β2

β1 + β2

So ω1 is miniscule. In fact, the (non-trivial) minuscule weights of A2 are exactly ω1 and ω2.
For type Ar, all of the fundamental weights. In general, the minuscule weights are a subset of

the fundamental weights.
Have caution, though: the minuscule weights are not always the same as the fundamental weights!

For type Cr, one base is B = {βi | i = 1, . . . , r}, with fundamental weights given by

ωi = ε1 + · · ·+ εi for i = 1, . . . , r.

Notice that ε1 + ε2 is both a fundamental weight and a root, so that 0 is a weight of L(ω2) and so
ω2 is not miniscule.

To study the dimensions of the weight spaces in general, we need more information.
One way to answer the question would be to ask for a weight basis. We have a weight spanning

set–one first guess is that it’s more or less a basis. In other words, we should ask if

{y`11 · · · y
`m
m v+λ | y

`i−j
i y

`i+1

i+1 · · · y
`m
m v+λ 6= 0 ∀i, j}

(with appropriate conditions on j) is a basis. Unfortunately, it is not. Let’s look at an example to
see why it can’t be.

Example. Let g = A2 have base B = {β1, β2 | βi = εi − εi+1}, so that R+ = {α1 = β1, α2 =
β2, α3 = β1 + β2}. Let λ = α3. The Pλ are the red points in

hα1

hα2hα3

so that
Pα3 = Wα3 t {0}, where Wα3 = R.
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Then the set {y`11 · · · y`mm v+λ | λ−
∑m

i=1 `mαm ∈ Pλ} has

v+λ with weight α3

y1v
+
λ with weight α3 − α1 = α2

y1y2v
+
λ with weight α3 − α1 − α2 = 0

y21y2v
+
λ with weight α3 − 2α1 − α2 = −α1

y1y2y3v
+
λ with weight α3 − α1 − α2 − α3 = −α3

y1y3v
+
λ with weight α3 − α1 − α3 = −α1

y2v
+
λ with weight α3 − α2 = α1

y2y3v
+
λ with weight α3 − α2 − α3 = −α2

y3v
+
λ with weight α3 − α3 = 0

y23v
+
λ with weight α3 − 2α = −α3

But we know the dimension of the weight spaces corresponding to −α1 and −α3 must be the same as
that of α3, which is 1, so this can’t be a linearly independent set. We to know that the multiplicity
of 0 can be at most 2, though, since this is a spanning set.

We’ll explore three (maybe more) ways of getting at the actual dimensions, mostly without proof
for the sake of time. I will, however, point to references and walk us though the main ideas to
facilitate reading those references in the future.

8.1. The Universal Casimir element and Freudenthal’s multiplicity formula. Freuden-
thal’s multiplicity formula is a recursive formula for calculating the dimensions of the weight spaces
in a highest weight module L(λ). The proof relies on calculating the trace of a particular central
element of Ug on each weight space. You can find such proofs, for example, in [Hum, §22.3], [FH,
§22.1], or [Bou, §VIIII.9.3] (in disguise). The particular central element they rely on is the universal
Casimir element you saw on the homework.

Namely, if {bi} is a basis of g, then there is a unique dual basis {b∗i } of g determined by 〈bi, b∗i 〉 =
δij .The Casimir element is

κ =
∑
bi

bib
∗
i ∈ Ug

where the sum is over the basis {bi} and the dual basis {b∗i }.

Theorem 8.1. Let κ be the Casimir element of g.

(1) κ does not depend on the choice of basis.
(2) κ ∈ Z(Ug), the center of U(g).

Proof.
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(1) Note first that {b∗1, . . . , b∗`} is also a basis of g. Let {d1, . . . , d`} be a third basis of g. Then
bi =

∑
j〈bi, d∗j 〉dj implies

κ =
∑̀
i=1

bib
∗
i =

∑̀
i,j=1

〈bi, d∗j 〉djb∗i

=
∑̀
j=1

dj

(∑
i

〈bi, d∗j 〉b∗i

)
=
∑̀
j=1

djd
∗
j .

(2) Let x ∈ g. Then

xκ =
∑̀
i=1

xbib
∗
i =

∑̀
i=1

([x, bi] + bix)b∗i

=
∑̀
i,j=1

〈[x, bi], b∗j 〉bjb∗i +
∑̀
i=1

bixb
∗
i

= −
∑̀
i,j=1

〈bi, [x, b∗j ]〉bjb∗i +
∑̀
i=1

bixb
∗
i

= −
∑̀
j=1

bj [x, b
∗
j ] +

∑̀
i=1

bixb
∗
i

=
∑̀
i=1

bi(−xbi + bix+ xbi) = κx.

�

Since κ is central, Schur’s lemma ensures that κ acts by a constant on any simple g-module
(since M → M by m → κm is a g-module isomorphism). So the trace of the action of κ on a
weight space L(λ)µ will be equal to κλmµ where κλ is the constancy by which κ acts on L(λ) and
mµ = dim(L(λ)µ).

On the homework, you will be asked to show that

κL(λ) = κλL(λ) whereκλ = 〈λ+ ρ, λ+ ρ〉 − 〈ρ, ρ〉 = 〈λ, λ+ 2ρ〉 (8.1)

Then the following theorem essentially amounts to calculating the trace of the action of κ on
L(λ)µ another way, which ends up being a recursive process.

Theorem 8.2 (Freudenthal’s multiplicity formula). Let mµ be the dimension of L(λ)µ in L(λ),
with λ ∈ P+. Then mµ is determined recursively by

mµ =
2

〈λ, λ+ 2ρ〉 − 〈µ, µ+ 2ρ〉
∑
α∈R+

∞∑
i=1

〈µ+ iα, α〉mµ+iα.

Example. Let’s return to example 8. First let’s do a sanity check, and verify that Theorem 8.2
says, for example, that mα2 = 1 as it should, i.e.

1 = mα2 =
2

〈α3, α3 + 2ρ〉 − 〈α2, α2 + 2ρ〉

3∑
j=1

∞∑
i=1

〈µ+ iαj , αj〉mµ+iαj .
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Here ρ = 1
2(α1 + α2 + α3) = α3 (since α3 = α1 + α2), so

2

〈α3, α3 + 2ρ〉 − 〈α2, α2 + 2ρ〉
=

2

3〈α3, α3〉 − 〈α2, α2 + 2α3〉
=

2

3 ∗ 2− (2 + 2)
=

2

2
= 1.

Next, the only positive root shift of α2 which is in Pα3 is α2 + α1 = α3, so

mα2 = 1 ∗ (〈α2 + α1, α1〉mα3) = 1 ∗ (1) = 1.X

Now, the only multiplicity that was actually in question is that of µ = 0. Theorem 8.2 says

m0 =
2

〈α3, α3 + 2ρ〉 − 〈0, 0 + 2ρ〉

3∑
j=1

∞∑
i=1

〈µ+ iαj , αj〉mµ+iαj .

First,
2

〈α3, α3 + 2ρ〉 − 〈0, 0 + 2ρ〉
=

2

3〈α3, α3〉
=

2

3 ∗ 2
=

1

3
.

Next, the only positive root shifts of 0 which are in Pα3 are where i = 1 in the sum above. So

m0 =
1

3
(〈0 + α1, α1〉m0+α1 + 〈0 + α2, α2〉m0+α2 + 〈0 + α3, α3〉m0+α3)

=
1

3
(2 + 2 + 2) = 2.

So the multiplicity of the weight 0 in L(α3) is 2 after all!

8.2. Weyl character formula. Sometimes in representation theory, instead of studying the repre-
sentations head on, we study their characters instead. Back when we were reviewing the properties
of the symmetric group on the first day, I mentioned that characters of groups were class functions,
and that irreducible characters were in one-to-one correspondence with irreducible representations.
They also satisfy really nice additive and multiplicative properties. So really, characters are func-
tions that are built to contain all the relevant representation theoretic data. Here, we embark on
studying the characters of finite-dimensional g-modules.

As before, let P = Z{ω1, . . . , ωr} (with ωi as in (5.5)) be the integral weights of g, i.e. the
indexing set for the weights appearing in finite-dimensional representations of g. Then let

C[X] = C{Xλ | λ ∈ P} with XλXµ = Xλ+µ. (8.2)

The Weyl group of g acts on C[X] by wXλ = Xwλ for w ∈W .
Let V be a finite-dimensional g-module. The character associated to V is the element of C[X]

given by

ch(V ) =
∑
λ∈P

dim(Vλ)Xλ (8.3)

where Vλ = {v ∈ V | hv = λ(h)v for all h ∈ h} is the λ-weight space of V . So ch(V ) encodes the
dimensions of the weight spaces, and therefore the dimension of the whole module (ch(V )

∣∣
X=1

=
dim(V )). Further, the action of W on the weight spaces preserves dimension (by Proposition
5.4(c)), so ch(V ) is symmetric with respect to the action of W , meaning that for all w ∈W

w · ch(V ) =
∑
λ∈P

dim(Vλ)Xw(λ) =
∑
λ∈P

dim(Vw−1(λ))X
λ =

∑
λ∈P

dim(Vλ)Xλ = ch(V ). (8.4)

Proposition 8.3 ([Ser, §VII.7, Prop 5]). Let V, V ′ be finite-dimensional g-modules with ch(V ) as
in (8.3).
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(1) The character ch(V ) is symmetric with respect to the action of W , so

ch(V ) ∈ C[X]W = {f ∈ C[X] | wf = f}.

(2) One has

ch(V ⊕ V ′) = ch(V ) + ch(V ′) and ch(V ⊗ V ′) = ch(V )ch(V ′)

(3) The modules V and V ′ are isomorphic if and only if ch(V ) = ch(V ′).

Proof. Part (1) follows from Proposition 5.4(c) and (8.4). Part (2) follows immediately for the sum
rule, and by a similar analysis as we did for sl2 in (3.1) for the product rule. For (3), ch(V ) tells you
the non-zero weight spaces of V as well as the dimension. So if ch(V ) = ch(V ′), then V and V ′ have
the same set of weights with the same multiplicities and the same overall dimension. SO this can be
proved by induction on the dimension of V and V ′. First, ch(V ) = 0 if and only if V = 0. Next, since
V is finite-dimensional, the set PV = {λ ∈ P | Vλ 6= 0} of weights occurring in V is finite. So there’s
some λ ∈ PV with λ + α /∈ PV for all α ∈ R+. Then any non-zero element vλ ∈ Vλ is primitive,
and therefore generates L(λ) ∈ V . So V ∼= L(λ) ⊕ V ⊥, with ch(V ⊥) = ch(V ) − ch(L(λ). But of
course, if the characters of V and V ′ are the same, then there’s also a non-zero primitive v′λ ∈ V ′λ.

So V ′ ∼= L(λ) ⊕ V ′⊥, which implies ch(V ′⊥) = ch(V ′) − ch(L(λ) = ch(V ) − ch(L(λ) = ch(V ⊥).
Therefore, by induction on the dimension of V and V ′, V ∼= V ′.

�

One might want to study the the structure of the subalgebra of C[X]W consisting of the characters
of finite-dimensional representations. In fact (given here without proof), the whole of C[X]W is
generated by the characters corresponding to the fundamental representations. In other words, if

χi = ch(L(ωi)), then C[X]W = C[χ1, . . . , χr].

In case you have heard of such things, this means that the map

ch : { finite dimensional g-modules } → C[X]W

induces an isomorphism from the Grothendieck group on finite-dimensional g-modules onto C[X]W .
With ρ = 1

2

∑
α∈R+ α =

∑r
i=1 ωi as in (7.1) and det : W → {±1} as in (7.3), define the Weyl

denominator as

aρ =
∑
w∈W

det(w)Xw(ρ) =
∏
α∈R+

(X
1
2
α −X−

1
2
α). (8.5)

The equality between the sum and product formulas there takes a little work. However, for example,
when g = sl2, B = R+ = {α = ε1 − ε2}, so that W = 〈sα〉 = Z2 and ρ = 1

2α. Then

aρ =
∑
w∈W

det(w)Xw(ρ) = X
1
2
α −Xsα(

1
2
α) = X

1
2
α −X

1
2
α−α

= X
1
2
α −X−

1
2
α =

∏
α∈R+

(X
1
2α −X−

1
2α).

When g = sl3, with β1 = ε1 − ε2, β2 = ε2 − ε3, you’ll be asked to show on the homework that

aρ = Xβ1+β2 −Xβ2 −Xβ1 +X−β2 +X−β1 −X−β1−β2 (8.6)

using either definition.
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Theorem 8.4 (Weyl character formula). With λ ∈ P+ a dominant integral weight, and L(λ) the
highest weight module of weight λ, we have

ch(L(λ)) =
aλ+ρ
aρ

, where aλ+ρ =
∑
w∈W

det(w)Xw(λ+ρ).

Algebraic proofs can be found in [Bou, §VIII.9, Thm 1] and [Hum, §24.3. Thm 1]. The original
proof is due to Weyl (1926), and used theory of compact groups.

Again, let’s convince ourselves with a couple of examples.

Example. For any Lie algebra, λ = 0 indexes the trivial module. Then

ch(L(0)) =
a0+ρ
aρ

= 1,

saying L(0) has one weight space of weight 0 with multiplicity 1, just as expected.

Example. When g = sl2, the finite-dimensional representations are L(dα/2), indexed by non-
negative integers d (the fundamental weight is ω = 1

2α, so P+ = Z≥0{α/2}). Then since ρ = 1
2α,

we have
aρ = Xα/2 −X−α/2 and adα/2+ρ = X(d+1)α/2 −X−(d+1)α/2

and so using the fact that

xn − x−n

x− x−1
= xn−1 + xn−3 + · · ·+ x−n+3 + x−n+1 with x = Xα/2,

we have

ch(L(λ)) =
X(d+1)α/2 −X−(d+1)α/2

Xα/2 −X−α/2
= Xdα/2 +X(d−2)α/2 + · · ·+X−(d−2)α/2 +X−dα/2.

From this character, we can read that the highest weight module indexed by d has weights d, d −
2, . . . ,−d+ 2,−d, all with multiplicity 1, which is exactly what we expected.

Example. When g = sl3, let’s return to Example 8.1, where λ = β1 + β2 = ρ = ε1 − ε3. Recall
that ρ = β1 + β2 = λ, and

aρ = (X
1
2β1 −X−

1
2β1)(X

1
2β2 −X−

1
2β2)(X

1
2 (β1+β2) −X−

1
2 (β1+β2)).

For the numerator of ch(V ), note that for this particular example, aλ+ρ = a2ρ and so

aλ+ρ = a2ρ =
∑
w∈W

det(w)Xw(2ρ) =
∑
w∈W

det(w)X2w(ρ).

Therefore, we can cheat and substitute X2 for X in (8.5) to get

aλ+ρ = (Xβ1 −X−β1)(Xβ2 −X−β2)(X(β1+β2) −X−(β1+β2))
so that (x2 − x−2)/(x− x−1) = x+ x−1 gives

ch(L(ρ)) =

(
Xβ1 −X−β1

X
1
2β1 −X−

1
2β1

)(
Xβ2 −X−β2

X
1
2β2 −X−

1
2β2

)(
X(β1+β2) −X−(β1+β2)

X
1
2 (β1+β2) −X−

1
2 (β1+β2)

)

= (X
1
2β1 +X−

1
2β1)(X

1
2β2 +X−

1
2β2)(X

1
2 (β1+β2) +X−

1
2 (β1+β2))

= Xβ1+β2 +Xβ1 +Xβ2 + 2 + +X−β2 +X−β1 +X−(β1+β2).

This says that L(ρ) has seven weight spaces, six of dimension 1 corresponding to α ∈ R, and one
of dimension 2, corresponding to the weight 0. This is exactly what we got in Example 8.1.



MATH 128, SPRING 2014 51

Remark 8.5. In type A, the entire theory worked out for type A in [Mac, §I.3]. In particular,
ch(L(λ)) is the Schur function corresponding to the dominant integral weight λ. When hear the
phrase Schur positivity, people are trying to figure out if some symmetric function they’re interested
in can be expressed as a positive integer combination of Schur functions, since any such function is
secretly a character associated to a sln-module. See [Mac] for a full discussion of Schur functions
and other great generalizations.

8.2.1. Trick for type Ar: Partitions, compositions, and Young tableaux. Recall, for g = Ar,

P+ = Z≥0Ω = {λ1ε1 + · · ·+ λrεr −
|λ|
r + 1

ε1 + · · ·+ εr+1 | ∗ ∗}

where

∗∗ =

{
λi ∈ Z≥0, |λ| = λ1 + · · ·+ λr

λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0

}
.

So P+ is in bijection with integer partitions of length less than or equal to r. We can draw integer
partitions as |λ| boxes piled up and left into a corner, with λi boxes in the ith row:

r rows

λ1 boxes
λ2 boxes

λr boxes

...

A composition is a partition without the condition that λi ≥ λi+1, and can also be drawn as a
left-justified box arrangement with λi boxes in the ith row. Define the weight of a composition as
the collection of integers with

λ1 1’s, λ2 2’s, · · · , λr r’s.
You can visualize this as the filling of a composition λ with 1’s in the 1st row, 2’s in the 2nd row,
and so on:

1 1 1 1 1
2 2 2 2
3 3 3 3
4 4
5

1
2 2 2 2
3 3 3 3 3
4 4

6 6 6 6

Let λ be a partition and µ a composition with |λ| = |µ|.
A semistandard tableau or filling of shape λ and weight µ is a filling of the boxes in λ with the
integers in wt(µ) such that rows weakly increase and columns strictly increase.

For example, there are 2 semistandard fillings of with weight :

1 1 2
3

1 1 3
3

but there are no semistandard fillings of with weight .

Let λ be a partition with r or fewer parts, abusing notation let L(λ) be the corresponding module.
It turns out that the weights in Pλ can all be expressed as compositions of |λ| of length ≤ r + 1,
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and the dimension of the weight space (corresponding to composition µ) is equal to the number
semistandard fillings of λ with weight µ.

Example. Returning again to g = sl3 and λ = β1 + β2 = ω1 +ω2 = ρ = 2ε1 + ε2− 3
3(ε1 + ε2 + ε3),

so λ corresponds to the partition (2, 1, 0) = . Let γ = ε1 + ε2 + ε3. We can rewrite all µ ∈ Pλ
uniquely as

µ1ε1 + µ2ε2 + µ3ε3 −
|µ|
3

with µ1 + µ2 + µ3 = λ1 + λ2 = 2 + 1 = 3. Then this correspondence is given by the following table.

weight µ rewriting µ composition fillings of λ
in Pρ (µ1, µ2, µ3)

ε1 − ε3 2ε1 + ε2 − γ (2, 1, 0)
1 1
2

ε1 − ε2 2ε1 + ε3 − γ (2, 0, 1)
1 1
3

ε2 − ε3 2ε2 + ε3 − γ (0, 2, 1)
2 2
3

ε3 − ε1 ε2 + 2ε3 − γ (0, 1, 2)
2 3
3

ε2 − ε1 2ε2 + ε3 − γ (0, 2, 1)
2 2
3

ε3 − ε2 ε1 + 2ε3 − γ (1, 0, 2)
1 3
3

0 ε1 + ε2 + ε3 − γ (1, 1, 1)
1 2
3

1 3
2

The connection to symmetric functions in r + 1 variables is to let

xi = Xεi− 1
r+1

(ε1+···+εr+1), i = 1, . . . , r + 1.

Then ch(λ) turns out to be the sum over all compositions µ of the same size a λ with r+1 (possibly
trivial parts) of

#{s.s. fillings of λ with weights µ }xµ11 · · ·x
µr+1

r+1 .

8.3. Path model. The main references on this section are [Li95] where the paths and root opera-
tors are developed, and [Ra06, §5] where a survey of crystals is given along with some connections
to Hecke algebras.

A path is a piecewise linear continuous (non-pathological) map

p : [0, 1]→ h∗R with p(0) = 0 and p(1) ∈ P.

We put an equivalence on paths given by p1 ∼ p2 if there’s a continuous non-decreasing bijective
map φ : [0, 1]→ [0, 1] with p1 = p2 ◦ φ.

Pick a simple root βi ∈ B, and define simple root operators ei and fi as follows. Abusing
notation, with a ∈ R and let hβi−a be the hyperplane parallel to hβi shifted by (a/2)α, so that

hβ∨i −a = {λ ∈ h∗R | 〈λ, β∨i − a〉 = 0} = {λ ∈ h∗R | 〈λ, β∨i 〉 = a}.
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hβ∨i hβ∨i −j

j βi/2-shifts

βi

0

· · · · · ·

Fix a path p, and let a = min0≤t≤1〈p(t), β∨i 〉. Consider the region contained between hβ∨i −a and
hβ∨i −(a+1). Highlight parts of the paths in this region as follows.

Let tL be maximal such that 〈p(tL), β∨i 〉 = a (the last place where the path hits hβ∨i −a). If

〈p(1), β∨i 〉 ≥ a+1, then let tR be minimal such that 〈p(tR), β∨i 〉 ≥ a+1 for all [tR, 1] (the first point
where p crosses hβ∨i −(a+1). Then fix a finite partition of [0, 1] given by

tL = t0 < t1 < · · · < tm = tR

such that either

(1) 〈p(tj), β∨i 〉 = 〈p(tj+1), β
∨
i 〉 and 〈p(t), β∨i 〉 ≥ 〈p(tj), β∨i 〉 for t ∈ [tj , tj+1] (p starts on the

hyperplane intersecting p(tj), heads to the positive side and doubles back to that same
hyperplane), or

(2) 〈p(t), β∨i 〉 is strictly increasing for t ∈ [tj , tj+1] and 〈p(t), β∨i 〉 ≥ 〈p(tj+1), β
∨
i 〉 for all t ≥ tj+1

(p heads in the positive direction, and there’s nothing later on the path further to the
negative).

Highlight all segments of the path p on intervals of the second kind. For example,

hβihβi + 2

hβi + 3

βi

p

0

If 〈p(1), β∨i 〉 < a+1, the operator fi acts by 0. Otherwise, then operator fi reflects each highlighted
segment from the positive to the negative side the hyperplane hβi−〈p(sj),β∨i 〉, dragging the rest of
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the path with it:

hβihβi + 2

hβi + 3

βi

fip

0

Note that the result move the end of the path by −βi. The operators ei reverses this operation, i.e.
it is defined by eifi = 1 (whenever fi does not act by 0) and fiei = 1 (whenever ei does not act by
0). It still uses the part of the part furthest in the −βi-direction, but reflecting from the negative
side to the positive side of a hyperplane. So

fip = 0 or (fip)(1) = p(1)− βi and eip = 0 or (eip)(1) = p(1) + βi.

A crystal B is a set of paths which is closed under the action of root operators {ei, fi | βi ∈ B}.
Let B(p) be the minimal crystal containing p.

Example. Let g = sl3 with base B = {β1 = ε1 − ε2, β2 = ε2 − ε3}. Let p be the straight-line path
from 0 to λ = ε1 − ε3. Then B(p), together with its actions by e1, e2, f1, f2, is given in Figure 2.

We say B and B′ are isomorphic crystals if there is a bijection φ : B(p) → B(p′) with fiφ(q) =
φ(fiq) and eiφ(q) = φ(eiq) for all q ∈ B(p) and simple root operators fi, ei. The path modelcrystal
graph is the graph with

vertices p ∈ B and labeled edges p
i−→ fip.

See, for example, Figure 3. Two crystals are isomorphic if and only if they have isomorphic graphs
(with the same labelings of edges).

Note that since ρ =
∑

i ωi, by pulling the (open) fundamental chamber C back by ρ, C − ρ
contains the closed chamber C̄, but not any of the walls hβi+1. In fact,

P++ → P+ defined by λ 7→ λ− ρ
is a bijection.

A highest weight path is a path p satisfying

eip = 0 for all i = 1, . . . , r.

For ei to act by 0 means that 〈p(t), β∨i 〉 > −1 for all t and i. So a path is highest weight if and
only if

p(1) ∈ P+ and p(t) ∈ C − ρ for all t ∈ [0, 1].
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The weight of any path p is wt(p) = p(1).

Proposition 8.6. Let p and p′ be highest weight paths of the same weight. Then the crystals
generated p and p′ are isomorphic.

So without ambiguity, for λ ∈ P+, define B(λ) as the crystal generated any fixed highest weight
path p+λ of weight λ. In Example 8.3, we computed B(ρ). The same crystal with a different highest
weight path is in Figure 3.

The character of a crystal is

ch(B) =
∑
p∈B

Xwt(p). (8.7)

Figure 2. The crystal generated by the straight-line path to ρ for sl3.

00

0 0

0 0

00

f1

e1

f1

e1

f1

e1

f1

e1

f2

e2

f2

e2

f2

e2

f2

e2

e2e1

e2, f1 e1, f2

e2, f1 e1, f2

e2e1
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Theorem 8.7. For λ ∈ P+,

ch(B(λ)) = ch(L(λ)).

So, for example, Example 8.3 shows once again that the weight space of weight 0 in L(ρ) has
dimension 2.

Remark 8.8. One thing that’s more exciting about the path model than methods in the previous
two sections is that we don’t just have a count of the multiplicities of weights, but we have a set
indexing the individual dimensions of the weight spaces of any finite-dimensional g-module. In
other words, for any finite-dimensional g-module V =

∑
λ∈V̂ L(λ), there is a a weight basis of V

indexed by paths in p ∈ tλ∈V̂ B(λ), where if vp is the basis element of V indexed by path p, vP has
weight wt(p).

The action is a little trickier, though. In an ideal world, we would hope that since fi changes the
weight of p by −βi, maybe we would have relations like yβivp = vfip and xβivp = veip. However, this
action would not satisfy the bracket relation [xβi , yβi ] = hβ∨i . There is an initial attempt to deal with

this in [Li95, §2.1], where they build operators for each simple root that form an sl2-triple. However,
the various sl2-triples for various βi’s do not interact properly with each other (they don’t satisfy
what are called the Chevalley-Serre relations, like [hα, xβ] = 〈α, β〉xα and [xα, yβ] = δα,βhα∨).
There are proper normalizations from the Lie algebras side, which fall into the study of crystal
bases.

Proposition 8.9. Let B,B′ be finite crystals.

(1) ch(B) = ch(B′) if and only if B ∼= B′.
(2) The union B t B′ is a crystal, and

ch(B t B′) = ch(B) + ch(B′).

(3)

ch(B) =
∑
p∈B

p is highest weight

ch(B(wt(p))).

It begins to make sense now to intro duct the notation B(V ) to denote a crystal associated to a
finite-dimensional module V . Namely, if V =

∑
λ∈V̂ L(λ), then B(V ) =

⊔
λ∈V̂ B(λ).

8.3.1. Tensor product decomposition. The concatenation of two paths p, p′ is defined by

pp′ =

{
p(2t) 0 ≤ t ≤ 1/2,

p(1) + p′(2(t− 1/2)) 1/2 ≤ t ≤ 1.

Pictorially, think of sticking p′ onto the end of p (like vector addition). Note that wt(pp′) =
wt(p) + wt(p′).
Theorem 8.10.

(1) For finite-dimensional g-modules V, V ′,

B(V ⊗ V ′) = {pp′ | p ∈ B(V ), p′ ∈ B(V ′)}.

(2) With λ, µ ∈ P+, and p+λ highest weight in B(λ),

ch(L(λ)⊗ L(µ)) =
∑
q∈B(µ)

p+
λ
q highest weight

ch(L(λ+ wt(q))).
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Type Ar. First, let’s return to the example where g = sl3. Recall the fundamental weights with
resect to the base B = {β1 = ε1 − ε2, β2 = ε2 − ε3} are

ω1 = ε1 −
1

3
(ε1 + ε2 + ε3), and ω2 = ε1 + ε2 −

2

3
(ε1 + ε2 + ε3).

The crystal B(ω1) is generated by highest weight path

p+ω1
: ,

and contains the three paths

p1 = p+ω1
= p2 = f1p

+
ω1

= p3 = f2f1p
+
ω1

= .

The weights of these paths are

wt(p1) = ε1 −
1

3
(ε1 + ε2 + ε3) = ω1,

wt(p2) = ε2 −
1

3
(ε1 + ε2 + ε3) = ω2 − ω1,

wt(p1) = ε3 −
1

3
(ε1 + ε2 + ε3) = ω3 − ω2.

where ω3 = 0 = ε1 + ε2 + ε3 − 3
3(ε1 + ε2 + ε3). For general r, we saw on the homework that the

standard representation of Ar is L(ω1), and now it’s not difficult to compute that weights in L(ω1)
are exactly analogous to the r = 2 case, namely,

Pω1 = {ωi − ωi−1 = εi −
1

r + 1

r∑
i=1

εi | i = 1, . . . , r + 1, ω0 = ωr+1 = 0}.

Back in the case where r = 2, the crystal for B(L(ω1)⊗ L(ω1)) is the set containing

p21 = , p1p2 = , p1p3 = ,

p2p1 = , p22 = , p2p3 = ,

p3p1 = , p3p2 = , p23 = .

The two of these that are highest weight are p21, which has weight 2ω1, and p1p2, which has weight
ω2. This is reflected in the fact that the crystal graph for B(L(ω1) ⊗ L(ω1)) has two connected
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components:

1

21

2 1

2

and

2

1

So

ch(L(ω1)⊗ L(ω1)) = ch(L(2ω1)) + ch(L(ω2)),

implying

L(ω1)⊗ L(ω1) ∼= L(2ω1)⊕ L(ω2).

Stepping back, since p1 is the highest weight path of B(ω1), the highest weight paths in this
tensor product are those for which p1pi are in C − ρ. More to the point, since concatenation by
pi walks from one integral weight to one to the six nearest integral weights, p1pi is highest weight
exactly when wt(p1pi) ∈ P+.

In general, for λ ∈ P+, we have that

L(λ)⊗ L(ω1) =
⊕

i=1,...,r+1

λ+ωi−ωi−1∈P+

L(λ+ ωi − ωi−1),
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which has exactly r + 1 terms when λ ∈ P++.

hα1

hα2

In the language of partitions, since adding εi − 1
r+1

∑r+1
i=1 εi to λ is the same as adding a box to

the partition corresponding to λ in the i’s row (where adding a box in the r+1 row is equivalent to
subtracting the first column). The result yields a dominant weight exactly when adding a box yields
a partition (rather than a non-partition composition). Finally, ω1 corresponds to the partition of
1, a single box. So put in this combinatorial language

L(λ)⊗ L( ) =
∑
µ∈λ+

L(µ) (8.8)

where

λ+ = { partitions obtained from λ by adding a box }.

In our example above, we saw that

L( )⊗ L( ) = L( )⊕ L( ).

since ω2 = and 2ω1 = .
To connect back to the tableaux in Section 8.2.1, let’s start to use these more discrete paths to

generate crystals. Keeping with pi being the straight-line path to εi − 1
r+1(ε1 + ε2 + · · · + εr+1),

we have p+ω1
= p1, and B(ω1) = {pi | i = 1, . . . , r + 1}. With λ ∈ P+, instead of starting with the

straight line path to λ, rewrite

λ = λ1ε1 + λ2ε2 + · · ·+ λrεr −
|λ|
r + 1

(ε1 + · · ·+ εr+1)

(where |λ| = λ1 + · · · + λr is not the same thing as ||λ||). Then take the path which is the
concatenation of paths pi according to

p = p1p1 · · · p1︸ ︷︷ ︸
λ1

p2p2 · · · p2︸ ︷︷ ︸
λ2

· · · = pλ11 p
λ1
1 · · · p

λr
r .
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Figure 3. The sl3 crystal graph generated corresponding to ρ. The left is generated
by the path to ρ given by p = pλ11 p

λ2
2 . . . pλr4 . The right shows the corresponding

fillings of the partition corresponding to ρ. Labeled edges indicate p
i→ fip; missing

edges indicate ei or fi acts by 0.
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Since wt(pi) = ωi − ωi−1 and λi ≤ λi−1, we have p = pλ11 p
λ1
1 · · · pλrr ∈ C − ρ (in fact, p ∈ C̄). In

fact, for any path constructed as

p = pi1pi2 · · · pin ,
p is in C − ρ if and only if every initial path pi1 · · · pij has weight

wt(pi1 · · · pij ) =

j∑
k=1

(ωik − ωik−1) ∈ P
+
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( if any only if it’s the positive sum of ω’s). Another way to put this is that if we define the reading
word of p to be i1i2 · · · in, then p is in C − ρ if any only if every initial subword i1i2 · · · ij of the
reading word of p has the property that is contains more 1’s than 2’s, more 2’s than 3’s, and so
on. This should sound wildly familiar if you are acquainted with the Littlewood-Richardson rule,
which we’ll get to momentarily.

Example. Let’s return to the example where r = 2 and λ = ρ, and

p1 = p2 = and p3 = .

Since

ρ = ε1 − ε3 = 2ε1 + ε2 −
3

3
(ε1 + ε2 + ε3) corresponds to ,

the highest weight path we want to start with is

p = p1p1p2 =

Then the resulting crystal is in Figure 3.

When we construct a crystal in this way, generated by highest weight path p = pλ11 · · · p
λ`
` ,

there is a very straightforward correspondence between the semistandard fillings of the partition

λ in Section 8.2.1 and the reading words of the paths in B(pλ11 · · · p
λ`
` ). Namely, every path in

B(pλ11 · · · p
λ`
` ) is of the form q = pi1 · · · pin with n = |λ|, and

(1) if q has weight µ, the collection of integers i1, i2, . . . , in is the weight of the composition µ;
and

(2) filling λ, reading right to left, top to bottom, with the word i1i2 · · · in yields a semistandard
filling of λ with weight µ.

Moreover, this correspondence gives a bijection. The example where g = sl3 and λ = ρ is also in
Figure 3.
Type Cr. In type Cr, there’s a similar story. Choose the base

B = {ε1 − ε2, ε2 − ε3, . . . , εr−1 − εr, 2εr}
so that the fundamental weights are given by

ωi = ε1 + · · ·+ εi for i = 1, . . . , r.

We saw on the homework that for r = 2, L(ω1) is a four-dimensional module, with all one-
dimensional weight spaces corresponding to the weights

{±ε1,±ε2}.
Similar to the proof on the homework for type Ar, you can check that L(ω1) is the standard
representation for Cr in general. (In fact, that’s true across types!) It has one-dimensional weight
spaces of weights

{±ε1,±ε2, · · · ,±εr}
(so that it has dimension 2r, as expected).

Similar to the type Ar case, there’s also a connection to partitions in the Cr case as well. Namely,

P+ =

{
λ1ε1 + · · ·+ λrεr

∣∣∣∣ λi ∈ Z
λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0

}
is in bijection with integer partitions of length at most r (with less work than in type Ar, even).

On the homework, you’re asked to give the analogous decomposition to (8.8) for type Cr.
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9. Centralizer algebras

As I hope I’ve conveyed, one big goal in representation theory is to know how representations
decompose into irreducible components. In general, indecomposable (breaks further into direct
summands) doesn’t imply irreducible (contains no proper non-trivial invariant subspaces). But by
definition, modules for semisimple algebras are indecomposable if and only if they are irreducible.
So the trick is to figure out how to decompose a given module. A good reference for this section is
[GW, §4].

At the level of individual modules, this can be difficult, since the decomposition might not be

unique. But at the level of isotypic components, the decomposition is canonical. Namely, let Â be

an indexing set for the isomorphism classes of irreducible A-modules, and for λ ∈ Â, let Aλ be the
A-module indexed by λ. Then for an A module M , the isotypic component of M corresponding to
λ is

M (λ) =
∑
U⊆M
U∼=Aλ

U,

the subspace of M generated by all submodules isomorphic to Aλ. Though the multiplicity mM (λ)

of Aλ in M (and so in M (λ)) is well-defined, the mechanical decomposition

M (λ) =

mM (λ)⊕
i=1

Aλ = mM (λ)Aλ

is not unique. However, the decomposition

M =
⊕
λ∈M̂

M (λ) where M̂ = {λ ∈ Â | M (λ) 6= 0},

is unique.
In the case where A is finite-dimensional, the decomposition of M into styptic components comes

straight from Wedderburn’s theorem: If A is finite-dimensional, Wedderburn’s theorem says

A ∼=
⊕
λ∈Â

End(Aλ)

where End(Aλ) is the algebra of endomorphisms of the vector space Aλ (coming from the action
of A on itself). So on each block End(Aλ), there is an identity operator Iλ which looks like 1 on
End(Aλ) and 0 on End(Aµ) for µ 6= λ. These operators satisfy

(1) I2λ = Iλ (Iλ is an idempotent);
(2) IλIµ = IµIλ = 0 for λ 6= 0 (they are pairwise orthogonal);
(3)

∑
λ∈Â Iλ = 1;

(4) Z(A) = C{Iλ | λ ∈ Â}; and

(5) the action of Iλ on any A-module M projects onto M (λ).

The Iλ’s are called the centrally primitive idempotents of A.
In the case where A is infinite dimensional, we need a replacement for the projection operation

from Iλ. To this end, let Hom(Aλ,M) be the set of A-module homomorphisms from Aλ into M .
Since Aλ is simple, Schur’s lemma tells us that every non-zero φ ∈ Hom(Aλ,M) gives φ(Aλ) ∼= Aλ,

and so φ(Aλ) ⊆M (λ). There’s then a canonical map

Hom(Aλ,M)⊗Aλ →M defined by φ⊗ u 7→ φ(u),
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which produces an isomorphism

Hom(Aλ,M)⊗Aλ ∼= M (λ).

This shows that mM (λ) = dim(Hom(Aλ,M)). In fact, more is true! There is a bilinear form on
the vector space of A-modules given by 〈M,N〉 = dim(Hom(M,N)), which is also symmetric since

dim(Hom(M,N)) =
∑
λ∈Â

mM (λ)mN (λ).

So, in particular,

mM (λ) = dim(Hom(Aλ,M)) = dim(Hom(M,Aλ)).

Now let A be a semisimple algebra over C (associative with identity), and let M be an A-module.
Let End(M) the endomorphisms of M (linear, not necessarily invertible, maps from M to M). To
be rigorous, there is representation of A corresponding to its action on M determined by

ρ : A → End(M)
a 7→ ρ(a)

is defined by a · v = ρ(a)v.

But practically speaking, we often identify A with its image ρ(A) in End(M) (even though its
image is actually the quotient by ker(ρ)). Now define the centralizer of A (in End(M)) to be

EndA(M) = {φ ∈ End(M) | aφ(m) = φ(a ·m) for all a ∈ A,m ∈M}. (9.1)

There is a natural action of B = EndA(M) on Hom(Aλ,M) by

b · φ : v 7→ b · φ(v), for any b ∈ B, φ ∈ Hom(Aλ,M), and v ∈ Aλ.

This is well-defined since φ(v) ∈M and B ⊆ End(M). The result is another A-module homomor-
phism since for any a ∈ A,

(b · φ)(a · v) = b · (φ(a · v)) (the definition of the B-action)

= b · (a · φ(v)) (φ is an A-module homomorphism)

= a · (b · φ(v)) (the actions of A and B commute)

= a · (b · φ)(v).

Theorem 9.1 (Double centralizer theorem). Let M be a vector space, and A ⊆ End(M). Then
the algebra B = EndA(M) is semisimple, one has EndB(M) = A, and M has the multiplicity-free
complete decomposition

M ∼=
⊕
M̂

Aλ ⊗Bλ (9.2)

as an (A,B)-bimodule, where {Bλ | λ ∈ M̂} are mutually non-isomorphic irreducible B-modules.

Proof. The proof amounts to showing that Bλ = Hom(Aλ,M) is irreducible, and that for λ, µ ∈ Â,
Hom(Aλ,M) ∼= Hom(Aµ,M) if and only if µ = λ. �

In other words, (AB)λ = Aλ⊗Bλ is an irreducible (A,B)-bimodule which is uniquely determined
by λ, and which decomposes as

(AB)λ = mM (λ)Aλ as an A-module, and

(AB)λ = dim(Aλ)BM,λ as a B-module.
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9.1. First example: Type Ar and the symmetric group. There are actually lots of versions
if this particular example. In the place of A, we can put any of

the group algebra CGLn(C) where GLn(C) is the group {g ∈Mn(C) | det(g) 6= 0},
the group algebra CSLn(C) where SLn(C) is the group {g ∈Mn(C) | det(g) = 1},
the enveloping algebra Ugln(C) where gln(C) is the Lie algebra {x ∈Mn(C)}, or

the enveloping algebra Usln(C) where sln(C) is the Lie algebra {x ∈Mn(C) | tr(x) = 0}.

In the place of M , we start with the defining representation V = Cn of A. We saw in Section 3.1
that both group algebras and enveloping algebras are Hopf algebras, so that

V ⊗ · · · ⊗ V︸ ︷︷ ︸
k factors

= V ⊗k

is also an A-module (with slightly different actions). Most of the proofs you will run across, for
example in [GW, §4] or [FH, §6], will use the case where A = CGLn. However, the representation
theory of all four algebras is strikingly similar. Since we know the representation theory of A = Usln
the best out of these four examples, we will focus on that example here.

Fix A = Usln. We saw on the homework that V ∼= L(ω1) = L( ). In (8.8), we saw that for any
λ ∈ P+,

L(λ)⊗ L( ) =
∑
µ∈λ+

L(µ)

where

λ+ = { partitions obtained from λ by adding a box }.

Further, tensor products are distributive, namely for some λ(1), . . . , λ(`),(⊕̀
i=1

L(λ(i))

)
⊗ L( ) =

⊕̀
i=1

(L(λ(i))⊗ L( )) =
⊕

i=1,...,`

µ∈λ+
(i)

L(µ).

So we can iteratively track the decomposition of V ⊗k by starting with the decomposition of V ⊗(k−1)

and and calculating how L(λ)⊗ L( ) contributes for each λ ∈ ̂V ⊗(k−1).
To do this, we build a lattice, called a Bratteli diagram, where we put the partitions indexing

the isotypic components of V ⊗k on level k, and draw an edge between a partition λ on level k − 1
and a partition µ on level k if µ ∈ λ+. Then the multiplicity of the module L(µ) in V ⊗k is the
number of downward moving paths in the lattice, starting at the top. See Figure 4.

Now take a look at Figure 1, where we saw Young’s lattice for the first time. Young’s lattice
controlled the representation theory of the symmetric group Sk, where paths in the lattice indexed
bases for irreducible Sk-modules (rather than multiplicities). Much like we would expect for the
centralizer algebra EndUsln(V ⊗k)! And yes, in fact, the centralizer we’re looking for here is indeed
CSk.

Recall that the symmetric groups Sk is the group of permutations of k objects. We can draw
the elements of Sk as diagrams with vertices in a row on top labeled 1, . . . , k, vertices in a row on
bottom labeled 1, . . . , k, and directed edges from bottom to top forming a bijection. For example,
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Figure 4. Levels 0–5 of the Bratteli diagram for V ⊗k with V = L(ω1) and g = sln,
n > 5.

V̂ ⊗0:

V̂ ⊗1:

V̂ ⊗2:

V̂ ⊗3:

V̂ ⊗4:

V̂ ⊗5:

∅

S5 contains

σ1 =

1

1

2

2

3

3

4

4

5

5

and σ2 =

1

1

2

2

3

3

4

4

5

5

.

Then multiplication is given by concatenation, where στ is the result of stacking σ on top of τ and
resolving connections. For example,

σ1σ2 =

1

1

2

2

3

3

4

4

5

5

=

1

1

2

2

3

3

4

4

5

5

Then Sk acts on V ⊗k by place permutation. On a simple tensor vi1 ⊗ · · · ⊗ vik , this action is
given algebraically by

σ · (vi1 ⊗ · · · ⊗ vik) = vσ−1(i1) ⊗ · · · ⊗ vσ−1(ik),

or diagrammatically by

vi1 vi2 vi3 vi4 vi5

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

vi2 vi4 vi1 vi5 vi3
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Recall that the action of x ∈ g on a simple tensor vi1 ⊗ · · · ⊗ vik looks like

x · (vi1 ⊗ · · · ⊗ vik) =

k∑
j=1

vi1 ⊗ · · · ⊗ (x · vij )⊗ · · · ⊗ vik .

So

x · (σ · (vi1 ⊗ · · · ⊗ vik)) =

k∑
j=1

vσ−1(i1) ⊗ · · · ⊗ (x · vσ−1(ij))⊗ · · · ⊗ vσ−1(ik)

= σ

k∑
j=1

v`1 ⊗ · · · ⊗ (x · v`j )⊗ · · · ⊗ v`k where `j = σ(ij)

= σ · (x · (vi1 ⊗ · · · ⊗ vik))

since σ is a bijection. And therefore the image of this action of CSk in End(V ⊗k) is contained in
EndUsln(V ⊗k).

Example. Let A = Usl2 so that L( ) = C{v1, v2} with xv2 = v1, yv1 = v2, and xv1 = yv2 = 0.
Then

L( )⊗ L( ) = C{v1 ⊗ v1, v1 ⊗ v2, v2 ⊗ v1, v2 ⊗ v2}.

The weights of this module are 2, 0, 0,−2 (or α, 0, 0,−α) with (L( )⊗L( ))0 = C{v1⊗ v2, v2⊗ v1}.
The module decomposes into L( ) ⊕ L( ) = L( ) ⊕ L(∅). So which part of C{v1 ⊗ v2, v2 ⊗ v1}
is in L( ) and which part is in L( )? Well, let’s just look as the action of y on the only weight

vector (up to scaling) of weight 2, and that must be the weight vector in L( ) of weight 0:

y · (v1 ⊗ v1) = v1 ⊗ v2 + v2 ⊗ v1.

The orthogonal complement to v1⊗v2+v2⊗v1 in C{v1⊗v2, v2⊗v1} is generated by v1⊗v2−v2⊗v1,
which is indeed annihilated by x and y. So

L( ) = C{v1 ⊗ v1, v1 ⊗ v2 + v2 ⊗ v1, v2 ⊗ v2}, and

L( ) = C{v1 ⊗ v2 − v2 ⊗ v1}.

Now let’s think about the action of S2 on this module, where S2 = {1, s | s2 = 1}. We have s
acting by swapping the factors. Notice that s fixes

v1 ⊗ v1, v1 ⊗ v2 + v2 ⊗ v1, and v2 ⊗ v2,

and so as an S2-module, C{v1 ⊗ v1, v1 ⊗ v2 + v2 ⊗ v1, v2 ⊗ v2} is three copies of the trivial module

S . On the other hand,

s · (v1 ⊗ v2 − v2 ⊗ v1) = −(v1 ⊗ v2 − v2 ⊗ v1),

and so C{v1 ⊗ v2 − v2 ⊗ v1} is one copy of the sign representation of S2, S . Therefore as a
Usl2,CS2 bimodule,

L( )⊗ L( ) =

(
L( )⊗ S

)
⊕
(
L( )⊗ S

)
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To prove that the image of the action of CSk in End(V ⊗k) is equal to the whole of EndUsln(V ⊗k),
there are two standard approaches. One is via Young symmetrizers and Schur functors, as in [FH,
§6]. The other is to to show that the image of the action of Usln is equal to EndCSk(V ⊗k), and let
Theorem 9.1 to the work. Let {v1, . . . , vn} be the standard basis of V , so that {vi = vi1⊗· · ·⊗vik | i =
(i1, . . . , ik) ∈ {1, . . . , n}k} is a basis of V ⊗k. Let b ∈ EndCSk(V ⊗k) and write its action with respect
to this basis as

b · vi =
∑

j∈{1,...,n}k
bjivj.

Then with σ · i = (σ−1(i1), . . . , σ
−1(ik)), the relation σb = bσ implies

σ · b · vi =
∑
j

bjivσ·j

= b · σ · vi =
∑
j

bjσ·ivj =
∑
j

bσ·jσ·ivσ·j,

since σ is a bijection on {1, . . . , n}k. Comparing coefficients on either side, we get

b ∈ EndCSk(V ⊗k) if and only if bσ·jσ·i = bji (9.3)

for all σ ∈ Sk and i ∈ {1, . . . , n}k. Since the coproduct of x ∈ sln is symmetric, this shows that
Usln ⊆ EndCSk(V ⊗k).

The reverse containment can be done by showing that the trace form on EndV ⊗k, restricted
to EndCSk(V ⊗k) is non-degenerate (it’s certainly nondegenerate on the image of Usln–we say this
early on in this course), and that if b ∈ EndCSk(V ⊗k) is orthogonal to u ∈ Usln, then b = 0 (as
done in [GW, §4.2.4], for example). However, for an intuitive justification, recall that though Usln
is not isomorphic to Ugln, their images in End(V ) are the same; this is because n has codimension
1 in gln, and is not closed under matrix multiplication. Now gln is by definition the entire (Lie)
algebra of linear maps on V = Cn, i.e. gln = End(V ). Next, the action of gln on V ⊗k is exactly
the symmetrization of the action go gln on any factor of V ⊗k. So the image of the action of gln on

V ⊗k precisely generates the set of operators b ∈ End(V ⊗k) which satisfy bσ·jσ·i = bji as in (9.3).

9.2. Back to idempotents. .
The double centralizer theorem says that for a vector space M , A ⊆ End(M) semisimple, and

B = EndA(M), we have

(1) B is semisimple;
(2) A = EndB(M); and
(3) as an a, b bimodule,

M =
⊕
λ∈M̂

Aλ ⊗Bλ.

Note that
Z(A) ⊆ EndA(B) and Z(B) ⊆ EndB(A).

Actually,

Z(A) = EndA(M) ∩A = EndA(M) ∩ EndB(M) = B ∩ EndB(M) = Z(B).

So the center of A is equal to the center of B. In the general case, where A doesn’t start off inside
of End(A), and where we find some other algebra B which also acts on M in such a way that these
two actions completely centralize each other in End(M), this says that the image of the action of
Z(A) is equal to the image of the action of Z(B).
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So in the case where M is finite-dimensional, the proof of the double centralizer decomposition
amounts to the fact that the centrally primitive idempotents, which project onto the isotypic
components, are the same for both algebras.

In our case, M is usually finite-dimensional, A is a huge algebra (think Ug), but B is a finite-
dimensional algebra whose image is often isomorphic to B (think CSk). So it actually makes sense
to go ahead and calculate those centrally primitive idempotents for B.

Computing idempotents. For a good reference on this, see for example [?, §7]. Suppose A is
a finite-dimensional seimisimple algebra such that the trace form 〈a, b〉 = tr(ab) on the regular
representation is nondegenerate. Let B be a basis of A, and B∗ = {b∗ | b ∈ B} the dual basis with

respect to the trace form. With the irreducible representations of A indexed by Â, let Aλ be a

representative of the class indexed by λ ∈ Â. Let χλ be the map

χλ : Aλ → C defined by a 7→ trAλ(a).

Then the primitive central idempotent corresponding to Aλ is given by

pλ =
1

cλ

∑
b∈B

χλ(b∗)b,

where

cλ =
1

dim(Aλ)

∑
b∈B

χλ(b)χλ(b∗).
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Appendix A. Bases, roots, and weights for the classical Lie algebras

The general linear Lie algebra is

glr(C) = {x ∈ End(Cr)} with [x, y] = xy − yx.
The elementary matrices in gln are denoted by Eij with Eijvk = δjkvi. Let 〈, 〉 : h⊗ h→ C be the
NIBS form given by

〈x, y〉 = Tr(xy) (using the standard representation).

A.1. Type Ar. The Lie algebra of type Ar is

slr+1(C) = {x ∈ glr+1(C) | Tr(x) = 0}.
A triangular basis of slr+1(C) is given by

slr+1 = h⊕
⊕

1≤i<j≤r+1

gαi,j ⊕
⊕

1≤i<j≤r+1

g−αi,j

with
h = C{h` = E`,` − E`+1,`+1 | 1 ≤ ` ≤ r}, gαij = CEi,j and g−αi,j = CEj,i.

Let
εi : h→ C be defined by h 7→ Tr(Ei,ih)

so that εi(h`) = δi,` − δi,`+1. Then h` = hε`−ε`+1
and the roots of g are given by

R = {±αi,j = ±(εi − εj) | 1 ≤ i < j ≤ r}.
So

h∗R = {λ1ε1 + · · ·+ λr+1εr+1 | λi ∈ R, λ1 + · · ·+ λr+1 = 0}.
A base (associated to the regular weight ρ = 1

2

∑r+1
i=1 (r + 2− 2i)εi) for R is

B = {βi = εi − εi+1 | 1 ≤ i ≤ r}, yielding R+ = {αij | 1 ≤ i < j ≤ r + 1}.
Since 〈βi, βi〉 = 2, the simple co-roots are β∨i = βi.

Since
〈βi, β∨i±1〉 = −1 and 〈βi, β∨j 〉 = 0 for j 6= i± 1,

the Coxeter diagram looks like

· · ·
1 2 3 r − 1 r

So the Weyl group is

W =
〈
s1, . . . , sr | s2i = 1, sisi+1si = si+1sisi+1, sisj = sjsi for i 6= ±j

〉 ∼= Sr+1,

the symmetric group on r + 1 letters.
The fundamental weights are

ωi = ε1 + · · ·+ εi −
i

r + 1
(ε1 + · · ·+ εr+1), for 1 ≤ i ≤ r,

and the integral weights are

P = {λ1ε1 + · · ·+ λrεr −
|λ|
r + 1

(ε1 + · · ·+ εr+1)}

where
λi ∈ Z, λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0, and |λ| = λ1 + · · ·+ λr.
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So the dominant integral weights are in bijection with integer partitions of length less than or equal
to r.

The root system for type A2 looks like

hβ1

hβ2hβ1+β2

β1

β2

-β1

−β2

β1 + β2

−(β1 + β2)

A.2. Type Cr. The Lie algebra of type Cr is

sp2r(C) = {x ∈ sl2r(C) | (xu, v) = −(u, xv)∀u, v ∈ C2r},

for a fixed skew symmetric form (, )LC2r ⊗ C2r → C. Using (u, v) = uTJv with

J =

(
0 I
−I 0

)
,

we get the triangular basis

sp2r = h⊕
⊕
1≤i≤r

gαi ⊕
⊕

1≤i<j≤r
(gα−i,j

⊕ gα+
i,j

)

⊕
⊕
1≤i≤r

g−αi ⊕
⊕

1≤i<j≤r
(g−α−i,j

⊕ g−α+
i,j

)

with

h = {hi = Eii − Er+i,r+i | 1 ≤ i ≤ r},
gαi = CEi,r+i, gα−ij

= C(Eij − Er+j,r+i), gα+
ij

= C(Ei,r+j − Ej,r+i),

g−αi = CEr+i,i, g−α−ij
= C(Eji − Er+i,r+j), and g−α+

ij
= C(Er+j,i − Er+i,j).

Let

εi : h→ C for i = 1, . . . , r

h` 7→ Tr(Eiih`) = δi,`

Then

R = {±αk = ±2εk,±α−ij = ±(εi − εj),±α+
ij = ±(εi + εj) | 1 ≤ k ≤ r, 1 ≤ i < j ≤ r}.

Then hεi = hi and h∗R = Rr. A base for R is

B = {βr = 2εr, βi = εi−εi+1 | 1 ≤ i ≤ r−1}, yielding R+ = {αk, α±ij | 1 ≤ k ≤ r, 1 ≤ i < j ≤ r}.
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Since 〈2βr, 2βr〉 = 4 and 〈βi, βi〉 = 2 for i < r, the simple co-roots are then β∨r = 1
2βr = εr and

β∨i = βi for i < r. So the Coxeter diagram looks like

>· · ·
1 2 r − 2 r − 1 r

and the Weyl group of type Cr is

W =

〈
s1, . . . , sr

∣∣∣∣∣∣
s2i = 1, sisj = sjsi for i 6= j ± 1
sisi+1si = si+1sisi+1 for i ≥ 1
srsr+1srsr+1 = sr+1srsr+1r

〉
∼= Z2 n Sr,

the group of signed permutations on r letters (the subgroup generated by s1, . . . , sr−1 is the group
of permutations; then let sr+1 act by flipping the sign of the last element in the permutation). Note
that this is reversed from Example 7, but both bases yield isomorphic Weyl groups.

The fundamental weights are

ωi = ε1 + · · ·+ εi, for 1 ≤ i ≤ r,
and the integral weights are

P = λ1ε1 + · · ·+ λrεr
where

λi ∈ Z, and λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0.

So the dominant integral weights are in bijection with integer partitions of length less than or equal
to r.

The root system of type C2 looks like

h2ε1

h2ε2

hε1−ε2hε1+ε2

−2ε1 2ε1

−2ε2

−(ε1 + ε2)

ε1 + ε2−(ε1 − ε2)

β2

β1

The difference between this picture and the one for the base in Example 7 is a reflection across the
hε1−ε2 hyperplane.



Index

sl2 triple, 18

algebra, 2
semisimple, 4

alternating representation, 44
Artin-Wedderburn theorem, 4

Borel, 23
Bratteli diagram, 64

Cartan subalgebra, 18
Casimir element, 46
category, 9

examples
Alg, 9
Lie, 9

functor, 9
left-adjoint, 10

morphisms, 9
center, 8
centralizer, 63
centrally primitive idempotents, 62
character, 5, 48
class functions, 5
classical Lie algebras, 9
Combinatorial representation theory, 2
composition, 51

weight, 51
content, 6
Coxeter diagram, 38

Dynkin diagram, 38

endomorphism
nilpotent, 18
semisimple, 18

form
ad-invariant, 16
Hermitian, 8
invariant, 16
Killing form, 17
NIBS, 17
nondegenerate, 16
skew symmetric, 8
symmetric, 8, 16

fundamental chamber, 26

group algebra, 2

highest weight vector, 28
homomorphism, 3
Hopf algebra, 11

antipode, 12
coproduct, 12

counit, 12

isotypic component, 62

Jacobi identity, 7
Jordan canonical form, 17
Jordan-Chevalley decomposition, 18

Lie algebra, 7
adjoint representation, 9
examples

gln, 7
sln, 7
son, 8
spn, 8
sun, 9

ideal, 16
reductive, 16
semisimple, 16
simple, 9, 16
trivial module, 10

Lie group
general linear group, GLn, 7
special linear group, SLn, 7
special orthogonal group, SOn, 8
special unitary group, SUn, 9
symplectic group, Sp2n, 8

module, 3, 10
decomposes, 3
dual, 11
irreducible, 3
semisimple, 16
simple, 3, 16

partitions, 5
path model
B(λ), 55
character of a crystal, 55
crystal, 54
highest weight path, 54
isomorphic crystals, 54
path, 52
weight, 55
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