Exercise 7: Some things about crystals.
(1) Verify that the two formulas for the Weyl denominator a_{ρ} agree for type A_{2}.
(2) Use the three methods from class (Freudenthal's multiplicity formula, the Weyl character formula, and the path model) to calculate the (non-obvious) multiplicities in $L\left(\omega_{2}\right)$ for type C_{2}. Draw the crystal graph for $\mathcal{B}\left(\omega_{2}\right)$.
(3) In type A_{r}, we saw that the finite dimensional modules are indexed by integer partitions of length no more than r, that the weight ω_{1} corresponds to the integer partition of 1 , and that for any $\lambda \in P^{+}$, the decomposition of $L(\lambda) \otimes L\left(\omega_{1}\right)$ is given by

$$
L(\lambda) \otimes L\left(\omega_{1}\right)=\sum_{\mu \in \lambda^{+}} L(\mu)
$$

where λ^{+}is the set of all weights corresponding to partitions obtained by adding a box to the partition corresponding to the weight λ.

In type C_{r}, there's a similar story. Choose the base

$$
B=\left\{\varepsilon_{1}-\varepsilon_{2}, \varepsilon_{2}-\varepsilon_{3}, \ldots, \varepsilon_{r-1}-\varepsilon_{r}, 2 \varepsilon_{r}\right\}
$$

so that the fundamental weights are given by

$$
\omega_{i}=\varepsilon_{1}+\cdots+\varepsilon_{i} \quad \text { for } i=1, \ldots, r
$$

Then

$$
P^{+}=\left\{\begin{array}{l|c}
\lambda_{1} \varepsilon_{1}+\cdots+\lambda_{r} \varepsilon_{r} & \begin{array}{c}
\lambda_{i} \in \mathbb{Z} \\
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{r} \geq 0
\end{array}
\end{array}\right\}
$$

is in bijection with integer partitions of length at most r (with less work than in type A_{r}, even).

Use the path model to determine the decomposition of $L(\lambda) \otimes L\left(\omega_{1}\right)$ in type C_{r}, expressing the answer in terms of partitions.

