Exercise 5: Some things about weights and representations.
(1) Let \mathfrak{g} be a finite-dimensional complex semisimple Lie algebra.
(a) Show that if $L(\lambda)$ and $L(\mu)$ are highest weight modules (of weights λ and μ), show that $L(\lambda) \otimes L(\mu)$ has $L(\lambda+\mu)$ as a submodule with multiplicity 1 . (Think about primitive elements)

Proof. In a highest weight module $L(\mu)$, the spanning set of $\left\{y v_{\mu}^{+} \mid y=y_{1}^{m_{1}} \cdots y_{\ell}^{m_{\ell}}, y_{i} \in\right.$ $\left.\mathfrak{g}_{-\alpha_{i}}\right\}$ is a weight spanning set, where the weight of $y v_{\mu}^{+}$is $\mu-\sum_{i} m_{i} \alpha_{i}$. So the set $\left\{y v_{\lambda}^{+} \otimes y^{\prime} v_{\mu}^{+} \mid y=y_{1}^{n_{1}} \cdots y_{\ell}^{n_{\ell}}, y^{\prime}=y_{1}^{m_{1}} \cdots y_{\ell}^{m_{\ell}}\right\}$ is a weight spanning set for $L(\lambda) \otimes L(\mu)$, where the weight of $v_{\lambda}^{+} \otimes v_{\mu}^{+}$is

$$
\left(\lambda-\sum_{i} n_{i} \alpha_{i}\right)+\left(\mu-\sum_{i} m_{i} \alpha_{i}\right)=\lambda+\mu-\sum_{i}\left(n_{i}+m_{i}\right) \alpha_{i} .
$$

So the multiplicity of the weight space or weight $\lambda+\mu$ is one, and is generated by $v_{\lambda}^{+} \otimes v_{\mu}^{+}$. Further, $v_{\lambda}^{+} \otimes v_{\mu}^{+}$is primitive. So $L(\lambda+\mu)$ is a submodule of $L(\lambda) \otimes L(\mu)$ with multiplicity 1.
(b) Show that 0 is a weight of highest weight module $L(\lambda)$ if and only if λ is a sum of roots.

Proof. The weights of $L(\lambda)$ are of the form $\gamma=\lambda-\sum_{\alpha \in R^{+}} \ell_{\alpha} \alpha$ with $\ell_{\alpha} \in \mathbb{Z}_{\geq 0}$. So $\gamma=0$ exactly when $\lambda=\sum_{\alpha \in R^{+}} \ell_{\alpha} \alpha$, i.e. when λ is the sum of roots.
(2) Type A_{r} stuff. Analyze the standard representation of $\mathfrak{s l}_{3}$.
(a) What are the primitive elements?
(b) What is/are the weight/weights of the action of \mathfrak{h} on the primitive elements (in terms of ω_{1} and $\left.\omega_{2}\right)$?
(c) What is the standard representation isomorphic to (in terms of highest weight modules)?
(d) Draw a picture of the weights and verify that the dimension is correct.
(e) What is the standard representation (in terms of highest weight modules) of $\mathfrak{s l}_{r+1}$ in general?

In the standard representation of $\mathfrak{s l}_{3}$,

$$
h_{1}=h_{\varepsilon_{1}-\varepsilon_{2}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \text { and } \quad h_{2}=h_{\varepsilon_{2}-\varepsilon_{3}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right),
$$

So the standard basis $v_{1}=(1,0,0), v_{2}=(0,1,0), v_{3}=(0,0,1)$, of $V=\mathbb{C}^{3}$ is a weight basis. Further,

$$
x_{\alpha_{1}}=E_{1,2}=y_{-\alpha_{1}}^{T}, x_{\alpha_{2}}=E_{2,3}=y_{-\alpha_{2}}^{T}, \quad \text { and } \quad x_{\alpha_{1}+\alpha_{2}}=E_{1,3}=y_{-\alpha_{1}-\alpha_{2}}^{T},
$$

and so the primitive elements are those simultaneously annihilated by $E_{1,2}, E_{2,3}$, and $E_{1,2}$. Thus v_{1} is the unique (up to scaling) primitive element of V.

To calculate the weight λ of the action of \mathfrak{h} on v^{+}, note that the action of \mathfrak{h} on $v^{+}=v_{1}$ is generated by $h_{1} v^{+}=v^{+}$(so that $\lambda\left(h_{1}\right)=1$) and $h_{2} v^{+}=0$ (so $\lambda\left(h_{2}\right)=0$.) The fundamental
weights of $\mathfrak{s l}_{3}$ are given by $\omega_{1}=\varepsilon_{1}-\frac{1}{3}\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}\right)$ and $\omega_{2}=\varepsilon_{1}+\varepsilon_{2}-\frac{2}{3}\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}\right)$. Write $\lambda=a_{1} \omega_{1}+a_{2} \omega_{2}$ so that

$$
\lambda\left(h_{1}\right)=\left\langle\varepsilon_{1}-\varepsilon_{2}, a_{1} \omega_{1}+a_{2} \omega_{2}\right\rangle=a_{1}
$$

and

$$
\lambda\left(h_{2}\right)=\left\langle\varepsilon_{2}-\varepsilon_{3}, a_{1} \omega_{1}+a_{2} \omega_{2}\right\rangle=a_{2}
$$

so that $a_{1}=1$ and $a_{2}=0$, and $\lambda=\omega_{1}$.
So $V=L\left(\omega_{1}\right)$.
For the picture, note that ω_{1} is on a hyperplane, so that $W \omega_{1}$ has only three points. Also, these points are single root shifts of each other, so there are no other weights in $L\left(\omega_{1}\right)$. So since $\operatorname{dim}\left(V_{s_{\alpha}(\lambda)}\right)=\operatorname{dim}\left(V_{\lambda}\right)=1$, we have $\operatorname{dim}\left(L\left(\omega_{1}\right)\right)=3$ as desired:

For general r, the standard basis is still a weight basis, and v_{1} is the unique (up to scaling) element which is simultaneously annihilated by $\left\{E_{i, j} \mid 1 \leq i<j \leq r+1\right\}$, so V is simple and $v_{1}=v^{+}$is the primitive element generating V. The action of \mathfrak{h} on v^{+}is given by $h_{\ell} v^{+}=\delta_{1, \ell} v^{+}$, so again v^{+}has weight ω_{1}. So $V=L\left(\omega_{1}\right)$.
(3) Type C_{r} stuff.
(a) Give a base for the set of roots of type C_{r}, and calculate the corresponding simple co-roots and fundamental weights.

For type C_{r}, the roots are given by $R=\left\{ \pm 2 \varepsilon_{k}, \pm\left(\varepsilon_{i} \pm \varepsilon_{j}\right) \mid 1 \leq k, i<j \leq r\right\}$ with $\mathfrak{h}^{*}=\mathbb{C} R=\mathbb{C}^{r}$ with orthonormal basis $\left\{\varepsilon_{1}, \ldots, \varepsilon_{r}\right\}$ with respect to the form induced by trace form on the standard representation. So one base for R is $B=\left\{\beta_{i} \mid i=1, \ldots, r\right\}$, with

$$
\beta_{r}=2 \varepsilon_{r} \quad \text { and } \quad \beta_{i}=\varepsilon_{i}-\varepsilon_{i+1} \quad \text { for } i=1, \ldots, r-1
$$

Then $R^{+}=\left\{\varepsilon_{k}, \varepsilon_{i} \pm \varepsilon_{j} \mid 1 \leq k, i<j \leq r\right\}$. For $1 \leq i \leq r-1,\left\langle\beta_{i}, \beta_{i}\right\rangle=2$, so $\beta_{i}^{\vee}=\beta_{i}$. For $i=r,\left\langle\beta_{r}, \beta_{r}\right\rangle=4$, so $\beta_{r}^{\vee}=\frac{1}{2} \beta_{r}=\varepsilon_{r}$. So the fundamental weights are given by

$$
\omega_{i}=\varepsilon_{1}+\cdots+\varepsilon_{i} \quad \text { for } i=1, \ldots, r
$$

(b) Give two examples of highest weight modules for C_{2} for which every weight space has multiplicity 1 (and justify how you know every weight space has multiplicity 1).

The trivial representation $L(0)$ is one-dimensional by definition. Just as in part (2), the representations $L\left(\omega_{1}\right)$ is a 4 -dimensional module 1 whose weights are the W-orbit of the highest weight, and so the weight spaces all have the same multiplicity as the top weight, namely, 1.
Note that $L\left(\omega_{2}\right)=L\left(\varepsilon_{1}+\varepsilon_{2}\right)$ has 0 as a non-trivial weight (since $\varepsilon_{1}+\varepsilon_{2}$ is also a root), so $L\left(\omega_{2}\right)$ does not work here.

