Exercise 4: Some things about roots.
(1) (a) Calculate the roots for types B_{r}, C_{r}, and D_{r}.

Let

$$
\varepsilon_{i}: h_{\ell} \rightarrow \begin{cases}\operatorname{Tr}\left(h_{\ell} E_{i, i}\right) & \text { in cases } C_{r} \text { and } D_{r}, \text { and } \\ \operatorname{Tr}\left(h_{\ell} E_{i+1, i+1}\right) & \text { in case } B_{r},\end{cases}
$$

where

$$
h_{\ell}= \begin{cases}E_{\ell, \ell}-E_{\ell+r, \ell+r} & \text { in cases } C_{r} \text { and } D_{r}, \text { and } \\ E_{\ell+1, \ell+1}-E_{\ell+r+1, \ell+r+1} & \text { in case } B_{r} .\end{cases}
$$

So in all cases, $\delta_{i \ell}=\varepsilon_{i}(\ell)$. Therefore, with respect to the trace form on the standard representation $\langle\rangle,, h_{\varepsilon_{i}}=\frac{1}{2} h_{\ell}$, and $\left\{\varepsilon_{1}, \ldots, \varepsilon_{r}\right\}$ is an orthonormal basis for $\mathfrak{h}_{\mathbb{R}}^{*}$.
The root are as follows.
Type B_{r} :

$$
R=\left\{ \pm \varepsilon_{k}, \pm\left(\varepsilon_{i}-\varepsilon_{j}\right), \pm\left(\varepsilon_{i}+\varepsilon_{j}\right) \mid 1 \leq k \leq r, 1 \leq i<j \leq r\right\}
$$

Type C_{r} :

$$
R=\left\{ \pm 2 \varepsilon_{k}, \pm\left(\varepsilon_{i}-\varepsilon_{j}\right), \pm\left(\varepsilon_{i}+\varepsilon_{j}\right) \mid 1 \leq k \leq r, 1 \leq i<j \leq r\right\}
$$

Type D_{r} :

$$
R=\left\{ \pm\left(\varepsilon_{i}-\varepsilon_{j}\right), \pm\left(\varepsilon_{i}+\varepsilon_{j}\right) \mid 1 \leq i<j \leq r\right\}
$$

(b) Draw the roots for $B_{1}, B_{2}, C_{1}, C_{2}, D_{1}$, and D_{2} (these can all be drawn in one or two dimensions).
Note: compare your pictures to your answers for Exercise 1, part (2)!
Type B_{1}, C_{1} :

$$
-\alpha_{1} \stackrel{0}{\downarrow} \alpha_{1} \quad \text { where } \quad \alpha_{1}= \begin{cases}\varepsilon_{1} & \text { type } B_{1}, \\ 2 \varepsilon_{1} & \text { type } C_{1} .\end{cases}
$$

This is the same picture as for A_{1} (where $\alpha=\varepsilon_{1}-\varepsilon_{2}$), and we saw $B_{1}, C_{1} \cong A_{1}$. Type D_{1} has no roots (so the picture is the 0 -dimensional point), and $D_{1} \cong \mathbb{C}$. Type B_{2} :

These diagrams are not a priori the same, even though we saw $B_{2} \cong C_{2}$. But by rotating the C_{2} roots by 45°, we see they both look like

$$
\text { Type } B_{2} \text { and } C_{2} \text { : }
$$

where $\alpha_{1}=\left\{\begin{array}{ll}\varepsilon_{1} & \text { in type } B_{2}, \\ \varepsilon_{1}-\varepsilon_{2} & \text { in type } C_{2},\end{array}\right.$ and $\alpha_{2}= \begin{cases}\varepsilon_{2} & \text { in type } B_{2}, \\ \varepsilon_{1}+\varepsilon_{2} & \text { in type } C_{2} .\end{cases}$
Type D_{2} :

Notice that this looks exactly like the direct product of the roots of A_{1} with itself, and indeed $D_{2} \cong A_{1} \times A_{1}$.
(2) For $\alpha, \beta \in R$, show that
(a) $\beta\left(h_{\alpha} \vee\right) \in \mathbb{Z}$,
(b) $\beta-\beta\left(h_{\alpha \vee}\right) \alpha \in R$, and
(c) if $\beta \neq \pm \alpha$, and a and b are the largest non-negative integers such that

$$
\beta-a \alpha \in R \quad \text { and } \beta+b \alpha \in R,
$$

then $\beta+i \alpha \in R$ for all $-a \leq i \leq b$ and $\beta\left(h_{\alpha} \vee\right)=a-b$.
(Use the fact that $\sum_{i} \mathfrak{g}_{\beta+i \alpha}$ is a $\mathfrak{s l}_{2}$-module.)
Note that $\alpha\left(h_{\alpha \vee}\right)=2$.
Since $\left.\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}\right]=\mathfrak{g}_{\alpha+\beta}\right]$,

$$
V=\sum_{i} \mathfrak{g}_{\beta+i \alpha}
$$

is a simple \mathfrak{s}_{α} submodule of \mathfrak{g} (under the adjoint action). The action of $h_{\alpha \vee}$ on $\mathfrak{g}_{\beta+i \alpha}$ is by the constant

$$
\left\langle\alpha^{\vee}, \beta+i \alpha\right\rangle=\left\langle\alpha^{\vee}, \beta\right\rangle+2 i .
$$

Since V is a $\mathfrak{s}_{\alpha} \cong \mathfrak{s l}_{2}$ module, the weights of $h_{\alpha^{\vee}}$ are all integers of the same parity, and symmetric around 0 .

Since $\beta \in R, \mathfrak{g}_{\beta} \neq 0$, so $\left\langle\alpha^{\vee}, \beta\right\rangle$ is a weight of V. So $\left\langle\alpha^{\vee}, \beta\right\rangle \in \mathbb{Z}$. And since $\left\langle\alpha^{\vee}, \beta\right\rangle$ is a weight of V, so is $-\left\langle\alpha^{\vee}, \beta\right\rangle$. Which $\mathfrak{g}_{\beta+i \alpha}$ has that weight? It's exactly when

$$
-\left\langle\alpha^{\vee}, \beta\right\rangle=\left\langle\alpha^{\vee}, \beta+i \alpha\right\rangle=\left\langle\alpha^{\vee}, \beta\right\rangle+2 i .
$$

So $i=-\left\langle\alpha^{\vee}, \beta\right\rangle$. Therefore $\mathfrak{g}_{\left.\beta-\left\langle\alpha^{\vee}, \beta\right\rangle \alpha\right\rangle} \neq 0$, so

$$
\left.\beta-\left\langle\alpha^{\vee}, \beta\right\rangle \alpha\right\rangle=\beta-\beta\left(h_{\alpha^{\vee}}\right) \alpha \in R .
$$

Finally, if $\beta \neq \pm \alpha$, and a and b are the largest non-negative integers such that

$$
\beta-a \alpha \in R \quad \text { and } \beta+b \alpha \in R,
$$

Then one of of each extreme is the highest weight space of V and the other is the lowest, so every integral shift of α between must be a non-zero weight space as well.

