Exercise 3: Some things about NIBS forms.

- (1) Prove that the Killing form is an invariant symmetric bilinear form on any simple finite dimensional complex Lie algebra.
- (2) Show that the trace form on the standard representation of \mathfrak{sl}_n is non-degenerate.
- (3) Pick two of the classical types (A_r, B_r, C_r, D_r) and calculate how the trace form on the standard representation of each type differs from the Killing form (as a function of r). (You'll need a good basis for each to do this.)
- (4) Let $B = \{b_1, \ldots, b_\ell\}$ be a basis for a finite-dimensional reductive complex Lie algebra \mathfrak{g} with a NIBS form \langle, \rangle , and define the dual basis

$$B^* = \{b_1^*, \dots, b_\ell^*\}$$
 by $\langle b_i, b_j^* \rangle = \delta_{i,j}$.

The *Casimir* element of \mathfrak{g} is

$$\kappa = \sum_{i=1}^{\ell} b_i b_i^* \in U\mathfrak{g}$$

Prove the following.

- (a) κ does not depend on the choice of basis.
- (b) $\kappa \in Z(U\mathfrak{g})$, where $Z(U\mathfrak{g})$ is the center of $U\mathfrak{g}$ (it suffices to show that κ commutes with every element of \mathfrak{g}).

[Notice that (i) B^* is also a basis for \mathfrak{g} , and (ii) for any basis $B = \{b_i\}_i$ and $x \in \mathfrak{g}$, you have $x = \sum_i \langle x, b_i^* \rangle b_i$.]