
Exercise 3: Some things about NIBS forms.

(1) Prove that the Killing form is an invariant symmetric bilinear form on any simple finite
dimensional complex Lie algebra.

The Killing form 〈, 〉 : g ⊗ g → C is given by 〈x, y〉 = Tr(adxady). It’s symmetric since
Tr(AB) = Tr(BA). It’s linear in the first coordinate because ad and trace are both linear,
so

〈ax+ by, z〉 = Tr(adax+byadz) = Tr((aadx + bady)adz) = Tr(aadxadz + badyadz)

= aTr(adxadz) + b(Tr(adyadz) = a〈x, z〉+ b〈y, z〉.

But 〈, 〉 is symmetric, so it’s bilinear. Since Tr(ABC) = Tr(BCA) = Tr(CAB), it’s invariant
because

〈adx(y), z〉 = 〈[x, y], z〉 = Tr(ad[x,y]adz) = Tr((adxady − adyadx)adz)

= Tr(adxadyadz)− Tr(adyadxadz) = Tr(adyadzadx)− Tr(adyadxadz)

= Tr(ady(adzadx − adxadz)) = Tr(adyad[z,x])

= 〈y, [z, x]〉 = −〈y, adx(z)〉.

(2) Show that the trace form on the standard representation of sln is non-degenerate.

We just need to check that for every element of the basis B = {Ei,j , E`,`−E`+1,`+1 | 1 ≤
i 6= j ≤ n, ` = 1, . . . , n− 1} has some other element of sln with which it pairs non-trivially.
Indeed,

〈Ei,j , Ej,i〉 = Tr(Ei,jEj,i) = Tr(Ei,i) = 1

and

〈E`,` − E`+1,`+1, E`,` − E`+1,`+1〉 = Tr((E`,` − E`+1,`+1)
2) = Tr(E`,` + E`+1,`+1) = 2.

(3) Pick two of the classical types (Ar, Br, Cr, Dr) and calculate how the trace form on the
standard representation of each type differs from the Killing form (as a function of r).
(You’ll need a good basis for each to do this.)

If g is simple, then any NIBS form is a scalar of the Killing form. So we only need to
calculate one pairing in each form and take the quotient.
Type Ar. We saw in class how to use the fact that

〈a, b〉ad =
∑
α∈R

α(a)α(b) for all a, b ∈ h

to quickly calculate, say, 〈h1, h1〉ad using the roots of slr+1. Here’s another slightly less
slick, but totally straightforward calculation of the same constant ratio.

For the trace form on the standard representation st, 〈E1,2, E2,1〉st = 1.
For the Killing form, we need to calculate adE1,2 and adE2,1 . One basis is

{Ei,j , h` = E`,` − E`+1,`+1 | 1 ≤ i 6= j ≤ r + 1, 1 ≤ ` ≤ r}.

Then for any i, j,

adE1,2(Ei,j) = δi,2E1,j − δj,1Ei,2 and adE2,1(Ei,j) = δi,1E2,j − δj,2Ei,1.
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So

adE1,2adE2,1Ei,j = adE1,2(δi,1E2,j − δj,2Ei,1)
δi,1(E1,j − δj,1E2,2)− δj,2(δi,2E1,1 − Ei,2)
= δi,1E1,j + δj,2Ei,2 − (δi,1δj,1E2,2 + δj,2δi,2E1,1).

Thus

adE1,2adE2,1Ei,j = δi,1Ei,j + δj,2Ei,j for i 6= j,

and

adE1,2adE2,1(E`,` − E`+1,`+1) =


E1,1 − E2,2 − E2,2 + E1,1 = 2h1 ` = 1

E2,2 − E1,1 = −h1 ` = 2

0 otherwise.

So the trace of adE1,2adE2,1 , which is the sum over basis elements b of the coefficient of b in
adE1,2adE2,1b, is given by

r︸︷︷︸
#E1,j

+ r︸︷︷︸
#Ei,2

+ 2︸︷︷︸
h1

= 2(r + 1)

(E1,2 gets double counted, but adE1,2adE2,1E1,2 = 2E1,2). So

〈, 〉ad = 2(r + 1)〈, 〉st.

Other types. Let st be the standard representation.

Type Br: 〈, 〉ad = (2r − 1)〈, 〉st
Type Cr: 〈, 〉ad = 2(r + 1)〈, 〉st
Type Dr: 〈, 〉ad = 2(r − 1)〈, 〉st

(4) Let B = {b1, . . . , b`} be a basis for a finite-dimensional reductive complex Lie algebra g
with a NIBS form 〈, 〉, and define the dual basis

B∗ = {b∗1, . . . , b∗`} by 〈bi, b∗j 〉 = δi,j .

The Casimir element of g is

κ =
∑̀
i=1

bib
∗
i ∈ Ug.

Prove the following.
(a) κ does not depend on the choice of basis.

Note first that {b∗1, . . . , b∗`} is also a basis of g. Let {d1, . . . , d`} be a third basis of g.
Then bi =

∑
j〈bi, d∗j 〉dj implies

κ =
∑̀
i=1

bib
∗
i =

∑̀
i,j=1

〈bi, d∗j 〉djb∗i

=
∑̀
j=1

dj

(∑
i

〈bi, d∗j 〉b∗i

)
=
∑̀
j=1

djd
∗
j .
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(b) κ ∈ Z(Ug), where Z(Ug) is the center of Ug (it suffices to show that κ commutes with
every element of g).

Let x ∈ g. Then

xκ =
∑̀
i=1

xbib
∗
i =

∑̀
i=1

([x, bi] + bix)b∗i

=
∑̀
i,j=1

〈[x, bi], b∗j 〉bjb∗i +
∑̀
i=1

bixb
∗
i

= −
∑̀
i,j=1

〈bi, [x, b∗j ]〉bjb∗i +
∑̀
i=1

bixb
∗
i

= −
∑̀
j=1

bj [x, b
∗
j ] +

∑̀
i=1

bixb
∗
i

=
∑̀
i=1

bi(−xbi + bix+ xbi) = κx.

[Notice that (i) B∗ is also a basis for g, and (ii) for any basis B = {bi}i and x ∈ g, you have
x =

∑
i〈x, b∗i 〉bi.]


