Exercise 2: Some things about $\mathfrak{s l}_{2}$.
Recall, $L(d)$ is the irreducible $\mathfrak{s l}_{2}$-module with dimension $d+1$.
(1) Calculate (give the matrices for) the adjoint representation of $\mathfrak{s l}_{2}$ and decompose it into irreducible summands.
(2) Let $V=\{u, v\}$ be the standard representation of $\mathfrak{s l}_{2}$, given by

$$
x=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

(a) Classify V as an $\mathfrak{s l}_{2}$-module (as sums of $L(d)$'s).
(b) Give a basis for $V \otimes V$ and calculate the matrices for the action of x, y, and h on that basis (For $g \in \mathfrak{s l}_{2}, g$ acts on $a \otimes b$ by...).
(c) Classify $V \otimes V$ and $V^{\otimes 3}$ as $\mathfrak{s l}_{2}$-modules.
(d) (Bonus) Provide a general formula for the decomposition of $V^{\otimes k}$.
(3) With V as in the previous part, define the k th symmetric sum of V as

$$
\operatorname{Sym}^{k}(V)=V^{\otimes k} /\langle a \otimes b-b \otimes a\rangle \cong \mathbb{C}\left\{u^{k}, u^{k-1} v, \ldots, v^{k}\right\}
$$

(since $\operatorname{Sym}^{k}(V)$ is isomorphic to the degree- k homogeneous elements of $\mathbb{C}[u, v]$).
(a) Generally describe the action of $\mathfrak{s l}_{2}$ on $\operatorname{Sym}^{k}(V)$. (For $g \in \mathfrak{s l}_{2}, g$ acts on $u^{\ell} v^{k-\ell}$ by...)
(b) How does $\operatorname{Sym}^{k}(V)$ decompose into irreducible summands?
(c) Show that for $a \geq b$,

$$
\operatorname{Sym}^{a}(V) \otimes \operatorname{Sym}^{b}(V) \cong \bigoplus_{i=0}^{b} \operatorname{Sym}^{a+b-2 i}(V)
$$

