Exercise 2: Some things about \mathfrak{sl}_2 .

Recall, L(d) is the irreducible \mathfrak{sl}_2 -module with dimension d+1.

- (1) Calculate (give the matrices for) the adjoint representation of \mathfrak{sl}_2 and decompose it into irreducible summands.
- (2) Let $V = \{u, v\}$ be the standard representation of \mathfrak{sl}_2 , given by

$$x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \qquad h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

- (a) Classify V as an \mathfrak{sl}_2 -module (as sums of L(d)'s).
- (b) Give a basis for $V \otimes V$ and calculate the matrices for the action of x, y, and h on that basis (For $g \in \mathfrak{sl}_2$, g acts on $a \otimes b$ by...). (c) Classify $V \otimes V$ and $V^{\otimes 3}$ as \mathfrak{sl}_2 -modules.
- (d) (Bonus) Provide a general formula for the decomposition of $V^{\otimes k}$.
- (3) With V as in the previous part, define the kth symmetric sum of V as

$$\operatorname{Sym}^{k}(V) = V^{\otimes k} / \langle a \otimes b - b \otimes a \rangle \cong \mathbb{C}\{u^{k}, u^{k-1}v, \dots, v^{k}\}$$

(since $\operatorname{Sym}^{k}(V)$ is isomorphic to the degree-k homogeneous elements of $\mathbb{C}[u, v]$).

- (a) Generally describe the action of \mathfrak{sl}_2 on $\operatorname{Sym}^k(V)$. (For $g \in \mathfrak{sl}_2$, g acts on $u^{\ell}v^{k-\ell}$ by...)
- (b) How does $\operatorname{Sym}^{k}(V)$ decompose into irreducible summands?
- (c) Show that for $a \ge b$,

$$\operatorname{Sym}^{a}(V) \otimes \operatorname{Sym}^{b}(V) \cong \bigoplus_{i=0}^{b} \operatorname{Sym}^{a+b-2i}(V).$$