Answers to Exercise 2: Some things about \mathfrak{sl}_2 .

Recall, L(d) is the irreducible \mathfrak{sl}_2 -module with dimension d+1.

(1) Calculate (give the matrices for) the adjoint representation of \mathfrak{sl}_2 and decompose it into irreducible summands.

On the basis $\{x, h, y\}$,

$$\mathrm{ad}_x = \begin{pmatrix} 0 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad \mathrm{ad}_h = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix}, \quad \mathrm{ad}_y = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 2 & 0 \end{pmatrix}.$$

Since the action of h is diagonalized, we can read the weights directly off of the diagonal terms in ad_h , i.e. the weights of the adjoint representation are $\{2, 0, -2\}$ with multiplicity one. So the adjoint representation is isomorphic to L(2).

(2) Let $V = \{u, v\}$ be the standard representation of \mathfrak{sl}_2 , given by

$$x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \qquad h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

(a) Classify V as an \mathfrak{sl}_2 -module (as sums of L(d)'s).

Since the action of h is given by the matrix $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, the weights of V are $\{1, -1\}$ with multiplicity one. Thus $V \cong L(1)$.

(b) Give a basis for $V \otimes V$ and calculate the matrices for the action of x, y, and h on that basis (For $g \in \mathfrak{sl}_2$, g acts on $a \otimes b$ by...).

\mathfrak{sl}_2 on V	u	v]	$\mathfrak{sl}_2 \text{ on } V \otimes V$	$u\otimes u$	$u\otimes v$	$v\otimes u$	$v\otimes v$
x	0	u		x	0	$u\otimes u$	$u\otimes u$	$u\otimes v+v\otimes u$
y	v	0		y	$v \otimes u + u \otimes v$	$v\otimes v$	$v\otimes v$	0
h	1	-1		h	$2(u\otimes u)$	0	0	$2(v\otimes v)$

(c) Classify $V \otimes V$ and $V^{\otimes 3}$ as \mathfrak{sl}_2 -modules.

Since V = L(1), as we saw in class, $V \otimes V \cong L(2) \oplus L(0)$ and $V \otimes V \otimes V \cong L(3) \oplus L(0)^{\oplus 2}$.

- (d) (Bonus) Provide a general formula for the decomposition of $V^{\otimes k}$.
- (3) With V as in the previous part, define the kth symmetric sum of V as

$$\operatorname{Sym}^{k}(V) = V^{\otimes k} / \langle a \otimes b - b \otimes a \rangle \cong \mathbb{C}\{u^{k}, u^{k-1}v, \dots, v^{k}\}$$

- (since $\operatorname{Sym}^{k}(V)$ is isomorphic to the degree-k homogeneous elements of $\mathbb{C}[u, v]$).
- (a) Generally describe the action of \mathfrak{sl}_2 on $\operatorname{Sym}^k(V)$. (For $g \in \mathfrak{sl}_2$, g acts on $u^{\ell}v^{k-\ell}$ by...)

For example, when k = 2, the action table is gotten from the action table from the previous part modded out by commutativity, i.e.

\mathfrak{sl}_2 on $\mathrm{Sym}^2(V)$	u^2	uv = vu	v^2
x	0	u^2	2uv
y	2uv	v^2	0
h	$2u^2$	0	$2v^2$

In general,

$$\begin{aligned} x \cdot (u^{\ell} v^{k-\ell}) &= (k-\ell)(u^{\ell+1} v^{k-\ell-1}), \quad y \cdot (u^{\ell} v^{k-\ell}) = \ell(u^{\ell-1} v^{k-\ell+1}) \\ \text{and} \quad h \cdot (u^{\ell} v^{k-\ell}) &= (2\ell-k)(u^{\ell} v^{k-\ell}). \end{aligned}$$

- (b) How does $\operatorname{Sym}^{k}(V)$ decompose into irreducible summands? Since $u^{k}, u^{k-1}v, \ldots, v^{k}$ are weight vectors with weights $k, k-2, \ldots, -k$, respectively, $\operatorname{Sym}^{k}(V) \cong L(k)$.
- (c) Show that for $a \ge b$,

$$\operatorname{Sym}^{a}(V) \otimes \operatorname{Sym}^{b}(V) \cong \bigoplus_{i=0}^{b} \operatorname{Sym}^{a+b-2i}(V).$$

Since the weight spaces of $M \otimes N$ are given by $(M \otimes N)_{\gamma} = \bigoplus_{\alpha+\beta=\gamma} M_{\alpha} \otimes N_{\beta}$, the weights of $L(a) \otimes L(b)$ are

