Answers to Exercise 2: Some things about $\mathfrak{s l}_{2}$.
Recall, $L(d)$ is the irreducible $\mathfrak{s l}_{2}$-module with dimension $d+1$.
(1) Calculate (give the matrices for) the adjoint representation of $\mathfrak{s l}_{2}$ and decompose it into irreducible summands.

On the basis $\{x, h, y\}$,

$$
\operatorname{ad}_{x}=\left(\begin{array}{ccc}
0 & -2 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), \quad \operatorname{ad}_{h}=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -2
\end{array}\right), \quad \operatorname{ad}_{y}=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 1 \\
0 & 2 & 0
\end{array}\right) .
$$

Since the action of h is diagonalized, we can read the weights directly off of the diagonal terms in ad_{h}, i.e. the weights of the adjoint representation are $\{2,0,-2\}$ with multiplicity one. So the adjoint representation is isomorphic to $L(2)$.
(2) Let $V=\{u, v\}$ be the standard representation of $\mathfrak{s l}_{2}$, given by

$$
x=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

(a) Classify V as an $\mathfrak{s l}_{2}$-module (as sums of $L(d)$'s).

Since the action of h is given by the matrix $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$, the weights of V are $\{1,-1\}$ with multiplicity one. Thus $V \cong L(1)$.
(b) Give a basis for $V \otimes V$ and calculate the matrices for the action of x, y, and h on that basis (For $g \in \mathfrak{s l}_{2}, g$ acts on $a \otimes b$ by...).

$\mathfrak{s l}_{2}$ on V	u	v
x	0	u
y	v	0
h	1	-1

$\mathfrak{s l}_{2}$ on $V \otimes V$	$u \otimes u$	$u \otimes v$	$v \otimes u$	$v \otimes v$
x	0	$u \otimes u$	$u \otimes u$	$u \otimes v+v \otimes u$
y	$v \otimes u+u \otimes v$	$v \otimes v$	$v \otimes v$	0
h	$2(u \otimes u)$	0	0	$2(v \otimes v)$

(c) Classify $V \otimes V$ and $V^{\otimes 3}$ as $\mathfrak{s l}_{2}$-modules.

Since $V=L(1)$, as we saw in class, $V \otimes V \cong L(2) \oplus L(0)$ and $V \otimes V \otimes V \cong L(3) \oplus L(0)^{\oplus 2}$.
(d) (Bonus) Provide a general formula for the decomposition of $V^{\otimes k}$.
(3) With V as in the previous part, define the k th symmetric sum of V as

$$
\operatorname{Sym}^{k}(V)=V^{\otimes k} /\langle a \otimes b-b \otimes a\rangle \cong \mathbb{C}\left\{u^{k}, u^{k-1} v, \ldots, v^{k}\right\}
$$

(since $\operatorname{Sym}^{k}(V)$ is isomorphic to the degree- k homogeneous elements of $\mathbb{C}[u, v]$).
(a) Generally describe the action of $\mathfrak{s l}_{2}$ on $\operatorname{Sym}^{k}(V)$. (For $g \in \mathfrak{s l}_{2}, g$ acts on $u^{\ell} v^{k-\ell}$ by...)

For example, when $k=2$, the action table is gotten from the action table from the previous part modded out by commutativity, i.e.

$\mathfrak{s l}_{2}$ on $\operatorname{Sym}^{2}(V)$	u^{2}	$u v=v u$	v^{2}
x	0	u^{2}	$2 u v$
y	$2 u v$	v^{2}	0
h	$2 u^{2}$	0	$2 v^{2}$

In general,

$$
\begin{gathered}
x \cdot\left(u^{\ell} v^{k-\ell}\right)=(k-\ell)\left(u^{\ell+1} v^{k-\ell-1}\right), \quad y \cdot\left(u^{\ell} v^{k-\ell}\right)=\ell\left(u^{\ell-1} v^{k-\ell+1}\right), \\
\text { and } \quad h \cdot\left(u^{\ell} v^{k-\ell}\right)=(2 \ell-k)\left(u^{\ell} v^{k-\ell}\right) .
\end{gathered}
$$

(b) How does $\operatorname{Sym}^{k}(V)$ decompose into irreducible summands?

Since $u^{k}, u^{k-1} v, \ldots, v^{k}$ are weight vectors with weights $k, k-2, \ldots,-k$, respectively, $\operatorname{Sym}^{k}(V) \cong L(k)$.
(c) Show that for $a \geq b$,

$$
\operatorname{Sym}^{a}(V) \otimes \operatorname{Sym}^{b}(V) \cong \bigoplus_{i=0}^{b} \operatorname{Sym}^{a+b-2 i}(V)
$$

Since the weight spaces of $M \otimes N$ are given by $(M \otimes N)_{\gamma}=\bigoplus_{\alpha+\beta=\gamma} M_{\alpha} \otimes N_{\beta}$, the weights of $L(a) \otimes L(b)$ are

$$
\begin{aligned}
& \bigsqcup_{i=0}^{b}\{a+b-2 i, a-2+b-2 i, \ldots,-a+b-2 i\} \quad \text { (counting multiplicities) } \\
& =\bigsqcup_{j=0}^{b}\{a+b-2 i, a+b-2 i-2, \ldots,-(a+b-2 i)\} \\
& =\bigsqcup_{j=0}^{b}\{\text { weights of } L(a+b-2 i)\} .
\end{aligned}
$$

Pictorially,

So
$\operatorname{Sym}^{a}(V) \otimes \operatorname{Sym}^{b}(V) \cong L(a) \otimes L(b) \cong \bigoplus_{i=0}^{b} L(a+b-2 i) \cong \bigoplus_{i=0}^{b} \operatorname{Sym}^{a+b-2 i}(V)$.

