Exercise 1: Some things about the classical Lie algebras.

- (1) For each of the following types, give a basis B which has exactly r diagonal matrices and is otherwise as workable as possible. In particular, keep symmetry, so that if $x \in B$ then $x^T \in B$. Express elements as sums of elementary matrices E_{ij} (the matrix with a 1 in the (i, j) position and 0's elsewhere. Clearly, we're choosing a basis for V in the process. A form on V defined by a matrix J is defined by $\langle u, v \rangle = u^T J v$. Let I_r be the $r \times r$ identity matrix.
 - (a) **Type** A_r . For $r \ge 1$, give a basis for \mathfrak{sl}_{r+1} , and verify that $\dim(\mathfrak{sl}_{r+1}) = r(r+2)$.
 - (b) **Type** C_r . For $r \ge 1$, put the form on $V = \mathbb{C}^{2r}$ given by $J = \begin{pmatrix} 0 & I_r \\ -I_r & 0 \end{pmatrix}$.
 - (*) Verify that \langle , \rangle is skew symmetric, i.e. $\langle u, v \rangle = -\langle v, u \rangle$.
 - (*) Verify that if $\mathfrak{sp}_{2r} = \{x \in \mathfrak{sl}(V) \mid \langle xu, v \rangle = -\langle u, xv \rangle\}$, then \mathfrak{sp}_{2r} is in fact closed $(\langle, \rangle \text{ is bilinear, so you only need to check } [,].)$
 - (*) Give a basis for \mathfrak{sp}_{2r} , and verify that $\dim(\mathfrak{sp}_{2r}) = r(2r+1)$. (Break each $x \in \mathfrak{sp}_{2r}$ into the four $r \times r$ matrices that J effect independently, (see below) and get conditions on each of them)

(c) **Type**
$$D_r$$
. For $r \ge 2$, put the form on $V = \mathbb{C}^{2r}$ given by $J = \begin{pmatrix} 0 & I_r \\ I_r & 0 \end{pmatrix}$.

- (*) Verify that \langle , \rangle is symmetric, i.e. $\langle u, v \rangle = \langle v, u \rangle$.
- (*) Verify that if $\mathfrak{so}_{2r} = \{x \in \mathfrak{sl}(V) \mid \langle xu, v \rangle = -\langle u, xv \rangle\}$, then \mathfrak{so}_{2r} is closed.
- (*) Give a basis for \mathfrak{so}_{2r} , and verify that $\dim(\mathfrak{so}_{2r}) = r(2r-1)$. (Break each $x \in \mathfrak{so}_{2r}$ into the four $r \times r$ matrices that J effects independently, (see below) and get conditions on each of them)

(d) **Type** B_r . For $r \ge 1$, put the form on $V = \mathbb{C}^{2r+1}$ given by $J = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & I_r \\ 0 & I_r & 0 \end{pmatrix}$. Give a

basis for \mathfrak{so}_{2r+1} , and verify that $\dim(\mathfrak{so}_{2r+1}) = r(2r+1)$. (Break each $x \in \mathfrak{so}_{2r+1}$ into the nine blocks that J effects independently (see below) and get conditions on each of them.)

(2) As mentioned in class, B_1 , C_1 , C_2 , D_1 , D_2 , and D_3 are either not distinct from, or decompose into direct sums of Lie algebras from amongst.

$${A_r}_{r\geq 1} \sqcup {B_r}_{r\geq 2} \sqcup {C_r}_{r\geq 3} \sqcup {D_r}_{r\geq 4}$$

Verify this for any 4 of these 6 Lie algebras by expressing them in terms of the others.

