Exercise 1: Some things about the classical Lie algebras.
(1) For each of the following types, give a basis B which has exactly r diagonal matrices and is otherwise as workable as possible. In particular, keep symmetry, so that if $x \in B$ then $x^{T} \in B$. Express elements as sums of elementary matrices $E_{i j}$ (the matrix with a 1 in the (i, j) position and 0 's elsewhere. Clearly, we're choosing a basis for V in the process. A form on V defined by a matrix J is defined by $\langle u, v\rangle=u^{T} J v$. Let I_{r} be the $r \times r$ identity matrix.
(a) Type A_{r}. For $r \geq 1$, give a basis for $\mathfrak{s l}_{r+1}$, and verify that $\operatorname{dim}\left(\mathfrak{s l}_{r+1}\right)=r(r+2)$.
(b) Type C_{r}. For $r \geq 1$, put the form on $V=\mathbb{C}^{2 r}$ given by $J=\left(\begin{array}{cc}0 & I_{r} \\ -I_{r} & 0\end{array}\right)$.
(*) Verify that \langle,$\rangle is skew symmetric, i.e. \langle u, v\rangle=-\langle v, u\rangle$.
(*) Verify that if $\mathfrak{s p}_{2 r}=\{x \in \mathfrak{s l}(V) \mid\langle x u, v\rangle=-\langle u, x v\rangle\}$, then $\mathfrak{s p}_{2 r}$ is in fact closed $(\langle$,$\rangle is bilinear, so you only need to check [,].)$
(*) Give a basis for $\mathfrak{s p}_{2 r}$, and verify that $\operatorname{dim}\left(\mathfrak{s p}_{2 r}\right)=r(2 r+1)$. (Break each $x \in$ $\mathfrak{s p}_{2 r}$ into the four $r \times r$ matrices that J effect independently, (see below) and get conditions on each of them)
(c) Type D_{r}. For $r \geq 2$, put the form on $V=\mathbb{C}^{2 r}$ given by $J=\left(\begin{array}{cc}0 & I_{r} \\ I_{r} & 0\end{array}\right)$.
(*) Verify that \langle,$\rangle is symmetric, i.e. \langle u, v\rangle=\langle v, u\rangle$.
(*) Verify that if $\mathfrak{s o}_{2 r}=\{x \in \mathfrak{s l}(V) \mid\langle x u, v\rangle=-\langle u, x v\rangle\}$, then $\mathfrak{s o}_{2 r}$ is closed.
(*) Give a basis for $\mathfrak{s o}_{2 r}$, and verify that $\operatorname{dim}\left(\mathfrak{s o}_{2 r}\right)=r(2 r-1)$. (Break each $x \in \mathfrak{s o}_{2 r}$ into the four $r \times r$ matrices that J effects independently, (see below) and get conditions on each of them)
(d) Type B_{r}. For $r \geq 1$, put the form on $V=\mathbb{C}^{2 r+1}$ given by $J=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & I_{r} \\ 0 & I_{r} & 0\end{array}\right)$. Give a basis for $\mathfrak{s o}_{2 r+1}$, and verify that $\operatorname{dim}\left(\mathfrak{s o}_{2 r+1}\right)=r(2 r+1)$. (Break each $x \in \mathfrak{s o}_{2 r+1}$ into the nine blocks that J effects independently (see below) and get conditions on each of them.)
(2) As mentioned in class, $B_{1}, C_{1}, C_{2}, D_{1}, D_{2}$, and D_{3} are either not distinct from, or decompose into direct sums of Lie algebras from amongst.

$$
\left\{A_{r}\right\}_{r \geq 1} \sqcup\left\{B_{r}\right\}_{r \geq 2} \sqcup\left\{C_{r}\right\}_{r \geq 3} \sqcup\left\{D_{r}\right\}_{r \geq 4}
$$

Verify this for any 4 of these 6 Lie algebras by expressing them in terms of the others.

Decompositions of elements for \mathfrak{g} of each type.

