Answers to Exercise 1: Some things about the classical Lie algebras.

- (1) For each of the following types, give a basis B which has exactly r diagonal matrices and is otherwise as workable as possible. In particular, keep symmetry, so that if $x \in B$ then $x^T \in B$. Express elements as sums of elementary matrices E_{ij} (the matrix with a 1 in the (i, j) position and 0's elsewhere. Clearly, we're choosing a basis for V in the process. A form on V defined by a matrix J is defined by $\langle u, v \rangle = u^T J v$. Let I_r be the $r \times r$ identity matrix.
 - (a) **Type** A_r . For $r \ge 1$, give a basis for \mathfrak{sl}_{r+1} , and verify that $\dim(\mathfrak{sl}_{r+1}) = r(r+2)$.
 - A good basis of \mathfrak{sl}_{r+1} is

 ${E_{ii} - E_{i+1,i+1} \mid i = 1, \dots, r} \sqcup {E_{ij}, E_{ij} \mid 1 \le i < j \le r+1}.$

(b) **Type** C_r . For $r \ge 1$, put the form on $V = \mathbb{C}^{2r}$ given by $J = \begin{pmatrix} 0 & I_r \\ -I_r & 0 \end{pmatrix}$. (*) Verify that \langle, \rangle is skew symmetric, i.e. $\langle u, v \rangle = -\langle v, u \rangle$.

- Since $J^T = -J$, $\langle u, v \rangle = u^T J v = (v^T J^T u)^T = -(v^T J u)^T = -\langle v, u \rangle^T = -\langle v, u \rangle.$
- (*) Verify that if $\mathfrak{sp}_{2r} = \{x \in \mathfrak{sl}(V) \mid \langle xu, v \rangle = -\langle u, xv \rangle\}$, then \mathfrak{sp}_{2r} is in fact closed $(\langle, \rangle \text{ is bilinear, so you only need to check } [,].)$

For any bilinear form \langle , \rangle on \mathbb{C}^n , any subspace of \mathfrak{gl}_n given by

 $\mathfrak{s} = \{ x \in \mathfrak{gl}_n \mid \langle xu, v \rangle = \langle v, xu \rangle \}$

is a Lie algebra since (1) it's a subspace because \langle , \rangle is bilinear, and (2) it's closed under the Lie bracket because

$$\begin{split} \langle [x,y]u,v\rangle &= \langle (xy-yx)u,v\rangle = \langle xyu,v\rangle - \langle yxu,v\rangle \\ &= -\langle yu,xv\rangle + \langle xu,yv\rangle = \langle u,yxv\rangle - \langle u,xyv\rangle \\ &= -\langle u,(xy-yx)v\rangle = -\langle u,[x,y]v\rangle. \end{split}$$

(*) Give a basis for \mathfrak{sp}_{2r} , and verify that $\dim(\mathfrak{sp}_{2r}) = r(2r+1)$. (Break each $x \in \mathfrak{sp}_{2r}$ into the four $r \times r$ matrices that J effect independently, (see below) and get conditions on each of them)

The condition $x^T J = -Jx$ requires $X^T = -Z$, $Y^T = Y$, and $(Y')^T = Y'$. A good basis for \mathfrak{sp}_{2r} is

- $\{E_{ij} E_{j+r,i+r} \mid 1 \le i, j \le r\} \sqcup \{E_{i,r+j} + E_{j,r+i}, E_{r+i,j} + E_{r+j,i} \mid 1 \le i \le j \le r\}.$
- (c) **Type** D_r . For $r \ge 2$, put the form on $V = \mathbb{C}^{2r}$ given by $J = \begin{pmatrix} 0 & I_r \\ I_r & 0 \end{pmatrix}$.
 - (*) Verify that \langle , \rangle is symmetric, i.e. $\langle u, v \rangle = \langle v, u \rangle$. Since $J^T = J$, a similar computation as in (b) will show $\langle u, v \rangle = \langle v, u \rangle$.

- (*) Verify that if $\mathfrak{so}_{2r} = \{x \in \mathfrak{sl}(V) \mid \langle xu, v \rangle = -\langle u, xv \rangle\}$, then \mathfrak{so}_{2r} is closed. See part (b).
- (*) Give a basis for \mathfrak{so}_{2r} , and verify that $\dim(\mathfrak{so}_{2r}) = r(2r-1)$. (Break each $x \in \mathfrak{so}_{2r}$ into the four $r \times r$ matrices that J effects independently, (see below) and get conditions on each of them)

The condition $x^T J = -Jx$ requires $X^T = -Z$, $Y^T = -Y$, and $(Y')^T = -Y'$. A good basis for \mathfrak{so}_{2r} is

- $\{E_{ij} E_{j+r,i+r} \mid 1 \le i, j \le r\} \sqcup \{E_{i,r+j} E_{j,r+i}, E_{r+i,j} E_{r+j,i} \mid 1 \le i < j \le r\}.$
- (d) **Type** B_r . For $r \ge 1$, put the form on $V = \mathbb{C}^{2r+1}$ given by $J = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & I_r \\ 0 & I_r & 0 \end{pmatrix}$. Give a

basis for \mathfrak{so}_{2r+1} , and verify that $\dim(\mathfrak{so}_{2r+1}) = r(2r+1)$. (Break each $x \in \mathfrak{so}_{2r+1}$ into the nine blocks that J effects independently (see below) and get conditions on each of them.)

The condition $x^T J = -Jx$ requires $X^T = -Z$, $Y^T = -Y$, and $(Y')^T = -Y'$, a = 0, $b^T = -c'$, and $c^T = -b'$. A good basis for \mathfrak{so}_{2r+1} is

- $\{ E_{i+1,j+1} E_{j+1+r,i+1+r} \mid 1 \le i, j \le r \}$ $\sqcup \{ E_{i+1,r+j+1} - E_{j+1,r+i+1}, E_{r+i+1,j+1} - E_{r+j+1,i+1} \mid 1 \le i < j \le r \}$ $\sqcup \{ E_{1,r+i+1} - E_{i+1,1}, E_{1,i+1} - E_{r+i+1,1} \}.$
- (2) As mentioned in class, B_1 , C_1 , C_2 , D_1 , D_2 , and D_3 are either not distinct from, or decompose into direct sums of Lie algebras from amongst.

 $\{A_r\}_{r\geq 1} \sqcup \{B_r\}_{r\geq 2} \sqcup \{C_r\}_{r\geq 3} \sqcup \{D_r\}_{r\geq 4}$

Verify this for any 4 of these 6 Lie algebras by expressing them in terms of the others.

$$B_1 \cong C_1 \cong A_1, \quad D_1 \cong \mathbb{C},$$
$$D_2 \cong A_1 \times A_1, \quad C_2 \cong B_2, \quad D_3 \cong A_3$$

