Answers to Exercise 1: Some things about the classical Lie algebras.
(1) For each of the following types, give a basis B which has exactly r diagonal matrices and is otherwise as workable as possible. In particular, keep symmetry, so that if $x \in B$ then $x^{T} \in B$. Express elements as sums of elementary matrices $E_{i j}$ (the matrix with a 1 in the (i, j) position and 0 's elsewhere. Clearly, we're choosing a basis for V in the process. A form on V defined by a matrix J is defined by $\langle u, v\rangle=u^{T} J v$. Let I_{r} be the $r \times r$ identity matrix.
(a) Type A_{r}. For $r \geq 1$, give a basis for $\mathfrak{s l}_{r+1}$, and verify that $\operatorname{dim}\left(\mathfrak{s l}_{r+1}\right)=r(r+2)$.

A good basis of $\mathfrak{s l}_{r+1}$ is

$$
\left\{E_{i i}-E_{i+1, i+1} \mid i=1, \ldots, r\right\} \sqcup\left\{E_{i j}, E_{i j} \mid 1 \leq i<j \leq r+1\right\} .
$$

(b) Type C_{r}. For $r \geq 1$, put the form on $V=\mathbb{C}^{2 r}$ given by $J=\left(\begin{array}{cc}0 & I_{r} \\ -I_{r} & 0\end{array}\right)$.
(*) Verify that \langle,$\rangle is skew symmetric, i.e. \langle u, v\rangle=-\langle v, u\rangle$.
Since $J^{T}=-J$,

$$
\langle u, v\rangle=u^{T} J v=\left(v^{T} J^{T} u\right)^{T}=-\left(v^{T} J u\right)^{T}=-\langle v, u\rangle^{T}=-\langle v, u\rangle .
$$

$(*)$ Verify that if $\mathfrak{s p}_{2 r}=\{x \in \mathfrak{s l}(V) \mid\langle x u, v\rangle=-\langle u, x v\rangle\}$, then $\mathfrak{s p}_{2 r}$ is in fact closed $(\langle$,$\rangle is bilinear, so you only need to check [,].)$

For any bilinear form \langle,$\rangle on \mathbb{C}^{n}$, any subspace of $\mathfrak{g l}_{n}$ given by

$$
\mathfrak{s}=\left\{x \in \mathfrak{g l}_{n} \mid\langle x u, v\rangle=\langle v, x u\rangle\right\}
$$

is a Lie algebra since (1) it's a subspace because \langle,$\rangle is bilinear, and (2) it's closed$ under the Lie bracket because

$$
\begin{aligned}
\langle[x, y] u, v\rangle & =\langle(x y-y x) u, v\rangle=\langle x y u, v\rangle-\langle y x u, v\rangle \\
& =-\langle y u, x v\rangle+\langle x u, y v\rangle=\langle u, y x v\rangle-\langle u, x y v\rangle \\
& =-\langle u,(x y-y x) v\rangle=-\langle u,[x, y] v\rangle .
\end{aligned}
$$

(*) Give a basis for $\mathfrak{s p}_{2 r}$, and verify that $\operatorname{dim}\left(\mathfrak{s p}_{2 r}\right)=r(2 r+1)$. (Break each $x \in$ $\mathfrak{s p}_{2 r}$ into the four $r \times r$ matrices that J effect independently, (see below) and get conditions on each of them)
The condition $x^{T} J=-J x$ requires $X^{T}=-Z, Y^{T}=Y$, and $\left(Y^{\prime}\right)^{T}=Y^{\prime}$. A good basis for $\mathfrak{s p}_{2 r}$ is

$$
\left\{E_{i j}-E_{j+r, i+r} \mid 1 \leq i, j \leq r\right\} \sqcup\left\{E_{i, r+j}+E_{j, r+i}, E_{r+i, j}+E_{r+j, i} \mid 1 \leq i \leq j \leq r\right\} .
$$

(c) Type D_{r}. For $r \geq 2$, put the form on $V=\mathbb{C}^{2 r}$ given by $J=\left(\begin{array}{cc}0 & I_{r} \\ I_{r} & 0\end{array}\right)$.
$(*)$ Verify that \langle,$\rangle is symmetric, i.e. \langle u, v\rangle=\langle v, u\rangle$.
Since $J^{T}=J$, a similar computation as in (b) will show $\langle u, v\rangle=\langle v, u\rangle$.
(*) Verify that if $\mathfrak{s o}_{2 r}=\{x \in \mathfrak{s l}(V) \mid\langle x u, v\rangle=-\langle u, x v\rangle\}$, then $\mathfrak{s o}_{2 r}$ is closed. See part (b).
(*) Give a basis for $\mathfrak{s o}_{2 r}$, and verify that $\operatorname{dim}\left(\mathfrak{s o}_{2 r}\right)=r(2 r-1)$. (Break each $x \in \mathfrak{5 o}_{2 r}$ into the four $r \times r$ matrices that J effects independently, (see below) and get conditions on each of them)
The condition $x^{T} J=-J x$ requires $X^{T}=-Z, Y^{T}=-Y$, and $\left(Y^{\prime}\right)^{T}=-Y^{\prime}$. A good basis for $\mathfrak{s o}_{2 r}$ is
$\left\{E_{i j}-E_{j+r, i+r} \mid 1 \leq i, j \leq r\right\} \sqcup\left\{E_{i, r+j}-E_{j, r+i}, E_{r+i, j}-E_{r+j, i} \mid 1 \leq i<j \leq r\right\}$.
(d) Type B_{r}. For $r \geq 1$, put the form on $V=\mathbb{C}^{2 r+1}$ given by $J=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & I_{r} \\ 0 & I_{r} & 0\end{array}\right)$. Give a basis for $\mathfrak{s o}_{2 r+1}$, and verify that $\operatorname{dim}\left(\mathfrak{s o}_{2 r+1}\right)=r(2 r+1)$. (Break each $x \in \mathfrak{s o}_{2 r+1}$ into the nine blocks that J effects independently (see below) and get conditions on each of them.)
The condition $x^{T} J=-J x$ requires $X^{T}=-Z, Y^{T}=-Y$, and $\left(Y^{\prime}\right)^{T}=-Y^{\prime}, a=0$, $b^{T}=-c^{\prime}$, and $c^{T}=-b^{\prime}$. A good basis for $\mathfrak{5 0}_{2 r+1}$ is

$$
\begin{aligned}
\left\{E_{i+1, j+1}\right. & \left.-E_{j+1+r, i+1+r} \mid 1 \leq i, j \leq r\right\} \\
& \sqcup\left\{E_{i+1, r+j+1}-E_{j+1, r+i+1}, E_{r+i+1, j+1}-E_{r+j+1, i+1} \mid 1 \leq i<j \leq r\right\} \\
& \sqcup\left\{E_{1, r+i+1}-E_{i+1,1}, E_{1, i+1}-E_{r+i+1,1}\right\} .
\end{aligned}
$$

(2) As mentioned in class, $B_{1}, C_{1}, C_{2}, D_{1}, D_{2}$, and D_{3} are either not distinct from, or decompose into direct sums of Lie algebras from amongst.

$$
\left\{A_{r}\right\}_{r \geq 1} \sqcup\left\{B_{r}\right\}_{r \geq 2} \sqcup\left\{C_{r}\right\}_{r \geq 3} \sqcup\left\{D_{r}\right\}_{r \geq 4}
$$

Verify this for any 4 of these 6 Lie algebras by expressing them in terms of the others.

$$
\begin{gathered}
B_{1} \cong C_{1} \cong A_{1}, \quad D_{1} \cong \mathbb{C}, \\
D_{2} \cong A_{1} \times A_{1}, \quad C_{2} \cong B_{2}, \quad D_{3} \cong A_{3} .
\end{gathered}
$$

Decompositions of elements for \mathfrak{g} of each type.

