
NOTES FOR 128:

COMBINATORIAL REPRESENTATION THEORY OF

COMPLEX LIE ALGEBRAS AND RELATED TOPICS

(FIRST COUPLE LECTURES – MORE ONLINE AS WE GO)

Recommended reading

[Bou] N. Bourbaki, Elements of Mathematics: Lie Groups and Algebras.

Not always easy to read from front to back, but it was clearly written by the oracles of
mathematics at the time, with the purpose of containing everything.

[FH] W. Fulton, J. Harris, Representation Theory: A first course.

Written for the non-specialist, but rich with examples and pictures. Mostly, an example-
driven tour of finite-dimensional representations of finite groups and Lie algebras and groups.
Cheap – buy this book.

[Hum] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory.

Lightweight approach to finite-dimensional Lie algebras. Has a lot of the proofs, but not a
lot of examples.

[Ser] J. J. Serre, Complex Semisimple Lie Algebras.

Super lightweight. A tour of the facts, without much proof, but great quick reference.

The logistics

Me: Zajj Daugherty, Kemeny 314.

Website: http://www.math.dartmouth.edu/∼m128s14/

Pre-reqs: Graduate algebra or equivalent.

Homework: Complete a minimum of five assignments (out of at least 10).

Office hours: By appointment, but check the website’s calendar for drop-in.

Class cancellation: There will also be a conference at CRM in Montreal on Combinatorial Rep-
resentation Theory, April 21–25. Class will be canceled that Wednesday and Friday. You can either
come with me, or complete a small project, to be assigned later.

1. The poster child of CRT: the symmetric group

Combinatorial representation theory (CRT) is the study of representations of algebraic objects,
using combinatorics to keep track of the relevant information. To see what I mean, let’s take a look
at the symmetric group.

Let F be your favorite field of characteristic 0. Recall that an algebra A over F is a vector space
over F with an associative multiplication

A⊗A→ A
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Here, the tensor product is over F , and just means that the multiplication is bilinear. Our favorite
examples for a while will be

(1) Group algebras (today)
(2) Enveloping algebras of Lie algebras (tomorrow-ish)

And our favorite field is F = C.
The symmetric group Sk is the group of permutations of {1, . . . , k}. The group algebra CSk is

the vector space

CSk =

∑
σ∈Sk

cσσ | cσ ∈ C


with multiplication linear and associative by definition:∑

σ∈Sk

cσσ

∑
π∈Sk

dππ

 =
∑
σ,π∈G

(cσdπ)(σπ).

Example. When k = 3,

S3 = {1, (12), (23), (123), (132), (13)} = 〈s1 = (12), s2 = (23) | s21 = s22 = 1, s1s2s1 = s2s1s2〉.

So

CS3 = {c1 + c2(12) + c3(23) + c4(123) + c5(132) + c6(13) | ci ∈ C}

and, for example,

(2 + (12))(5(123)− (23)) = 10(123)− 2(23) + 5(12)(123)− (12)(23)

= 10(123)− 2(23) + 5(23)− (123) = 3(23) + 9(123) .

1.1. Our best chance of understanding big bad algebraic structures: representations!
A homomorphism is a structure-preserving map. A representation of an F -algebra A is a vector
space V over F , together with a homomorphism

ρ : A→ End(V ) = { F -linear maps V → V }.

The map (equipped with the vector space) is the representation; the vector space (equipped with
the map) is called an A-module.

Example. Favorite representation of Sn is the permutation representation: Let V = Ck =
C{v1, . . . , vk}. Define

ρ : Sk → GLk(C) by ρ(σ)vi = vσ(i)

k = 2:

1 7→
(

1 0
0 1

)
(12) 7→

(
0 1
1 0

)

ρ(CS2) =

{(
a b
b a

) ∣∣ a, b ∈ C
}
⊂ End(C2)
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k = 3:

1 7→

1 0 0
0 1 0
0 0 1

 (12) 7→

0 1 0
1 0 0
0 0 1

 (23) 7→

1 0 0
0 0 1
0 1 0



(123) 7→

0 0 1
1 0 0
0 1 0

 (132) 7→

0 1 0
0 0 1
1 0 0

 (13) 7→

0 0 1
0 1 0
1 0 0


ρ(CS3) =


a+ c b+ e d+ f
b+ d a+ f c+ e
e+ f c+ d a+ b

 ∣∣∣ a, b, c, d, e, f ∈ C

 ⊂ End(C3)

A representation/module V is simple or irreducible if V has no invariant subspaces.

Example. The permutation representation is not simple since v1+· · ·+vk = (1, . . . , 1) is invariant,
and so T = C{(1, . . . , 1)} is a submodule (called the trivial representation). However, the trivial
representation is one-dimensional, and so is clearly simple. Also, the orthogonal compliment of T ,
given by

S = C{v2 − v1, v3 − v1, . . . , vk − v1}
is also simple (called the standard representation). So V decomposes as

V = T ⊕ S (1.1)

by the change of basis

{v1, . . . , vk} → {v, w2, . . . , wk} where v = v1 + · · ·+ vk and wi = vi − v1.

New representation looks like

ρ(σ)v = v, ρ(σ)wi = wσ(i) − wσ(1) where w1 = 0.

For example, when k = 3,

1 7→

 1 0 0

0 1 0

0 0 1

 (12) 7→

 1 0 0

0 -1 0

0 0 1

 (23) 7→

 1 0 0

0 0 1

0 1 0



(123) 7→

 1 0 0

0 -1 -1

0 1 0

 (132) 7→

 1 0 0

0 0 1

0 -1 -1

 (13) 7→

 1 0 0

0 1 0

0 -1 -1


Notice, the vector space End(C2) is four-dimensional, and the four matrices

ρS(1) =

(
1 0

0 1

)
, ρS((12)) =

(
1 0

0 -1

)
,

ρS((23)) =

(
0 1

1 0

)
, and ρS((13)) =

(
1 0

-1 -1

)
are linearly independent, so ρS(CS3) = End(C2), and so (at least for k = 3) S is also simple! So
the decomposition in (1.1) is complete.
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An algebra is semisimple if all of its modules decompose into the sum of simple modules.

Example. The group algebra of a group G over a field F is semisimple iff char(F ) does not divide
|G|. So group algebras over C are all semisimple.

We like semisimple algebras because they are isomorphic to a direct sum of the matrix rings of
their simple modules (Artin-Wedderburn theorem). So studying a semisimple algebra is “the same”
as studying its simple modules.

Theorem 1.1. For a finite group G, the irreducible representations of G are in bijection with its
conjugacy classes.
Proof.

(A) Show
(1) the class sums of G, given by{∑

h∈K
h | K is a conjugacy class of G

}
form a basis for Z(FG);
Example: G = S3. The class sums are

1, (12) + (23) + (13), and (123) + (132)

(2) and dim(Z(FG)) = |Ĝ| where Ĝ is an indexing set of the irreducible representations of G.
(B) Use character theory. A character χ of a group G corresponding to a representation ρ is a

homomorphism

χρ : G→ C defined by χρ : g → tr(ρ(g)).

Nice facts about characters:
(1) They’re class functions since

χρ(hgh
−1) = tr(ρ(hgh−1)) = tr(ρ(h)ρ(g)ρ(h)−1) = tr(ρ(g)) = χρ(g).

Example. The character associated to the trivial representation of any group G is χ1 = 1.

Example. Let χ be the character associate to the standard representation of S3. Then

χ(1) = 2, χ((12)) = χ((23)) = χ((13)) = 0, χ((123)) = χ(132) = −1.

(2) They satisfy nice relations like

χρ⊕ψ = χρ + χψ

χρ⊗ψ = χρχψ

(3) The characters associated to the irreducible representations form an orthonormal basis for
the class functions on G. (This gives the bijection)

Studying the representation theory of a group is “the same” as studying the character theory
of that group.

This is not a particularly satisfying bijection, either way. It doesn’t say “given representation
X, here’s conjugacy class Y , and vice versa.” �
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Conjugacy classes of the symmetric group are given by cycle type. For example the conjugacy
classes of S4 are

{1} = {(a)(b)(c)(d)}
{(12), (13), (14), (23), (24), (34)} = {(ab)(c)(d)}
{(12)(34), (13)(24), (14)(23)} = {(ab)(cd)}
{(123), (124), (132), (134), (142), (143), (234), (243)} = {(abc)(d)}
{(1234), (1243), (1324), (1342), (1423), (1432)} = {(abcd)}.

Cycle types of permutations of k are in bijection with partitions λ ` k:

λ = (λ1, λ2, . . . ) with λ1 ≥ λ2 ≥ . . . , λi ∈ Z≥0, λ1 + λ2 + · · · = k.

The cycle types and their corresponding partitions of 4 are

(a)(b)(c)(d) (ab)(c)(d) (ab)(cd) (abc)(d) (abcd)

(1, 1, 1, 1) (2, 1, 1) (2, 2) (3, 1) (4)

where the picture is an up-left justified arrangement of boxes with λi boxes in the ith row.
The combinatorics goes way deep!
Young’s Lattice:

Vertices: Label vertices in label vertices on level k with partitions of k.
Edges: Draw and edge from a partition of k to a partition of k + 1 if they differ by a box.

Ŝ0:

Ŝ1:

Ŝ2:

Ŝ3:

Ŝ4:

Ŝ5:

0

1 -1

2 -1 1 -2

3 -1 2 0 -2 1 -3

4 -1 3 0

-2 2 -2 2

0 -3 1 -4

∅

Some combinatorial facts: (without proof)

(1) The representations of Sk are indexed by the partitions on level k.
(2) The basis for the module corresponding to a partition λ is indexed by downward-moving paths

from ∅ to λ.
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(3) The representation is encoded combinatorially as well. Define the content of a box b in row i
and column j of a partition as

c(b) = j − i, the diagonal number of b.

Label each edge in the diagram by the content of the box added. The matrix entries for the
transposition (i i+ 1) are functions of the values on the edges between levels i− 1, i, and i+ 1.

(4) If Sλ is the module indexed by λ, then

Ind
Sk+1

Sk
(Sλ) =

⊕
µ`k+1
λ−µ

Sµ and ResSkSk−1
(Sλ) =

⊕
µ`k−1
µ−λ

Sµ

1.2. Where is this all going? Really, where has this all gone? The symmetric group is so nice
in so many ways, that we’ve chased these combinatorial features down many paths.

One path is the study of other reflection groups, both finite and not. That took us to their
deformations, called Hecke algebras, and other spin-off Hecke-like algebras and diagram algebras.

Another came from Schur-Weyl duality, which showed that the representation theory of Sk as
k ranges, is in duality with the representation theory of GLn(C). Then, later, people got into
Lie algebras, and saw that the same results held there, and that combinatorics controls most of
complex Lie theory as well. Further, there are lots of important deformations of Lie algebras whose
combinatorics is also controlled combinatorially.
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