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Computable Bounds for Eigenvalues and Eigenfunctions
of Elliptic Differential Operators

Georg Still

Fachbereich IV Mathematik, Universitat Trier, Postfach 3825, D-5500 Trier,
Federal Republic of Germany

Summary. We are concerned with bounds for the error between given approx-
imations and the exact eigenvalues and eigenfunctions of self-adjoint opera-
tors in Hilbert spaces. The case is included where the approximations of
the eigenfunctions don’t belong to the domain of definition of the operator.
For the eigenvalue problem with symmetric elliptic differential operators
these bounds cover the case where the trial functions don’t satisfy the bound-
ary conditions of the problem. The error bounds suggest a certain defect-
minimization method for solving the eigenvalue problems. The method is
applied to the membrane problem.

Subject Classifications: AMS(MOS): 65N25; CR: G1.8.

1. Introduction

Given a linear symmetric operator T in a Hilbert space H we are interested
in bounds for eigenvalues and eigenfunctions of T by means of the defect

Tu—Au,

with (4, u) an approximate eigenpair. For the algebraic eigenvalue problem,
ie. T a symmetric n x n-matrix and H=IR", such bounds are derived in the
paper of Wilkinson [25].

These results have been generalized in various directions, see e.g. [14, 2,
22], and the references given in these papers. We are interested in results appli-
cable to eigenvalue problems with an elliptic differential operator T= L. In these
problems the eigenfunctions must satisfy specific boundary conditions. Most
of the theorems in the literature don’t cover the case, where the approximating
functions u don’t fit the boundary conditions or more generally, where the
approximations u don’t belong to the domain D(T) of the symmetric operator
T In the following, we mainly direct our attention to results comprising the
case u¢ D(T).
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In this direction in [6] bounds for eigenvalues and in [19] bounds for eigen-
values and eigenfunctions are given in the case that the functions u satisfy
Lu—Au=0. In [20, 16] bounds for eigenvalues are obtained in the general
case that u satisfies neither the equation Lu— Au=0 nor the requested boundary
conditions. In Sect. 2, by a unifying treatment bounds for eigenvalues and eigen-
functions in the general case are given (cf. Theorem 2) including all these results.
Moreover, bounds improved with the help of Rayleigh’s quotient are derived
(cf. Theorem 4). For completeness we also give the corresponding results (Theo-
rem 1, Theorem 3) restricted to the case ue D(T).

The method depends basically on a Hilbert space approach. Therefore, in
Sect. 2 all results are formulated and proved in a general Hilbert space setting.

Section 3 is concerned with the application of the theory to elliptic eigenvalue
problems.

Finally, Sect. 4 is devoted to the numerical aspects of the approach.

2. Bounds for Eigenvalues and Eigenfunctions
of Linear Self-Adjoint Operators in a Hilbert Space

In the following let H be a real Hilbert space and T a linear self-adjoint operator,
T:D(T)-»H

defined on a domain D(T) dense in H. With the inner product <, *> in H, |u|
denotes the norm

lull = Cu, up'', ueH.

For shortness we make the assumption
A: The operator T has a pure point spectrum

o(T)={7,, veN}

with no finite limit point and finite multiplicities of the eigenvalues 7,. Let
{A,}¢ denote the sequence of the eigenvalues 7, counted according to their
multiplicities. Moreover, we suppose that the corresponding set of orthonorma-
lized eigenfunctions u,, ve N forms a complete system in H.

Remark 1. Most of the results of this section could be proved under weaker
assumptions. For operators T with continuous spectrum, for instance, the repre-
sentation of Tu as a sum

Tu = Z lv <u’ uv> u,
must be replaced in the proofs by the integral

Tu= {2 Ad(E(A)u)
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where E is the spectral family corresponding to T (cf. [1, 24]). Under assumption
A the self-adjointness condition on T can be replaced by the (weaker) condition
that T is symmetric, i.e.

{u, Tv)={Tu,v) forall u, veD(T).

In fact, it can be shown that for such a symmetric operator T satisfying A
there always exists a self-adjoint extension T (cf. [3]).

Let us consider the eigenvalue problem

Tu=Au.

An error estimate for approximate solutions A*eR, v*eD(T) by means of the
defect || Tv* — A* v*| is given in

Theorem 1. Let v*eD(T), ||[v*|| =1, 2*€R be given satisfying
| To* — A* v*| =e.

Then there exists an eigenvalue 2, of T and a corresponding eigenfunction v,
such that

[—A*| <S¢ ’ 2.1
and
R PR 22
log—v H:W[ +m:| (2.2)
holds with
d(A*):= min [A,—A*|. (2.3)
Ay ¥ Ak

Proof. Using the expansions v*=Y x,u,, Tv*=) A,x,u, in terms of the eigen-

v \J

functions u, it follows from
I=|o*2=) x7, (T—*Dv*u)>=A,—~21*)x,
that

g2 > || Tv* — A% v*||2 = ((T— 2* Iy v*,(T— A* I) v*>
=Y (A, =A% x}

> min (A, —A*)2. (2.4

xy*0
Hence with an eigenvalue A, of T satisfying

|4, — A*| = min | 4, — A*|

x,*0
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(2.1) is valid. Now let R, v* denote the projection of v* into the eigenspace
of A,

Bv*= > x,u,.

Ay = Ak

We will show that (2.2) holds with

U= Fo*

IR
Since
(Rv* v*)=(Rv* Rv*>= ) xI=(1— ) xJ)
Av=Ax Ay F A

we obtain

(Bv*, Bu*y 2(v*, Bo*)

(o —v*, v, —v*>={v*, v*H +

IR v*)? 1B o*|l
=2=-2|Rv*|
—2[—( ¥ X))
Av=Ak
=2[1—-(1—- ) x)'?]
AvF A

Setting a:= ) xZ<1 and using
Ay * A

(1—a)'?=21—%a(l+a), for aelR,|a|<]1,

it follows that
log—v*|*=2(1—(1—a)"*)Za(l +a). (2.5)

Moreover, by (2.4) and (2.3) we find
s =A% 1

a= xI< X = x2(A,—A*)?
lvglk lvglk d(l*)2 d(}'*)z lvglk
2
< &
- d(i*)z

Thus, by (2.5) relation (2.2) is proved. [

For more general results cf. e.g. [14, 2], where in [14] bounds for eigenvalues
and in [2] bounds for eigenfunctions are given for whole invariant subspaces
ScD(T) of T and (2.1) resp. (2.2) appear as special cases.

Now we turn to the case of trial functions u¢ D(T). Therefore, let in the
sequel T denote some extension of T to a domain D(T), D(T)< D(T)< H. There-
by T is no longer assumed to be symmetric on the whole set D(T). However,
in the case u*eD(T)~D(T) the defect Tu*—A*u* still leads to error bounds
for eigenpairs.
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Theorem 2. Given u*eD(T)~D(T), |u*|| =1 and 2*€IR, define the function r by
reo=Tu* — A* u*,
a) Let weD(T') be a function satisfying
Tw=0, u*—weD(T). (2.6)

Then there exists an eigenpair (4, v,) of T such that

*
PREPEPS il @)
lu* —w]
log—u*| <e;(1+6)"? (2.8)
where
el liwl A, — A%
&= + ,  d(A*)= min
LA T dGx) SN
and d(4*) is defined by (2.3).
b) Let ReD(T) be a solution of
TR=Tu*—2*u*, u*—ReD(T). (2.9)
Then there exists an eigenpair (4, v,) such that
Ag— A*
i—‘ <|RI, (2.10)
k
log—u*|| <e,(1+63)"? (2.11)
where
. _ IR
2 dexy
. u*—w
Proof. Setting v* =WGD(T) we have |[v*| =1
u¥—
and
E
Tok— o= THATW
llu* —w]

which by Theorem 1 yields (2.7). Making use of the expansions
r=Yr,u,, R=Y R,u,, w=) w,u,, w=Y x,u,

we find
/lv(xv_ wv)= <u* —W, Tuv> = <T(u* - W), uv>
={A*¥ur+ruy=A*x,+r,




206 G. Still

or
A, —A®)x, =4, w,+r,.

By applying the Cauchy-Schwarz inequality we get

2 Av ry 2
@=L =L T E

Ay F A Ay F Ak
[[zwﬂ”z tzrf]‘“}z
=30 T Ao

Now just as in the proof of Theorem 1 by setting v,:=B u*/| R u*| we obtain
inequality (2.5),

log—u*(|> < a(l+a)
which proves (2.8). Similarly with
Av(xv - Rv): <u* - R’ Tuv> = <T(u* - R)s uv> =A* Xys
or

(A,—A%)x,=A,R,, (2.12)
we deduce

_ A Pos [IRIT
“'_AEM [Av—i*] R é[au*)]

and then (2.11). Since under assumption 4 lim |1,|= oo, there exists a kelN
such that e
|Ae—A% . A4, — 4%

=min
Al ae0 1A

Hence by (2.12) it follows that

j’k - l*
A

1|xv|§|RV| forall veN.

(Here we tacitly assume A* +0 for all veN.) Consequently

Ay — A
A

2

_1%|2
Aklf Y x2<Y R2=|R]|?
establishing (2.10). [

The paper [8] contains a theorem (Satz 19) in a more general context includ-
ing (2.10).
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For functions ve D(T) let p(v) denote the Rayleigh quotient of v with respect
to the operator T,

_(Tv,v)
RO

p(v) (2.13)

In many cases sharper error bounds for eigenvalues than (2.1) can be obtained
by means of the defect || Tv* — p* v*| if p* is the Rayleigh quotient of v*.

Theorem 3. Let the inequality
| To*—p* v¥|| <e

hold with v*eD(T), |v*|=1 and the Rayleigh quotient p*=p(v*). Then there
exists an eigenvalue 4, of T satisfying

82 82
— <) —p*< (2.14)
d (N =" =%
where
d,(p*)= min |A,—p*|, d_(p*)= min |1,—p*| (2.15)
Av> Ak Ay <A

Proof. The proof of the theorem can be found in [1], where this result is attrib-
uted to Kato and Temple.

In cases where d , (p*), d_(p*)> ¢, Theorem 3 gives better bounds than Theo-
rem 1.

Remark 2. Theorem 3 applies when solving the eigenvalue problem by the Ray-

leigh-Ritz method. Here approximate eigenpairs (1*, v*) are given as solutions
A*eRR, v*eVof

{To*, uy=2*{v*, uy forall ueV,

where V< D(T) is a space of trial functions. Thus, for such solutions (1*, v*)
we have

(Tt oty

* —3
& ¥, v*)

p(v¥),

and the defect || Tv* — A* v*| directly leads to an error bound according to (2.14).
When taking trial functions u*eD(T)\ D(T), Theorem 3 must be modified.

Theorem 4. Given u*e D(T)\D(T), |u*| =1, 1*€R, define the function r by
r=Tu*— A*u*.
a) For a solution weD(T) of

Tw=0, u*—weD(T) (2.6)
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let
£ 3
b=t —w, ey F (2.16)
l[w* —w]
Then with the Rayleigh quotient p, =p(v,) given by
{A*wr,v)
="
P vy, v4)
the inequality
(2e)® _ (2¢,)?
— S S (2.17)
de(p) ™" T d_(py)
holds for some eigenvalue 4, of T.
b) For a solution ReD(T) of
TR=Tu*—1*u*, u*—ReD(T) (2.9)
let
IRl
=u*—R = A — 2.18
Uy=u s Ep=|A¥ [w*—R| (2.18)
Then with p,=p(v,) given by
<’1*Ra UZ>
=T
P2 vy, 03
the inequality
(2e,)* < (2¢,)
- <= pa = (2.19)
di(p) =" T d_(py)
is valid.
Proof. With
(Tvy, v1)  {A*(v +w)+r,vy)
= (U )= =
Pr=pit vy, v4) vy, 01
A*wr, v
=A*+-————————-
<vl’ vl>

by the Cauchy-Schwarz inequality we find

AW v, v

00

A*wr, o)
vy, 01

[T, —pyvy] =

Tv,—2* v,

S| Tv,—A*o, | + llogll

L2|A*w+r].
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Now by normalizing §; =——, we obtain | T3, —p, ¥,|| £2¢,, and thus (2.17)

lv 1H

follows from Theorem 3. In the same way, (2.19) is proved by observing that

(Toz, v3) _ {A*(v2+R), v) [ {R, Uz>]
=p(v,)= =14+ ——
p2=pl; vy, v2) vy, 05) v, 030
and
102 paal=| Toy— 120,10 S22,
<U2,Uz>

S Toy—A*vp [ +A*IR =212*[|R]. O

We emphasize that to apply Theorem 2 we only need an upper bound for the
norms |w|, ||R]| of the solutions of (2.6) and (2.9), whereas in Theorem 4 the
functions w, R are needed explicitly for the computation of the Rayleigh quo-
tients p,, p,. Clearly in practice the exact solutions w, R are replaced by approxi-
mations W, R. Accordingly v,, p, and v,, p, are replaced by &, :=u* —W,

{A*¥W+r, 0y)

p=A%+ —— (2.20)
_ P1 Dy, Dy
and 7,:=u*—R,
fy g ax SR D2 2.21)
{03, 03
To maintain explicit bounds in this case it is clear by observing
= Pi—|pi— Pl SEh—pi S h—pit+lpi—pil  i=1,2 (2.22)

that we need upper bounds for |p;— p;], i=1, 2, in terms of computable quantities.

Lemmal. Let W and R be approximate solutions of (2.6) and (2.9), respectively.
Then with d,:=w—W resp. d,:=R—R and j,, p, given by (2.20), (2.21) we have

it 43080 1 [t 2Ly 34101

) 15, 5]
lp1—pil=lldy TETAE (2.23)
and ~
15,01+ 3 1Rl + s [1+ H;‘ZH
192 —Bal < s ]| 12%] (2.24)

152 —da|?
Proof. Since v, =u*—w=1, —d, we find by a short calculation
l A*wtr, vy AW+ )

vy, 04 Dy, 01
l </1*w+/1*d1+r 0y —diy {A*W+r by

—pil=

d1,01 d> <vulil>
M*I [nﬁ,n 3] + ] [1 +AZL ey [3+ﬁ]

< lldy

15, —d,11?




210 G. Still

and (2.24) is obtained by similar manipulations. []

For approximations (1*, u*) close to an eigenpair (J,, v,) the quantities
[wl, IR|| become nearly zero and |#;| nearly 1 provided that |d;| is small.
Thus, the difference | p; — p;| essentially reads

lpi—pil = lldill |A*] i=1, 2.

Remark 3. Let an approximate eigenpair (1*, v*) and the expansion v*=) x,u,

in terms of eigenfunctions be given. Then in Theorem 1, instead by (2.3) d(1*)
could be defined by
d(A*)= min |1,—1*| (2.25)

AvF Ak
Xy *¥0

(cf. the proof of Theorem 1). This modification is especially useful when consider-
ing eigenvalue problems with differential operators on domains having certain
symmetries. Then often the set of eigenfunctions {u,, veIN} can be subdivided
into subsets of functions with corresponding symmetries (cf. [17, 10]) and it
is possible to choose trial functions »* with the symmetry of such a subset
S. Consequently v* allows a representation

*
v*= ) x,u,,
uyeS

and (2.25) possibly leads to sharper bounds for eigenvectors in (2.2). The same
modification applies to the definition of d(A*) in Theorem 2a) and d , (p*), d_ (p*)
in (2.15).

3. Bounds for Eigenvalues and Eigenfunctions
of Elliptic Differential Operators

This section is concerned with the application of the previous results to linear
elliptic differential operators. We are especially interested in differential operators
L with analytic coefficients on regions G with piecewise analytic boundary 0G.
Then singular behavior (in the derivatives) of the eigenfunctions of L can only
occur at the corners of 0G.

Let L denote a linear symmetric differential operator,

2
Lu=— Y (a,,u,),, +cu (3.1)

vu=1
with functions ¢, a,, analytic on an open set D=R? G <D satisfying ¢(x)20,
a,,(x)=a,, (x) for x=(x,, x,)eG and the strict ellipticity condition

2
Y a,(0)&Ezv(¢T+E)  forall xeG, (eR? (3.2)

vu=1
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with y>0. Thereby we assume that G is a bounded connected open set with
piecewise analytic boundary 0G, i.e. there exists a number k of analytic curves
Ii, ..., I, such that every xedG is an inner point of one of these curves. At
the points Sy, ..., S, of intersection the tangents to the meeting arcs are supposed
to form corners with interior angles w,, 0 <w, <27, v=1(1) k. (As usual a func-
tion is said to be analytic if locally it is given by a convergent power series,
and by an analytic curve we mean a curve parametrizable by analytic functions.)
We consider the eigenvalue problem of finding solutions 1eR, u+0, of

Lu(x)—Au(x)=0 for xeG
u(x)=0 for xedG. (3.3)

We take H=L,(G), the Hilbert space of all square integrable functions with
inner product

u,vy)= [ uvdx/| dx
G

G

Given p>1 we denote by W, (G) the Sobolev space of functions u for which

the derivatives ?iu(x), —aa—u(x) (in the sense of distributions) are elements
0x, X, .

of L,(G) and by W, (G) the closure in W, (G) of the set of all C* functions

with compact support in G. Furthermore, as the domain of L we define

D,(L):={ue W,}(G): Lue L,(G)}.
Then (cf. [9, Theorem 1.5.3.11]) for any p>2 the symmetry
{Lu,v)=<u, Lvy forall u,veD, (L) (3.4)
holds. Finally we denote by L the extension of L to the domain
D,(L):={ue W) (G): Lue L,(G)}.

In the following remark we explain why we did not content ourselves with
a domain D=W2(G) (resp. D=W2(G)) of definition of L (resp. L). For the
space D the proof of symmetry is much simpler than for the larger spaces D, (L)
(cf. [9, Lemma 1.5.3.2]).

Remark 4. From [18] we know that the solutions u of equations Lu—Au=f
on regions G with piecewise analytic boundary and f analytic on G are analytic
throughout G except at the corners of dG. At a corner s=(s,, s,) of G with
interior angle w, 0<w<2n the function u allows, setting (in the case L=

—A)ou:—n—, for any kelR a development (in (r, @) polar-coordinates, x,=s;
)

+rcose, x,=s,+rsin@; ¢ =0, w corresponding to the tangents to dG at S)

ur, @)= > r’* az,sin((£ o+ n) @)+ b,, cos((¢a+n) ) +0(r)

fa+n<k
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in the case where «a is irrational and

u(r, @)= 1 "logri,,(¢)+0(r")

fatng<k

with analytic functions ,, if a=9m is rational (cf. also [4, 23, 9, Chapters
4, 5]). For modifications when L+ — A4, we refer to [9, p. 265ff]. Moreover, by
the theory of [9, Chapter 5] for the eigenvalue problem — 4u=Au with boundary
condition u,=0, the development of u at corner s has the first form with
b,,=0 for all «, e.g. the functions log?r don’t occur. In any case, typically such
an expansion begins with a term

u°(r, p)=r*(asina @ +b cosa ).

Now (cf. [9, p.35]) if a=1, ie. w<m, then u® (and so u) is in WZ(G). But
. 2 .
for a<1, ie. >mn, u®¢ W2 (G). Fortunately u®e W' (G) if «>1—=. Since w <2,
14

ie. a>1/2, u’e W, (G) in any case if p<4. Therefore, since we want to use
trial functions with the same type of singularity at the corners of dG as the
eigenfunctions without losing symmetry (3.4), we can choose as domain of L
the space D, (L), for a suitable p 2 <p.

In the sequel, according to the preceding remark we take the domains of
definition of L and L to be

D(L)=D,(L), D(L)=D,(L)

for some fixed p, 2<p. Notice that W,(G)= C(G) for p>2 (cf. [9, Theorem
1.4.5.2]). Thus, the functions ue D(L) satisfy the boundary condition u,;=0
in the classical sense. It can be shown that in our situation assumption A of
Sect. 2 holds for the operator L in (3.1). This can be achieved by showing first
that the eigenpairs (4,, u,), u,e W,l(G) of the variational eigenvalue problem
corresponding to (3.3) satisfy assumption A. Then by the results of [9] it follows
that u,e D ,(L) for suitable p>2. In [5] based on the study of the inverse operator
of 4 (i.e. Green’s function) it is shown, that the space D,:={ueC?*(G)n C(G);
u),6=0} could be taken as domain of definition of 4 as well. Notice, that neither
D(L)< D, nor clearly the converse.

Consequently all results of Sect. 2 apply to the eigenvalue problem (3.3).

Note that the problems (2.6), (2.9) in Theorems 2 and 4 are in this case
the following boundary value problems:

For given A*eRR and u*eD(L)w, ReD(L) are solutions of

Lw=0 on G, u*=w on 0G, (3.5
LR=Lu*—A*u* on G, u*=R on 3G. (3.6)

Again, the existence and uniqueness of solutions w, R is established in [9].
As mentioned above, the bounds of Theorem 2 only require upper bounds
on |w]|, ||R|. We therefore briefly deal with such bounds.
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By the Maximum principle for solutions of (3.5) (cf. [7]) the relation

[w]l = max |w(x)| < max |w(x)| = max |u*(x)| (3.7)
xeG xedG xedG

is valid. Another upper bound for ||w| is given by the inequality

[ wrdx<c [ w*ds forallw, satisfying Lw=0 on G,
G oG

with a constant ¢ depending only on L and G, leading to the bound

Iwl<)/e( | @*)?ds)? (3.8)
oG

for the solutions w of (3.5).
An optimal constant ¢ could be found by solving the problem

max [ w?dx subjectto | w?ds=1, Lw=0 on G.
G G

For upper bounds for minimal constants ¢ we refer to [15]. If L=—4 and
G is convex, for instance, then

c§1/£, A the area of G.
2n

We notice that for eigenpairs (4, u) of (3.3) by the Divergence Theorem and
(3.2) we get
Lu,uy= [ Y a,,u, u, dx+ | cu>dx>0
G

G v,u

and consequently

{Lu, u)
G >0. (3.9

Let 4, denote the smallest eigenvalue of L. By (3.9) clearly 4, >0.
In the following lemma, by the same method as in the previous section,
we will obtain an error bound for solutions of boundary value problems.

Lemma 2. Let functions feC(G), ge C(9G) and the boundary value problem

Lu(x)=f(x), xeG
u(x)=g(x), xedG (3.10)
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be given. Let R*eD(L) be an approximation to the solution u of (3.10). Then
with the solution w of

Iw=0 on G, w=R*—g on 0G

we have

fu—Re I, (3.11)
1

Proof. Setting r:=LR* — f since R* —u—weD(L) we find
AR* —u—w, u,>=(R*—u—w, Lu,>=(LR* —Lu, u,>=<{r, u,>

or

(R¥—u,u,>= <’/1““> +wu)  veN

v

Hence by the Parceval identity and Cauchy-Schwarz inequality it follows that

=R =3 R = =3 [ 1 oy

(Z[E2]) "+ cmupara]

1 -
lu—R*¥[=-~ | LR* = fll +]wl. O

IIA

and

Now we apply Lemma 2 to the problem (3.10) with f=0 and g=0. Then, with
the solution u=0 and the solution R of (3.6) we obtain inequality

IR Lt %
PRI g T2, 6.12)
ll il

IRl =——
Here in addition the upper bound (3.7) or (3.8) for |w|| could be considered.

Summarizing we obtain the following bounds in terms of approximate eigen-
pairs (4%, u*), [u*||=1.

Setting
u]l o ==max |u(x)],
x<6 (3.13)
lullag:=( | u(s)?ds)’?,  |lulls¢,,=max |u(x)|,

xedG
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(2.7) together with (3.7) resp. (3.8) yield

I Lu* — 2% u*|| , + A% | 0*] 6.0

1—- ”u*”acm

| A= 2% = ; (3.14)

resp.
|Zu* — A% u* || + 2% /¢ lull o6

1=}/ lullsg

provided that ||u* ;6 ., <1, resp. |/cllu*[,6<1.
Using (3.12) and (3.8) the relative bound (2.10) reads

|A— A% =

(3.15)

Ay — A%

Lu*—2*u
] éL——”+VE|\u*|lac-
k

z

On the other hand from (2.10) we find

A*IR]

|2 — 2% < :
. 1—|R|

which by (3.12) and (3.8) leads to the bound

¥y | Lu* — 2% u* | +1/c 2* [u*] g
1—|IR]|

|A— A% = (3.16)

provided that ||R|| <1. Thus for A* >4, (3.15) represents a sharper bound than
(3.16).

4. Numerical Aspects

The two bounds (3.14) and (3.15) suggest two different numerical methods to
solve the eigenvalue problem (3.3).
Let us choose an appropriate n-dimensional space V,,

V,={u,(a, x)= i a, @, (x): a=(ay, ..., 0,)eR", xeG}, 4.1)

with appropriate trial functions ¢, ..., ¢,. To make use of (3.14) we consider
for fixed AeR, neN the optimization problem

B(A): Min l(o,, W)=p, (a, peR"*!,  subject to the constraints
(@, 1)
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(L—AD) u, (e, x)|=|(L— A1) Y a,@,(x)|Sup forall xeG 4.2)

v=1

[, )| =] Y o, 0,(x)|Sp  forall xedG

v=1
o, =1,

Here p is a weight factor, e.g. p=4 (cf. (3.14)). The constraint «; =1 is one
of many other possible linear constraints added to exclude the zero solution.
P,(2) represents a parametric linear semi-infinite programming problem (cf.
[(11])).
With a solution (a, ) of P,(1) (4 fixed) by normalizing

U, (%, X) H
* — , *(1):im
L P P TR i Ay Y
(3.14) yields the bound
*(AD)+Au*(A
|Ak—z|§%l=zsn(z> (43)

for an eigenvalue 1, (and a bound for an eigenfunction v, corresponding to
(2.8)) provided that u*(4)<1. Thus, to find small bounds for an eigenvalue we
are interested in local minima of the right-hand side ¢,(A).

This optimization method has been regarded from the theoretical and practi-
cal points of view in [11,12], and has been applied to L= — 4, 4 the Laplace
operator

02 02
oo

using trial functions ¢ = @ (4, x) satisfying
A4, x)+ 194, x)=0 forall ieR,1>0,xeG.

In this case the constraints for xeG in (4.2) are dropped. Trial functions ¢
satisfying 4 ¢ (4, x)+ A ¢@(4, x)=0 for A>0 are given for example by

Ja(ﬂr) c'os *e acR, (r, ¢) polar coordinates
sina @

or
sinax, sinfx,
sinax; cosfx, 2

. o, B such that a®+p*=A.

cosax,; sinfx,

cosax,; cospfx,
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A method based on (3.16) has been proposed in [16]. Since according to our
previous remark the bound (3.15) generally is sharper than (3.16), we briefly
outline this method applied to (3.15).

We want to minimize the square of the numerator of the right-hand side
of (3.15).

To this end, let us consider for AR, neN fixed, the problem

0,(4): Min B(4, 0):==2 | (Lu,(at, x)— Au, (o, x))*dx+24%c | uZ(a, s)ds
G

a G
subject to the constraints (4.4)
A= | u2(a, x)dx=1
G

with u,(a, x)eV, (cf. (4.1)). Since

B(4, a)= 2": oy o,y (4)

v,u=1
with

¢uM)=2 [ Lo,Lop,—A(Lo, 0, + ¢, Lo, )+ 2% 0,0, dx+i*c | ¢,¢,ds
G oG

and

A= ) o,0,d,, where d,,=| ¢,¢,dx,
G

v,u=1
Q(4) represents the finite optimization problem

Min «"C(A)oe  subjectto aT Aa=1

a

where
C(}')=((cvu(}')))v.u=1(1)n’ D:((dvu))v.u=l(l)n'
with C positive semi-definite, D positive definite. By the Lagrange Theorem

the value of Q(4) (1 fixed) is given by the smallest eigenvalue p=p(2) of the
algebraic eigenvalue problem

C(A)a=pDo. 4.5)

By setting
eA):=|/ p(2) (4.6)

and with the solution & of Q(4)

EA)=)/c( [ u2(@ s)ds)?
oG
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the bound (3.15) reads

£q(4)
1—£,(4)

|—Al= 4.7)

provided that &,(1)<1. Thus, this method leads to the parametric eigenvalue
problem of finding A€R such that ¢,(4), i.e. the eigenvalue p(4), is locally mini-
mized.

In [16] this approach has been applied to the operator 4 by taking trial
functions ¢(x, x,)=x] x45.

Remark 5. We briefly compare the two methods. In both methods one has to

determine local minima of a function ¢,(4) (cf. (4.3) or (4.6)). For the s~econd

method, only once must the 3(n+1)n/2 integrals | Lo,Lo,dx, | Lo,¢,
G G

+o,Lo,dx, | ¢,¢,dx, v=1(1)n, p=v(l)n and the (n+1)n/2 integrals
G

| @,9,ds be calculated (within a sufficient accuracy). Then for every A the
G

smallest eigenvalue of (4.5) has to be found.

Clearly by taking appropriate discretizations of G and 0G the semi-infinite
optimization problem (4.2) of the first method can be replaced by a finite prob-
lem. This method is particularly suitable when using trial functions ¢(4, x) sat-
isfying Lo — ¢ =0 (For the construction of such functions ¢ for operators L
other than the Laplace operator, see [21]).

In the case of L= —4 such functions can be adjusted to special regions
G to give extremely good approximations of eigenfunctions and eigenvalues
with a moderate number of trial functions (cf. for example [13]).

In the second method the use of such functions ¢(4, x) depending on A
would require the calculation of all 2(n+ 1)n integrals anew for every A, which
makes this method too expensive in that case. On the other hand, in the second
method there does not arise, in principle, any additional problem when dealing
with operators L other than — 4.

In both methods one can take advantage of the fact that one is solving
a parametric problem, which means, roughly speaking, that one has to solve
many neighboring problems.

Now we want to use the bounds in Theorem 4 given by the help of the
Rayleigh quotient.

Let an approximation (1*, u*) of an eigenpair be given, where u¥ =u¥(a, x)
has been calculated via the optimization problem (4.2). For shortness we restrict
ourselves to the case where the functions u(a, x) satisfy the equation Lu— Au=0.
Then the constraints for xeG are eliminated, and (4.3) reads

* %k
h—a¥| < 4.8)
1—p*
To apply Theorem 4a we have to solve the boundary value problem (2.6),
ie. (3.9).
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To this end define a space

W, ={wa(B, x)= 2 By (x), B=(B1, .., Bn)} (4.9)

with functions ,eD(L)\D(L). Here again for brevity we assume that Ly, =0,
v=1(1) N holds.
Then (3.5) could be solved approximately with the help of the problem (NeIN
fixed)
RPy: Min (B, x)=k, (B, k)eRN*!
(8,%)
subject to (4.10)

[wy(B, x)—uX(a, x)| <k forall xedG.

Now, with a solution (B, k), we set w:=wy(f,*), 7,:=u*—w and (cf. (2.20) with
r=0)

Py —l*(l + <1V’ UJ>), (.11)
{0y, 0y
and by (2.17) and (2.22) we get the bound
~ 4 ~
|Ae— P4l = e +1p1— Pl (4.12)
d(py)
For the difference |p; — p,|, by (2.23) and (3.7) the explicit bound
* K
) 1+4(u +K)+———1_K_u*
lp1— P S KkA* (4.13)

1—pu*—2k
is valid provided that p* +2k < 1.
Remark 6. Similarly the idea of calculating Rayleigh quotients applies when

we have an approximate eigenpair given through the second method above.

Here the boundary value problem (3.5) may be solved via the optimization
problem

RQy: Min | (wy(B)—u*)*ds
p oG

with trial functions wy(f) from Wy, (cf. (4.9)), leading to a linear equation.
The first method for solving the eigenvalue problem will be illustrated by
the problem

Au+iu=0 on G
u=0 on 0G

with the L-shaped region G indicated in Fig. 1.
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A
L1
|
|
|
|
R R — —>
-1 0 1
-1
Fig. 1
As trial functions we choose
s .2
un(do )=y, 0,J2,()/Ar) sinSvep (4.14)

v=1 3
((r, ) polar coordinates) satisfying Au,(4, o, x)+ Au,(4, o, x)=0 all 1>0, xeG;
aelR™

In [12] the first fifteen eigenvalues of the symmetric L-membrane have been
calculated within a bound |4, —A|<1077, only with the help of the parametric
problem PB,(4), by applying the following algorithm.

Step 1. Compute the local minima of ¢,(1) on the discrete set
S={A=17,8, ..., 100} for a moderate number n of trial functions (n~ 20).

To get better approximations for an eigenvalue 4,, choosing an increment
An and an error bound 6 we proceed with

Step 2. Near a local minimum A* of ¢,(4) on S (corresponding to 1) calculate
a local minimum A® of ¢,(A). Set A*:=A™,

Step 3. Increase the number of trial functions, i.e. set n=n+ An and compute
a local minimum A™ of ¢,(4) near A* yielding a bound

|4 — A" <&, (A7),

Stop if ¢,(A™) < 6. Otherwise, set A* =A™ and repeat Step 3.

To make use of the Rayleigh quotient, we have to solve via (4.10) the problem
Awy=0 on G, wy=u* on 0G. Appropriate trial functions in our situation are
given by

wy(B, x)==§ B,r sin2ve (4.15)

v=1

satisfying Aw=0 on G. The bound (4.12) suggests the following modification
of the algorithm above to locally improve the bound for eigenvalues.

Step 1'. The same as Step 1.
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Step 2'. If necessary apply Steps2 and 3 until a A* is found such that
4¢,(A*)/d(A*) < 1.

Step 3', With the solution u}(A*, a,*) corresponding to P,(A1*), solve RP; (cf.
(4.10)) to give p, (cf. (4.11)) and the bound (4.12),

=P S (%) +1py — =

d(py)

(Here N must be chosen large enough to garantee|p, —j,|<4&2(4*)/d(p,); for
example N =2n). Stop if 1<6.

Step 4'. Set n=n+A4n, 2*=p5,. Solve B,(4*) and goto Step 3.

Table 1

Step n A* or p,y Bound

1 9 29.50 0.86-107!
¥ 29.5216 0.33-1072
4 12 29.5216 0.61-1073
3 29.5214811 0.23-107¢
4 15 29.5214811 0.10-107*
3 29.5214811141 0.68-107°
Table 2

Step n A* or p, Bound

1 9 41.47 0.64-107°
3 41.469 0.19-107°
4 12 41.469 0.25-1071
3 41.474491 041-1073
4 15 41.474491 0.11-1073
K} 41.47450990 0.32-1077
4 18 41.47450990 0.23-1073
3 41.4745098902 0.17-107°
Remark 7.

a) The modified algorithm has the following advantage. After getting a first

bound |4, —A*| Z¢,(4) in Step 2/, the execution of Step 3’ demands the solution

of the two optimization problems RPB,, P,(A*), which must be compared with

the approximate computation of a local minimum of the function ¢,(4), requiring

possibly many function evaluations of ¢,(4), i.e. solutions of the problems F,(A).
b) Attention must be paid in Step 3’ to the evaluation of

<W, 51>)

p=A*1+——
P ( (By, Dy
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For in (4.13) in our example, we have more precisely

* K
R R e

lpy— Pyl S K A* [P +e
where £ is the error resulting from an inaccurate calculation of the integrals
<W7 51 >a <ﬁl s ﬁl >

Thus, these integrals must be computed within an accuracy such that £
does not disturb the quality of the bound.

In our examples the integrals have been computed with the help of a two
dimensional Romberg method after applying a transformation which transforms
the integrands to functions analytic on all of R

Typically, the algorithm described above behaves as indicated in Tables 1,
2. We started with approximations A% =29.5, 1¥ =41.47 of the eigenvalues 4,,
A of the L-shaped membrane in Step 3'. Both values were obtained by applying
an appropriate interpolation to the values calculated in Step 1’, i.e. Step 2’ could
be omitted. Tables 1, 2 give the bounds for the eigenvalues 1,, A, successively
computed in Step 3" or Step4’ (JA,—p,], |4,—A*|<bound, v=4,6). The step
number in the first column of the tables refers to the substeps of the algorithms,
whereas the numbers #n in the second column indicate the number of trial func-
tions in (4.14) used in the problems BE(4) (cf. (4.2)).

Remark 8. In the computation we have made use of the fact that the eigenfunc-
tions of the symmetric L-membrane either are symmetric or antisymmetric with
respect to the angle 3n/4. Thus, in (4.14) and (4.15) we only have to consider
trial functions with v odd in the symmetric or v even in the antisymmetric
case.
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