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In 1967 Fox, Henrici and Moler published a beautiful article describing the Method
of Particular Solutions (MPS) for the Laplace eigenvalue problem with zero Dirichlet
boundary conditions on planar regions. The idea is to use particular solutions that
satisfy the eigenvalue equation but not necessarily the zero boundary conditions to
approximate the eigenfunctions. Unfortunately, their method becomes unstable for
more complicated regions including regions with several corner singularities, which
led to a decline of interest in such methods in the numerical analysis community.

In this thesis we return to the original idea of Fox, Henrici and Moler and devise
a modification based on angles between subspaces that avoids the problems of their
method. Our new “subspace angle method" has close links to the generalized singu-
lar value decomposition (GSVD). We use this to show the stability of our method
and explain why the GSVD is a natural framework for methods based on particular
solutions.

Classical error bounds for the MPS were derived by Moler and Payne. We extend
these bounds to our method and verify the first eigenvalue on the L-shaped region to
13 rounded digits of accuracy.

The approximation theory of the MPS goes back to results by Vekua. We use his
theory and analytic continuation of eigenfunctions to prove exponential convergence of
our method on regions with zero or one corner singularity. Using conformal mapping
techniques we compute the exact asymptotic exponential rate on several regions. For
regions with multiple corner singularities we propose a choice of basis functions that
seems to lead to better than algebraic convergence rates.

We then show how to extend the GSVD approach to a domain decomposition
method by Descloux and Tolley and improve their original convergence estimates
using Vekua’s theory.

Finally, we present eigenvalue and eigenfunction computations on many planar
regions including the L-shaped region, isospectral drums and some multiply connected

regions.
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Chapter 1

Introduction

1.1 The Dirichlet eigenvalue problem

This thesis is about the accurate numerical solution of the Laplace eigenvalue problem

with Dirichlet boundary conditions, defined by

—Au = M in , (1.1a)
u=0 on 09, (1.1b)

where (2 is a bounded planar region. One of the early roots of the great mathematical
interest in this problem is the work of Chladni at the end of the 18th and the beginning
of the 19th century. He used sand to make the nodal lines in vibrating plates visible.
Napoleon was so excited by these experiments that he set out a price of 3000 francs for
anyone who could explain the mathematical theory behind these figures. This price
was awarded in 1816 to Sophie Germain, who managed to partially explain them by
finding the fourth order PDE describing vibrations of a plate but did not state the
boundary conditions correctly. Although the mathematical theory behind Chladni’s
figures differs from the membrane eigenvalue problem (1.1), his work can be seen as

the key starting point in the investigation of both phenomena.

According to Lord Rayleigh |70], the mathematical analysis of the membrane eigen-
value problem was first considered by Poisson, who investigated vibrations on a rec-

tangle. Important 19th century contributions were also made by Lamé, Clebsch,
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Weber, Rayleigh, Schwarz and Pockels®.

In the 20th century the membrane eigenvalue problem gained large interest in the
context of Schrodinger’s equation. It was shown that (1.1) governs quantum states
of a particle trapped in a two-dimensional well. Nowadays this equation plays an
important role in the field of quantum chaos, which has emerged in the last twenty to
thirty years. Physicists in this field are interested in the behavior of eigenfunctions

for very high energies, i.e. large values of \ [33].

Among mathematicians the membrane eigenvalue problem gained a lot of attention
in the second half of the 20th century with Kac’s famous article from 1966 “Can one
hear the shape of a drum?” [41]|. The question asks whether there are two distinct
planar regions which have the same spectrum. This was first answered in 1992 by

Gordon, Webb and Wolpert [32] who were able to construct such isospectral regions.

1.2 Drum computations and a famous logo

The computation of eigenvalues and eigenfunctions of (1.1) is a nontrivial problem.
General purpose methods are for example finite differences, boundary element, or fi-
nite element methods. Another more specialized approach is the Method of Particular
Solutions (MPS), which was introduced by Fox, Henrici and Moler in 1967. It uses
particular solutions that satisfy the eigenvalue equation (1.1a) but not necessarily
the zero boundary conditions. The idea is to find values of A for which there exist
linear combinations of the basis functions which are small on a given set of boundary
collocation points. This method was successfully applied by Fox, Henrici and Moler
to compute the first eigenvalues on the L-shaped region to up to eight digits of ac-
curacy. Most numerical analysts will have seen an example of this method without
actually knowing it. The famous Matlab logo is derived from applying this method to
the L-shaped region and is an approximation of the first eigenfunction on this region.
Apparently, it does not satisfy the zero boundary conditions. For aesthetic reasons
Moler chose the image in Figure 1.1 instead of the correct eigenfunction. The correct

eigenfunction can be obtained with the Matlab command membrane (1,15,9,4). This

! An extensive bibliography for the membrane eigenvalue problem can be found in the beautiful
review article by Kuttler and Sigillito [44].
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Figure 1.1: The famous Matlab logo.

does not compute the first eigenvalue but uses a stored constant and only computes
the eigenfunction. The function used in the Matlab logo is obtained with the com-
mand membrane, which is equivalent to calling membrane(1,15,9,2). The command
logo internally calls the membrane function but formats the results such that it is the

Matlab logo in the familiar form shown in Figure 1.1.

Unfortunately, the original MPS by Fox, Henrici and Moler fails for more complicated
regions. This led to a decline of interest in this idea in the Numerical Analysis
community. Until recently, the most successful method for (1.1) has been a domain
decomposition approach by Descloux and Tolley [18|, which was later improved by
Driscoll [21].

While there was a decline of interest in the MPS among numerical analysists there
has been a growing interest in such methods among physicists in the last twenty years
under the name of “point matching methods". One of the original works is due to
Heller [34, 35] who developed a method very similar to the MPS without knowing
the work of Fox, Henrici and Moler. His method and its generalizations are nowadays

frequently used by physicists working in quantum chaos and related fields.

1.3 The structure of this thesis

The starting point of this thesis was the original paper by Fox, Henrici and Moler
from 1967. It bothered us that such a beautiful idea should fail for more complicated

regions such as polygons with several corner singularities. Since there are only a finite
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number of known singularities on such regions there should be a beautiful and robust

method which computes the eigenvalues and eigenfunctions to high accuracy.

This thesis can be roughly divided into four different areas:

1. Efficient tools from linear algebra
2. Accuracy bounds
3. Approximation theory

4. Eigenfunction computations

Chapters 2 to 4 and the first half of Chapter 7 belong to the first area. In Chapter 2
and 3 we investigate the failure of the Method of Particular Solutions of Fox, Henrici
and Moler and introduce two tools from linear algebra, subspace angles and the
generalized singular value decomposition (GSVD). With these tools we devise a new
method in Chapter 3 which we call the “subspace angle method” and show a first
example of it on the L-shaped region. Parts of Chapters 2 and 4 are also published
in [15]. The robustness of our method is investigated in Chapter 4, where we take a
close look at the condition numbers of certain generalized singular values, which are
just the tangents of subspace angles that we compute in our method. It turns out
that our new approach even admits highly accurate computations of eigenvalues and
eigenfunctions of (1.1) if the basis of particular solutions is highly ill-conditioned. In
the first half of Chapter 7 we extend the idea of using generalized singular values to

a certain class of domain decomposition methods for (1.1).

Classical a posteriori accuracy bounds for the Method of Particular Solutions are
discussed in Chapter 5 and extended to the subspace angle method. In the second
half of the chapter we use these bounds to verify thirteen rounded digits of the first
eigenvalue on the L-shaped region. This is the most accurate computation of the first

eigenvalue on the L-shaped region that we are aware of.

The approximation theory of the Method of Particular Solutions is investigated in
Chapter 6. We show how to use results from Vekua and Garabedian to establish

exponential convergence estimates of the MPS for regions with zero or one singular
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corner and how one can compute the exact asymptotic convergence rates on these
regions using conformal mapping techniques and analytic continuation of eigenfunc-
tions. These ideas are extended to domain decomposition methods in the second half
of Chapter 7. For regions with multiple singular corners we devise in the last part of

Chapter 6 an approach that seems to deliver faster than algebraic convergence rates.

Computations of eigenvalues and eigenfunctions of several regions are presented in
Chapter 8. We also take a closer look at the concept of higher subspace angles and
avoidance phenomena between them. Parts of Chapter 8 are published in [14, 75|.

1.4 Notation

Most of the notation used in this thesis is standard. Everything else will be defined
when appropriate. Here we summarize some of the notation used throughout the

thesis.

By a region 2 we understand an open connected set in R?. In some sections (especially
in Chapter 7) we also use the term domain for a region. Often we will identify the
complex plane C with the set R? by the identity z = z + iy. We also frequently use
polar coordinates (7, #) to denote a point z = re?. The closure of a region (2 is denoted
by Q. The complex conjugate of a complex number z is denoted by Z and * is the
set of all complex numbers whose complex conjugate is in €2, i.e. Q* :={Z: 2 € Q}.

The area |Q2] of a region () is defined as
Q| = / ldzdy.
Q

For a scalar real or complex variable x we denote by |z| its absolute value. If z € R"
then |z| = (3o, , \:UkP)l/z, where zj, is the kth component of the vector x. For
z,y € R® we denote by (z,y) = 27y the standard Euclidian inner product and by
|x||2 := |x| its Euclidian norm. The maximum norm of a vector x € R" is defined by

|%]| o := max, |x,|.

Sometimes we use Matlab notation to denote parts of a matrix. Hence, if A is a

matrix the first column of A is A(:,1). For real matrices we will use two norms. The
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—
wn

spectral norm of A € R™*" is defined as ||A|ls := \/Anaz (AT A), where A0, (AT A) i
the largest eigenvalue of ATA and the Frobenius norm || Al is defined as |A|r 1=
\/tr(AT A), where tr is the trace operator. It follows directly that ||Alls < ||AllF

rank(A)[|All.

The L2-inner product (u,v) in € is defined by

IN

(u,v)q ::/Qu(x,y)v(x,y)da:dy.

The associated norm is defined by ||ul|q = <u,u);2/2. We will also need the inner

product of two functions on the boundary 9€2. This is defined as the path integral

(1, v)pn = / ul(s)ds,

Furthermore, we let ||ul|aq := (u, u>(19g The sup-norm ||ul|s,s of a function w in a set

S is defined as

[tloo,s := sup |u(z)].
€S

Sometimes we need the relative machine accuracy €,,,.,, which is defined as the
distance from 1 to the next larger floating point number. In IEEE double precision
the value of this number is 27°2. We will also encounter the unit roundoff « which is

2753 in IEEE double precision arithmetic?.

In most chapters we use the spaces A(\) and D, which are defined as
AN) = {u e C()NC* Q) : —Au = I in Q} (1.2)

and

Dy := {u € C(Q) NC*Q) : uloq = 0}. (1.3)

Hence, A()\) is the space of all particular solutions which are continuous in Q and D,
is the space of functions which are twice continuously differentiable in 2 and zero on
0. Depending on the section the symbol A(\) can also denote a subspace of the
space of particular solutions or the space spanned by a basis of particular solutions
evaluated on a set of discretization points. Similarly, Dy can also mean the space of
functions which are zero on a given set of boundary collocation points. This will be

clear from the context and also stated again in the corresponding sections.

2See [38] for a detailed description of these quantities.
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1.5 Basic properties of eigenfunctions on planar re-
gions

We now state without proof some basic properties properties of the solutions of the
eigenvalue problem (1.1) which are useful for the understanding of the following chap-

ters. References to further results and proofs are given in [44].

All eigenvalues Ay of (1.1) are positive. The first eigenvalue is always simple. We can

order the eigenvalues with multiplicity according to
D<A <A<l

with a limit point at infinity, and the corresponding eigenfunctions can be chosen to

form an orthonormal complete set in L*(€2). That is,
< U, uy >o= 0y,

where u; is the eigenfunction associated with \; and 6;; is the Kronecker delta. On
some elementary regions the eigenvalues and eigenfunctions are explicitly known. For
a rectangle with 0 < x < a, 0 <y < b the eigenfunctions are

U (T, y) = sin (mwx) sin (%) ., myn=12,...
a

with corresponding eigenvalues

a2+ ()]

In the case of a disk of radius a the eigenfunctions are given by

JmnT
a

U (1, 0) = T (

JJ[Acosmf + Bsinmf], m=0,1,..., n=1,2,...
where j,., is the nth zero of the mth order Bessel function .J,,. The eigenvalues are
. 2
Amn = (Jﬂ> .
a

If for two regions €21 C {25 then for the eigenvalues )\,(41) of 2; and )\,(3) of Q5 it follows
that
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Among all regions with the same area the disk has the smallest eigenvalue \;. This

is the result of the famous Faber-Krahn inequality which states that
T
Al > =gy
jo

But a large region does not necessarily have a small first eigenvalue \;. Let p be the
radius of the largest inscribed disk in a simply connected region €. Osserman?® [56]
showed that
N>
4p?
In 1994 the value 1 was improved by Banuelos and Carroll to 0.619 [2]. It still remains
an open question what is the largest constant e such that \; > p% for general simply

connected regions.

The eigenvalues of (1.1) cannot be arbitrarily distributed. An important result to

this effect is Weyl’s law,
4k

a1

A proof can for example be found in [61].

as n — Q.

Ak

The nodal lines of u; are the set of points in €2 where u, = 0. Courant’s nodal line
theorem states that the nodal lines of the kth eigenfunction wu; divide €2 into not more
than k subregions [61]. The eigenfunction of the first eigenvalue A; has no nodal lines,

and by orthogonality it follows that )\, is always simple.

In symmetric regions eigenfunctions can be chosen to have either odd or even sym-
metry. An odd eigenfunction has a nodal line along the symmetry axis and an even
eigenfunction has zero normal derivative along this axis. Further symmetry classes
were investigated by Hersch [37]. This can sometimes be used to reduce the eigenvalue
problem (1.1) to a problem on a simpler region and was applied by Fox, Henrici and

Moler to the eigenvalue problem on the L-shaped region.

Eigenfunctions are real analytic inside €2. The smoothness on 02 depends on the
region. If a corner of 02 consists of two straight arcs meeting at an angle 7/k, where
k is an integer, then any eigenfunction can be continued to an analytic function in

the neighborhood of the corner. Otherwise, eigenfunctions can have singularities at

*In [3] Bafiuelos and Carroll point out that this result even goes back to Makai in 1965.



CHAPTER 1. INTRODUCTION 9

the corner, which have to be dealt with by the numerical method in order to achieve
fast convergence to the eigenfunction. We will say much more about these matters in
Chapter 6.

For the eigenvalue problem (1.1) there are different sets of particular solutions. Using
separation of variables in polar coordinates for the equation —Awu = Au one can derive
the solutions

Jar(VAF) sin ok, Jor(VAr) cos akl (1.4)

for o, A > 0 and k € N, where J,; is the Bessel function of the first kind of order
ak. We will call the functions in (1.4) Fourier-Bessel sine and Fourier-Bessel cosine
functions. If ak ¢ N these functions are not C* at 0. A similar set of particular
solutions is obtained by using Bessel functions of the second kind instead of the first
kind in (1.4). We obtain

Yo (VAr) sinakd,  Yae(VAr) cos akb.

We will only need these functions for the case o € N. It is important to note that
Yor(x) — —oo for + — 0. Therefore, the origin of the polar coordinates has to lie
outside the region if we want to use Fourier-Bessel functions of the second kind as

particular solutions.

Another class of particular solutions are real plane waves. In cartesian coordinates

these are given as

Rle{eiﬁ(w cos a+y sin a)}’ Im{ezﬁ(x cos a+y sin cx)}

Y

or equivalently in polar coordinates as
Re{ei\f/\r cos(@—a)}’ Im{eiﬁr Cos(@—a)} (15)

for —m < a < m. These are waves oscillating with wavelength 27 /v/) in the direction
given by « and constant perpendicular to a. To obtain a set of 2N basis functions
one usually takes a = %’T for k =0,..., N — 1. The following argument shows that
this is a sensible choice. It holds that
_on 27
T (\/Xr>ein9 _ _l/ eiﬁrcos(ef‘r)eim‘dT
" 2 Jo
for n € N. Using the trapezoidal rule we obtain

. 2N—1
Jn(\/XT)em@ ~ —% eiVArcos(O—5f) gin (1.6)
k=0
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By combining terms belonging to & and N + k it follows for n even that

=

Re{J,(VAr)e™} ~ cos(\/_rcos(é—ﬂ—]\];))
Im{J,(VAr)e™} =~ - cos(\/_rcos(G—%k))

for certain real coefficients a( and ﬁk . If n is odd the same formulas are valid with
sin(v/r cos(f — 7)) instead of cos(Vr cos(f — T4)). Density results and approxi-
mation properties of Fourier-Bessel functions and real plane waves are investigated

in [68].

A very interesting set of basis functions are evanescent plane waves. These are ob-
tained by choosing a complex shift « in (1.5). Then (1.5) is a wave oscillating with
wavelength 27 /(v/X cosh Im «) along the direction Re a and decaying exponentially in
the direction Re av+ 7/2 Sign(Im «) [12]. Evanescent plane waves have been applied
with great success to obtain accurate eigenvalue approximations on the Bunimovich
stadium billiard |6, 81].



Chapter 2

The Method of Particular Solutions
(MPS)

In 1967 Fox, Henrici and Moler published a beautiful article “Approximations and
bounds for eigenvalues of elliptic operators" [25] describing the Method of Particular
Solutions for eigenvalue problems on planar regions. Based on theoretical work of
Bergman and Vekua ([10, 80|, see also Chapter 6) they approximated solutions of (1.1)
by linear combinations of particular solutions that satisfy (1.1a) but not necessarily
(1.1b). The boundary conditions were approximated using a collocation method.
With this approach they computed the first 10 eigenvalues of the L-shaped region to
an accuracy of up to 8 digits. By deriving error estimates they were able to give lower

and upper bounds for each eigenvalue.

This simple and elegant method and its application to the L-shaped region led to many
related dissertations and articles by Fox’s and Mayers’ students Donnelly, Mason,
Reid and Walsh at Oxford [19, 50, 63] and Moler’s students Schryer and Eisenstat at
Michigan and Stanford [23, 64].

Unfortunately, the MPS in the form proposed by Fox, Henrici and Moler suffers
from problems for more complicated regions, especially regions with several corner
singularities. This led to a decline of research in the MPS in the 1970’s. Indeed, the
best method known as of a year or two ago, developed by Descloux and Tolley in
1983 [18| and improved by Driscoll in 1997 |21], is based on domain decomposition

rather than global approximations.

11
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While the MPS got less attention in the numerical analysis community, it was in-
dependently rediscovered by physicists working in semiclassical mechanics, quantum
chaos and related fields; this literature often speaks of methods of “point matching”.
One of the originators of this work is Heller, who in the 1980s used a method very
similar to the MPS to investigate “scars” in high energy eigenstates of the Bunimovich
stadium billiard [34]. It is interesting to note that although Heller’s method is now
a standard tool in physics, the only indication he gave of it in [34] was the following

sentence:

These are just a few of nearly a dozen types of scars found so far, using a

simple algorithm written by the author.

He gave a thorough explanation of his method a few years later in [35]. Heller’s

approach was generalized and improved by his student Barnett [6].

Another method based on particular solutions is the scaling method of Vergini and
Saraceno [82]. The advantage of their method is that it computes good approxima-
tions to many high energy eigenstates with just one matrix decomposition, as opposed
to the traditional MPS, where several decompositions are needed to get one eigen-
state accurately. Investigating this method has led to some interesting theoretical
results |7, 8|. Unfortunately, the formulation of Vergini and Saraceno only works
for star-shaped regions. But still it is a remarkable method that deserves further

investigation.

In this chapter we will first analyze the original MPS of Fox, Henrici and Moler. Then
we will discuss in detail the failure of this method for more complicated regions. This
failure and understanding it points the way to the more robust methods developed in

the later chapters.

2.1 The MPS of Fox, Henrici and Moler

The idea of the MPS as proposed by Fox, Henrici and Moler is to take a set of
functions that satisfy (1.1a) and to find a parameter A for which there exists a linear

combination of these functions that is small on the boundary 0f2.
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Let us consider an infinite wedge with interior angle w/c. The eigenfunctions of this

wedge are the functions

w(r, 0) = Jop(VAr) sin akf (2.1)

for arbitrary A > 0 and k£ € N. The idea of Fox, Henrici and Moler was to approximate

0

Figure 2.1: An infinite wedge with interior angle w/a. The eigenfunctions (2.1) of
this region are known as Fourier-Bessel functions.

eigenfunctions of a polygon containing a corner with interior angle m/a by linear
combinations of Fourier-Bessel functions of the form (2.1). Hence, we want to find

coefficients c,(CN) and a value for \ such that

ch Jok( \/_r sin k0

is a good approximation to an eigenfunction of (1.1), i.e. u(r,6)|an ~ 0. On the arcs
adjacent to the corner with interior angle 7/a, we automatically have u(r,0) = 0.
The rest of the boundary is discretized with collocation points z; = Tjeiej € 0Q,j =
1,...,N. Condition (1.1b) now becomes

N
u(r;, 0; Z Jor(VAr;)sinakl; =0, j=1,...,N.
k=1

This is equivalent to the system of equations
AB()\)C = O, (22)

where (Ap)jr = Jox(VAr;) sin aké;. In Chapter 3 we will also introduce a matrix A;
consisting of Fourier-Bessel functions evaluated at interior points of {2. One can solve
(2.2) by looking for the zeros of det(Ap())), which was the original approach of Fox,

Henrici and Moler.
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error

Figure 2.2: The convergence for the first eigenvalue of the unit square. In each step
2N basis functions and collocation points are used.

Let us try this method on a simple region. On the unit square [0, 1]? the eigenfunctions

are explicitly known as
Umn(T,y) = sin(mmx)sin(nry), m,n=12,...
with corresponding eigenvalues
A = 72 (m2 + n2) )

We expand around the corner at z = 0. Then the Fourier-Bessel basis functions
are automatically zero on the two sides adjacent to z = 0. Each of the other two
boundary sides is discretized with N collocation points. Therefore, 2/V basis functions
are chosen to obtain a square matrix Ag(\) € R*V2N. The convergence behavior of
the MPS for the first eigenvalue 272 is shown in Figure 2.2. The figure seems to show
at least “spectral" convergence, i.e. convergence at the rate O(N~?°) for every s > 0.
Indeed, from the convergence theory developed in Chapter 6 it follows that the rate
of convergence is O(R™") for each R > 1. This example seems to hint that the MPS
might be a powerful method. But the example is still too simple to reveal much.

Therefore, let us try a more complicated region.

Figure 2.3 shows the famous L-shaped region. We approximate around the reentrant

corner with linear combinations of Fourier-Bessel functions of the form J%k(\/XT) sin 2k.
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Figure 2.3: Discretization of the L-shaped region for the MPS.

This cancels out the singularity of the eigenfunction at the reentrant corner and the-
oretically leads again to spectral convergence, as we will show in Chapter 6. The zero
boundary conditions are automatically satisfied on the arcs adjacent to the reentrant

corner. Each of the other sides is discretized using N collocation points.

To avoid numerical underflow in calculating det(Ag(A)) due to bad scaling of the
Fourier-Bessel basis each column of Ag(\) is now scaled to have unit norm. The
first eigenvalue of the L-shaped region is A\; ~ 9.6397238440219. The convergence
behavior of the MPS to this eigenvalue is shown in Figure 2.4. The MPS does not
get more than four digits and breaks down after N = 15. This shows that there is a
problem with the original MPS as formulated by Fox, Henrici and Moler. They were
able to get around this problem and calculate 8 digits by using symmetry properties
of the eigenfunctions to reduce the problem size. But as we will show now, such
techniques are only able to improve the accuracy of the MPS in a few special cases.

On more complex regions the method almost always fails.

2.2 The failure of the original MPS

The MPS tries to find a value A > 0 such that there exists a linear combination
of Fourier-Bessel basis functions which is small at the boundary collocation points.
What happens now if Ag(A) is ill-conditioned for all A > 0 7

Let Ag(\) € R™ P with n > p (we now include the case where there may be more

collocation points than basis functions) and assume that the smallest singular value
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0 5 10 15 20

Figure 2.4: Failure of convergence of the original MPS for the first eigenvalue of the
L-shaped region.

op(A) of Ap(X) satisfies 0,,(A) = O(€macn). Then there exists a vector ¢ € R, ||c]|s =1
such that || Ag(A)c|l2 = O(€macn)- If A is close to an eigenvalue A, of (1.1), then

N
a(r,0) = Z e o (V) sin ako
k=1
may be a good approximation of an eigenfunction (in Chapter 5 we will discuss error
bounds for the MPS). However, if A is not close to an eigenvalue of (1.1), then a(r,0)
satisfies the eigenvalue equation —Au = Au and is numerically zero on the boundary
collocation points. The only solution of (1.1), if A is not an eigenvalue, is u(r, ) = 0.

Therefore, we can expect u(r,6) ~ 0 in .

The MPS cannot distinguish between functions that are numerically zero in €2 and
true eigenfunctions, since it only considers boundary collocation points. But if Ag(\)
is ill-conditioned for every A > 0, we can always find a linear combination of basis
functions that is close to zero at the boundary collocation points, leading to spurious
solutions that are close to zero on the whole of €2 if A is not close to an eigenvalue. In
this section we present numerical experiments that demonstrate this behaviour and
discuss the matter of when we can expect Ag(A) to be ill-conditioned for all A > 0. Let
us return to the example of the L-shaped region from Section 2.1. The convergence

in Figure 2.4 breaks down after N = 15. Figure 2.5 shows the condition number



CHAPTER 2. THE METHOD OF PARTICULAR SOLUTIONS 17

1020

10157

K (AL (V)
SH

10°

Figure 2.5: The condition number of Ag(A) for A = A; and the arbitrary value
A = A1/2. After N = 15 both matrices become numerically singular, making it
impossible for the MPS to detect the eigenvalue A;.

ka(Ap(N)) measured in the 2—norm for a growing number NV of basis functions. For A
we chose two different parameters. The first is A = \{, where \; &= 9.6397238440219
is the first eigenvalue on the L-shaped region. The second is the arbitrary choice
A = A1/2. The columns of Ag()\) € R*™WX4N (we have N collocation points on each
of the 4 sides not adjacent to the reentrant corner) are again scaled to unit norm.
Both curves grow exponenentially. After N = 14 the results become erroneous due
to rounding errors. To detect an eigenvalue of (1.1) the MPS depends on the gap
between those two curves, which does not widen much as N increases and is in any

case computed incorrectly after N = 14.

How can we improve the condition of Ag(A)? In Figure 2.5 we already used diagonal
scaling of the columns of Ag(\) to improve its condition number. This is crucial
here since the scaling of Fourier-Bessel functions becomes exponentially smaller with
growing order k, which introduces severe ill-conditioning in Ag()A). Over all possible
choices of columnwise scaling a nearly optimal strategy is to scale all columns to unit

norm, since for A € R™*" and rank(A) = n,
ro(AD¢) < \/ﬁ[r)relipnn ro(AD).

Here, D, C R™™ denotes the set of nonsingular diagonal matrices and D¢y =
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diag(]|A(:, k)|l2) " is the diagonal matrix that scales all columns of A to unit norm
(see |38], p. 125 for a proof).

Scaling alone, although necessary, does not deliver satisfactory results, as Figure 2.5
shows. We could try using different distributions of points on the boundary. Indeed,
using points in a Chebyshev distribution on each arc allows us to obtain 8 digits of
accuracy before the method breaks down. To make the MPS less dependent on the
choice of points it is advisable to use many more points on the boundary than there
are expansion terms, as proposed in [54]|. But this does not solve the fundamental
problem of the MPS that it fails to exclude spurious solutions which are numerically
zero everywhere in the region. The following example demonstrates a situation where
the MPS fails even to get a few digits of the first eigenvalue. Consider a quadrilateral
with four corner singularities defined by the points 0,1,1.5 + 1.5¢,1 + 1.5¢2. The
eigenfunctions have singularities at all four corners (singularities of eigenfunctions are
discussed in Chapter 6). Therefore, in order to get fast convergence to the solution,
Fourier-Bessel expansions at all corners are needed. The first eigenvalue of (1.1) on
this region is A\; ~ 24.73768313904717. Figure 2.6 shows the convergence of the
solution for a growing number N of basis terms at each corners. On each side of the
boundary 100 points were used. For N = 3 the method obtains the first three digits
24.7 correctly, but for larger NV it fails completely. The reason is that the four Fourier-
Bessel expansions only behave differently very close to the singularities. Otherwise
they approximately span the same space of functions on Q. This leads to the matrix

Ag(A) being heavily ill-conditioned independently of .

Fox, Henrici and Moler were aware of the fact that their method might run into

problems for more complicated regions. In [25]| they noted:

In all fairness, it should be reported that results are not always as sat-
isfactory as these examples indicate. ... Other methods... are currently

being investigated.

In [21] Driscoll wrote about the problems in applying the MPS to a challenging region

with several corner singularities:
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Figure 2.6: The MPS fails completely in the case of a quadrilateral with Fourier-Bessel
expansions at all corners.

As the number of terms in the truncated expansion is increased, the matrix
becomes very nearly singular for all values of A, and detecting the true
singularity numerically becomes impossible. In fact, we have been unable
to produce more than two or three accurate digits for a few of the smallest

eigenvalues with this method.

In Chapter 3 we develop an approach to the MPS that solves these problems and
allows highly accurate approximations to eigenvalues and eigenfunctions on planar
regions. But before we want to discuss two methods developed by physicists, the
PWDM of Heller and its generalization by Barnett. Both methods partially solve the

problems of the MPS by introducing a normalization of the trial functions.

2.3 The PWDM of Heller

The idea of Heller’s PWDM (Plain Wave Decomposition Method) is very similar to the
original MPS of Fox, Henrici and Moler. Two facts about this method are remarkable.
The first is that it was developed completely independently of the literature in the

Numerical Analysis community about methods based on particular solutions. The
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second is that it utilized a simple trick to partially solve the problem of spurious
solutions. Heller originally used this method to compute scars in chaotic billiards
[34], where he used real plane waves as basis functions. But the method can equally
well be applied to other sets of particular solutions like Fourier-Bessel functions or

evanescent plane waves.

The idea of the method is the following. Let us pick a basis of IV particular solutions.

Asin the MPS, we could choose N boundary points and obtain the system of equations
A(N)e = 0.

But as discussed in the last section, this introduces spurious solutions in the search
space which destroy the convergence. To avoid such solutions that are numerically
zero everywhere in the region, Heller picked one point in the interior of the region
and imposed the condition that the trial functions are 0 on N — 1 boundary points

and equal to 1 at the interior point. This leads to the system of equations
A(N)e = ey,

where ey is the Nth unit vector [0,...,0,1]T € RY and the last row of A(\) now
consists of the particular solutions evaluated at the interior point. To check the
quality of an approximate eigenfunction, it is first normalized in the interior of the
region and then evaluated at many boundary points. Heller calls this boundary norm
the “tension” of the trial function. If the tension is small, then hopefully the trial

function is a good approximation to an eigenfunction of (1.1).

Like the MPS, the method of Heller can also be formulated using a least-squares
approach. Let p be the number of basis functions and n the number of boundary
points, with n > p. Furthermore, let [(A\)? € RY? be the row vector of basis functions
evaluated at the interior point. Then for a fixed eigenvalue estimate A\, Heller’s method
can be formulated as

min - {|AA)z ] (2.3)

INTz=1

Let [(A\) = QR be the full QR decomposition of I(\) and define a := AN)Q(:, 1)
and A := A(N)Q(:,2:p). Since I(\) is a vector we have R = [£,0,...,0]7 € R? for
one ¢ € R. Equation (2.3) can now be transformed into the standard least-squares

problem

~ a
Az + —
§

min
z€RP—1

2
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The solution z of (2.3) is obtained as = =
12.1.4).

%Q(:,l) + Q(:,2:p)z (see [30], Section

Alternatively, we could attempt to solve the least-squares problem

-

This delivers a trial function that is small at the boundary points but close to one at

min
rERP

(2.4)

2

the interior point, which is often good enough to avoid spurious solutions. Approxi-
mations of constrained least squares problems by standard least squares problems are

discussed in [30, 78]. In [78] several error bounds are also given.

Heller’'s method is widely used in the quantum chaos community and related fields.
It is easily applicable and often delivers good approximations to eigenmodes. The
drawback of the method is the choice of the interior point. If it is close to a nodal
line of the exact eigenfunction then even good approximations to the eigenfunction
are scaled up by the normalization at the interior point and are discarded as spurious

solutions. Hence, this method is only a partial solution to the stability problems of
the MPS.

2.4 Barnett’s generalization of the PWDM

The PWDM of Heller can have problems if a nodal line is close to the interior point.
Barnett’s generalization of the PWDM solves this problem [6]. Let

AN\ = span{u®, ..., u®™}

be the space spanned by N particular solutions u™, ... u™ satisfying —Au) =
Mu® | k= 1,...,N which are twice differentiable in © and continuous on . For

u,v € A()) define the boundary inner product’

(u, V)0 = /aQ u(s)v(s) ds.

'If X is an eigenvalue of (1.1), (-, -)sq is not positive definite and therefore in the strict sense not
an inner product.
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Furthermore, we need the standard L?-inner product

(u,v)a0 ::/Q u(z,y)v(z,y) dedy.

The corresponding norms are defined as ||ul|oq = (u, u>ég and |jullq = (u, u>512/2.

For a function u € A(\) we can define the tension
Hu) = [[ulloc
[[ullo

Furthermore, let us define the minimal tension as

tm(A) == urer}}(ri) t(u). (2.5)

If t,,(A) = 0, then A is an eigenvalue of (1.1), since then there exists a nonzero function
u € A(N) satisfying —Au = A and ||u|sgo = 0. To compute t,,()\), Barnett proposed
the following method. Let u = > z;u®). Then

. U, U)s0 .
2,0\ = — min — 0
m() wCA) (u, u)q ZeRN TGNz’

where F' and G are defined by
Fij(A) = (ui, uj)oa,  Gij(A) = (ui, uj)e.

Hence, we can represent t2,(A\) as the minimum of a Rayleigh quotient. The solution

is given as the smallest eigenvalue p1(\) of the eigenvalue problem
FNz(A) = p(A)G (M) (2.6)

and we obtain t,,(\) = p1 ()2,

This method is a true generalization of Heller’'s method since it guarantees that ap-
proximate eigenfunctions are normalized over the whole region (2 instead of being
normalized at only one point. But the numerical implementation of Barnett’s method
has two drawbacks. The first is that almost linearly dependent basis sets lead to a
common numerical null space of the matrices F'(A) and G()\). One strategy to prevent
this is to project the common null space out of the eigenvalue problem, as described

in [6]. This issue is also further discussed in Section 4.6.
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The other problem is the following. Suppose for the computed smallest eigenvalue
f1(A) that
fir(A) = pa(A) + f,

where f = O(€pqen) is a small perturbation in the order of machine accuracy. We

then obtain

Therefore, no matter how small p1(\) is, the minimum of the computed value ,,(\)
for the tension cannot become lower than \/f = O(\/€mach), meaning that Barnett’s
method is limited to an accuracy of O(y/€). Since asymptotically the function ¢,,()\)
behaves like K|\ — A\g| close to an eigenvalue A\ for a constant K > 0 [7], we can
generally not expect to detect eigenvalues to more than 8 digits of accuracy if we
work in IEEE double precision. For most applications in physics this restriction to
8 digits of accuracy is usually not harmful. But in this thesis we want to develop a
method that is able to detect eigenvalues to an accuracy close to machine precision
if the basis of particular solutions admits such accurate approximations. In the next
chapter we will develop such a method based on angles between subspaces and in
Section 3.5 we show that Barnett’s method can be interpreted as a squared version

of our new approach.



Chapter 3

Subspace angles and the generalized
SVD (GSVD)

In the last chapter we discussed the failure of the MPS in the form put forward
by Fox, Henrici and Moler. The reason for the failure is that we do not have a well-
conditioned problem since the method does not contain information about the interior
of the region. This problem was partially solved by Heller’'s PWDM and Barnett’s
generalization of it. But Heller’'s method only partially solves the problem since it
heavily depends on the choice of the interior point, and Barnett’s approach cannot
find eigenvalues to a higher accuracy than the square root of machine precision. Fur-
thermore, the ill-conditioning of the basis poses stability problems in the formulation

as a generalized eigenvalue problem.

In order to reliably find eigenvalues and eigenfunctions of (1.1) we need

1. A well-conditioned problem,

2. A stable algorithm for solving it.

The first of these goals can be achieved by introducing several interior points. To
extract approximate eigenfunctions using the information from boundary and interior
points we introduce an algorithm that can be formulated either as a problem of finding
the angle between certain subspaces or as a generalized singular value problem. The

stability of this algorithm will be discussed in detail in Chapter 4.

24
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3.1 The Dirichlet eigenvalue problem and angles be-
tween subspaces

Consider the space A(\) of all solutions of —Au = Au in Q which are continuous on
09, i.e.
AN = {u € C(Q)NC*Q): —Au = \u in Q}.

Let Dy C C(Q) NC?(2) be the space of functions in this continuity class which are
zero on 0X). If for a given A > 0 the spaces A(\) and D, have a nontrivial intersection
there exist nonzero functions in A(\) satisfying the eigenvalue equation and the zero
boundary conditions, which are therefore eigenfunctions belonging to the eigenvalue

A. The following lemma is immediately obtained.

Lemma 3.1.1 The spaces A(\) and Dy have a nontrivial intersection if and only if

A > 0 is an eigenvalue of (1.1).

The principal angle between two subspaces is a useful tool to measure whether they

have a nontrivial intersection. Suppose that (-,-) is a suitable inner product with

induced norm || - ||. Then the principal angle 6(\) between A(X) and D, can be
defined as
cosf(N) = sup  (u,v). (3.1)
ueA(), [luf=1
v€Dy, ||v||=1

What is the right inner product to measure the principal angle between A(\) and
Dy? 1t the standard L*inner product (u,v) = [, uvdz is chosen, then §(\) = 0
for all A > 0 since the eigenfunctions of (1.1) in © are in Dy and form a complete
orthonormal set of L?(Q2). We need to incorporate the information on the boundary

of the region. One way to do this is by introducing a mixed inner product of the form

(u,v) := /qud:c + /an wodr = (u,v)q + (U, v)aq (3.2)

The following theorem shows that this inner product leads to a useful meaning of the
angle between A(X) and Dy.

Theorem 3.1.2 If0(\) is defined by the inner product (3.2), then the value X\ > 0 is
an eigenvalue of (1.1) if and only if 6(N\) = 0.
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Proof If A is an eigenvalue of (1.1), any eigenfunction u associated with A is an
element of Dy and of A(N). It follows that (A) = 0. Conversely, in Chapter 5 we

show
A — A

Ak

for a constant ¢ that only depends on the region (), where

A=l A = A
— min —.

Ak n An

< ctanf(\)

The minimum is taken over all eigenvalues A, of (1.1). If (\) = 0 it follows that
A= |

3.2 Principal angles in finite dimensional spaces

Before we turn the idea of using principal angles for the MPS into an algorithm we give
an introduction to principal angles in finite dimensional spaces and their calculation.
The following definition is due to Bjorck and Golub [16].

Principal angles between subspaces Let A and B be subspaces of R™ with ¢ =
dim(A) > dim(B) = p. The principal angles §; < --- < 6, are recursively defined as
cos Oy = (ug,vg) = max (u,v), w L up,...,upq, v Lo,...;01. (3.3)

u€A, [lul2=1
veEB, |lv]|2=1

The vectors u; and vy are the principal vectors associated with the principal angles

0.

Let Q4 € R™*? and @Qp € R™*? be orthogonal bases of A and B. Bjorck and Golub
showed that the principal angles 6, and the associated pairs of principal vectors wuy

and v; can be obtained from the singular value decomposition
QhQp =UZVT, (3.4)

where U € R9? and V € RP*? are orthogonal matrices and ¥ € R?*? is diagonal
with 3 = diag(cos by, ...,cos6,). The v are the columns of the matrix QpV and the
ug are the first p columns of Q4U. The Bjorck-Golub algorithm for angles between

subspaces therefore consists of two steps:
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e Compute orthogonal bases Q4 and Q5 of A and B.

e Compute the singular values of Q4Qz to obtain the cosines of the principal

angles.

If one is interested in very small angles it is necessary to work with the sines of the
principal angles. Consider the case in which 6, = O(\/€nqcn ). Then costy =~ 1— % =
1 — O(€émacn). Therefore, the cosine of principal angles can only be determined up
to the square root of machine precision. Sines of principal angles do not have this

restriction.

The sines of the principal angles between the spaces A and B can be elegantly intro-

duced using the CS decomposition.

Q
Q

mal columns, where Q1 € R™*™ )y € R™*™ and my > n. Then there exist orthog-

onal matrices U, W and V' such that

&)= Lo wlle]

The matrices S and C' are diagonal with entries

Theorem 3.2.1 (CS Decomposition) Let Q = { 1} be a matriz with orthonor-
2

O=s1="=8<81 < <S4 <Spjp1='" =8 =1

and

l=c==c>cpn=>""2C4>Cypjp1="=0c, =0.

Depending on Q, it is possible that r = 0 or r+j = n. Furthermore, s +ci =1, k =

1,...,n.

Proof A proof for the general case involving a row and column partitioning of () can
be found in [59], where the history and many applications of the CS decomposition
are also reviewed. Here, we only need the simple case of a row partitioning. The

proof given here follows the one in [30].

1Often the CS decomposition is written down in the form [81] = {g V(H {g] VT, But for our
2

purpose it is more suitable to use the notation given here.
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Let USVT be a singular value decomposition of Q;, where S contains the singular

values s; < -+ < 5, of @7 in ascending order. Since () is orthogonal, s < 1 for
k = 1,. oy n. Define [Kl Kﬂ B Q2V: where Kl c Rm2><r+j and K2 c RmQXn_r_j.

Then -
U 0 T 0, S 0
0 I Q V=10 [mlfrfjxnfrfj )
mo Xmao 2 K1 K2
where S = diag(sy, .. .,s;) € R contains the singular values of @, which are

smaller than 1. Since the columns of the right-hand side matrix have unit norm and

are mutually orthogonal, K = 0, and the matrix
Ky = Kidiag(1/y/1—s%,...,1/1/1 = s2,))

has orthonormal columns. Define W = [f(l f(ﬂ with Ki- chosen such that W is
orthogonal. Then W7 (Q,V = C, which finishes the proof. |

The decomposition Qs = WCVT is just the singular value decomposition of Q5. The
remarkable property of the CS decomposition is that the singular value decomposi-
tions of @)1 and @) both have the same right singular vectors, which are the columns
of the matrix V.

With the help of the CS decomposition it is easy to formulate a notion of sines of
angles between two subspaces. The cosines of the angles between the spaces A and

B are the singular values of Q4@ 5. Define the matrix

o {(I - QAQ@QB} |

QAQ4Qp
Since () has orthonormal columns, the CS decomposition can be applied, leading to
(I—QAQZ)QB] [U 0] [5} T
= Ve, 3.5
o= wlle (35)

WCVT is the singular value decomposition of Q ,Q%Q . Since premultiplying QLQ 5
with Q4 does not change the singular values the diagonal elements of C' are the
cosines of the principal angles between A and B. From Theorem 3.2.1 it follows that
si+ci=1, k=1,...,n. Hence, the s; are the sines of the principle angles and we
obtain s = sin #,. We do not need the full CS decomposition to compute the sines of
the principal angles since they are just the singular values of (I — Q ,Q%)Qp, which

can be directly computed.
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Up to now we have assumed that ¢ = dim(A) > dim(B) = p. Consider now the
case in which ¢ < p. Then there exist only ¢ principal angles, whose cosines are the

singular values of QLQ , € RP*9. But the singular values of Q% Qy are identical to

(- QAQ?;)@B}
QaQhQ, | "

Cq+1 = -+ = ¢, = 0, and these values are by definition not principal angles between

those of Q5Q 4. However, if we form the CS decomposition of [

A and B. But for the ease of notation we will drop the condition ¢ > p from now on
and define 6,44,...,0, = /2 whenever ¢ < p while keeping in mind that these are

not true principal angles according to Definition 3.2.

3.3 A subspace angle algorithm for the MPS

We now return to the question of how to implement a subspace angle algorithm for the
Method of Particular Solutions. As with the MPS of Fox, Henrici and Moler, we want
to work on a set of discretization points. But instead of working only on boundary
points we now add some interior points. Let 2z, ..., zxy € 082 be the boundary colloca-
tion points. In addition we choose a number of interior points Z,..., Z); € 2, which

in practice we generally take to be random, though other choices are also possible.

Since it is not possible in a practical algorithm to work with the space of all functions
that satisfy the eigenvalue equation —Au = Au in €2, the space A(\) now consists
only of the span of the basis of particular solutions u¥, ..., u® of —Au = \u. Also,
instead of working with the spaces A(\) and D, themselves, we work with their
representations at the boundary and interior discretization points. Then the bases of
these spaces can be written in matrix form. As in the original MPS of Fox, Henrici
and Moler, the matrix Ag()) denotes the basis functions evaluated on the boundary
collocation points, while we additionally introduce the matrix A;(\) of basis functions
evaluated on the interior points. Hence, the discretized space A(\) is the span of the

columns of

AN = -AI(A>]'

Similarly, the columns of the matrix

DO _ 0 c R(N—FM)XM
[M><M_

provide a basis of the space of functions that are zero at the boundary collocation

points.
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Theorem 3.3.1 Let

9200 gy = 4200

Qr(A) Ar(N)
be a QR decomposition of A(X) and let
QW] _ U 0 T[SV 1y
{Ql()‘)} B { 0 W()\)] {C(A)l V(A" (3.6)

be the CS decomposition of Q(X\). Then the principal angles ¢p(N), k = 1,...,p
between A(X) and Dy are given by

Sk(>\) = sin Gk()\), Ck()\) = COS Gk()\)

Proof From Section 3.2 it follows that the sines and cosines of the principal angles

between A(A) and Dy are obtained from the CS decomposition of

QB(A)
(I =DyDF)QN)| _ | 0
{ DyDFQ(M) }_ 0
Qr(})
Using (3.6) we find
UN 0 S(A)
(I-DyDG)QN] _ | 0 I 0 T
[ DyDIQ(N) }— o 1| |co| VW
W(A) 0 0

Hence, S(A\) and C()) define the sines and cosines of the principal angles between
A(N) and Dy. |}

How does this result relate to the angle 6(\) between the original non-sampled spaces

A(X) and Dy? In the case of the sampled spaces we have

cos by (\) = I%%§<A()\>x’ Doy)
;eRM

under the condition that ||[A(N)z||s = ||Doyl|l2 = 1 for the angle 6;(\) between the

sampled spaces. Since

a0z, o) = (20 | 0] ) = (An00.0) + s,
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this angle is a discrete analogue of the angle 6(\) for the non sampled spaces in the
inner product (3.2). In both cases the boundary part of the inner product is always
zero for inner products between elements of A(\) and of Dy. But nevertheless it is
important since the normalization of the elements of A(\) depends on the boundary
and interior part of the inner product, no matter whether we work with the sampled

or non-sampled spaces.

From (3.6) it follows that ||Qg(N)vi(A)|l2 = s1(A) and ||Qr(A)vi(A)]|2 = ¢1(N), where
v1(A) is the first column of V' (X). Consider the case s;(A) < 1. Then also
HQB(/\)Ul()\)”Q < 1 and

1Qr(Nvi(A)]l2 = e1(A) = 4/1 = s7(N) = 1.

Therefore, if s;(A) < 1 there exists a function in A(\) that is small on the boundary
points and bounded away from 0 in the interior of 2. This function is expected to be
a good approximation to an eigenfunction of (1.1). Hence, the subspace angle method
automatically excludes the possibility of numerically zero approximate eigenfunctions.

The subspace angle method can be written down in four steps.

e Choose N boundary collocation points and M interior discretization
points.

e Repeat for every A

1. Form the matrices Ag(\) and A;(\).

2. Compute the QR factorization {%f((i))] R(\) = [ﬁf&ﬂ

3. Compute the smallest singular value s;(\) of Qp(\).

The choice of points is done once and for all while the steps 1-3 are repeated for each
value of A. The numerical stability of Step 2 and 3 will be further discussed in Chapter
4. We want to finish this section by applying the subspace angle method to the L-
shaped region. In addition to just collocation points on the boundary we now add
random interior points as shown in Figure 3.1. Figure 3.2 shows a plot of the sine s;(\)
of the principal angle 6, (\), which we call the subspace angle curve. On each boundary
side not adjacent to the reentrant corner 100 equally spaced points were chosen. In

the interior of the region 50 points were randomly distributed. The approximation
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Figure 3.1: In addition to boundary collocation points the subspace angle method
utilizes interior points.

Figure 3.2: The subspace angle curve on the L-shaped region. The first three minima
show the positions of the first three eigenvalues on this region.
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Figure 3.3: The same plot as in Figure 2.5 but now for the matrix Qz(\). There is
a clear gap between the condition numbers for the eigenvalue \; and the arbitrary
value A;/2 which widens for a growing number N of basis functions.

basis consists of 20 Fourier-Bessel terms of the form Jae (v Ar)sin 2 k=1, .. 20,

3 3

with origin at the reentrant corner.

In Figure 2.5 we compared the condition number of Ag()) in the original MPS for
a growing number of basis functions in the two cases A\ = A; and A = \;/2. Let
us do the same for the matrix @p(A). The result is shown in Figure 3.3. In the
subspace angle method there is a clear gap in the condition numbers of (A1) and
@ p(A1/2) that widens nicely as the number N of basis terms grows, making it possible

to determine the eigenvalue \; to high accuracy.

In Figure 3.4 we show the approximation error |\ — A;| for a growing number N of
basis functions. We compared the eigenvalue approximations with the value \; =
9.6397238440219, which we believe to be correct to 14 digits. In Chapter 5 we will
show that this value is correct to at leat 13 rounded digits. The minimum of the sub-

space angle curve was in each step determined with the Matlab function fminsearch.

Why is it possible to determine the minimum to such high accuracy using fminsearch?
Figure 3.5 shows the subspace angle curve close to the value A; for N = 50, 60 and 80

basis functions. By increasing the number of basis functions close to A; the subspace
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Al

Figure 3.4: The approximation error for the first eigenvalue decreases exponentially
on the L-shaped region.

angle curve more and more looks like
s1(\) = KA — X\

for a value K > 0. This asymptotically linear behavior makes it possible to determine
the eigenvalue to high accuracy. In Section 3.5 we show that the subspace angle
method is closely related to Barnett’s method and that for the value t,,(\) defined
in (2.5) we have t,,(\) = tan (). Barnett showed |7| that close to an eigenvalue A
2. (N) = CIA = M|> + O(JX — \g|*) for a constant C' > 0 if we approximate from the
space of all particular solutions. Since s1(\) = sinf;(\) we can expect the subspace
angle curve to have a similar asymptotic behavior close to an eigenvalue \; if N is

high enough.

3.4 The MPS and the generalized singular value de-
composition

The original MPS of Fox, Henrici and Moler can be formulated as a singular value
decomposition to obtain approximations for eigenvalues and eigenfunctions of (1.1).

The approach of Barnett uses generalized eigenvalue problems, and in this chapter we
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Figure 3.5: The asymptotic behavior of the subspace angle curve close to the eigen-
value )\;. For a growing number N of basis functions the curve seems to behave

linearly close \;.
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introduced an approach based on principal angles between certain subspaces. We now
want to show how this is connected to the Generalized Singular Value Decomposition
(GSVD) which will lead us to a natural framework for all methods based on particular

solutions discussed so far.

The GSVD was introduced by Van Loan in [77]|. He introduced B-singular values and

defined them as the elements of the set
pu(A, B) = {ulp > 0,det(A"A — ? BT B) = 0}.

This definition also explains why the p were subsequently called generalized singular
values. Ordinary singular values are just the solutions of the equation det(ATA —
p*I) = 0, while now there is also a matrix B involved. In [58] Paige and Saunders in-
troduced a slightly more general form of the GSVD and also gave a more constructive

proof, which will be the basis of the results given here.

Theorem 3.4.1 (Generalized Singular Value Decomposition) Let A € R™*"

with my > n and B € R™*".  Assume that Y = [g} has linearly independent

columns. There exist orthogonal matrices U € R™>™ qand W € R"™*™2 and a

nonsingular matriz X € R™" such that
A=USX™', B=wCX, (3.7)

where S and C' are defined as in Theorem 3.2.1.

Proof Let QR =Y be the QR decomposition of Y and partition () in the same way
as Y is partitioned into A and B, i.e.

Qa A
R = . 3.8
olr=15 (35)
Applying the CS decomposition to ) we obtain
Al (U 0[S
510 w]le]v
Since Y has linearly independent columns, the matrix R=! exists. With X = R~V
the decomposition of A and B in (3.7) follows. |}
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The pairs (sk, k), kK = 1,...,n are called generalized singular value pairs of the pencil
{A, B}. The generalized singular values are defined as o, = si/cg. If ¢ > 0 then
oy is finite. Using the notation from Theorem 3.2.1 there are r 4 j finite generalized
singular values 0y < --- < 0,4; and n — r — j infinite generalized singular values
Ortjt1 = -+ = 0, = 00. The kth column z; of the matrix X is called the right

generalized singular vector for the generalized singular value pair (sg, cx).

The main part of the proof is the CS decomposition. The GSVD is a simple conse-
quence of this. Paige and Saunders proved the GSVD without the restrictions that
my > n and rank(Y) = n. But for our purposes this generality is not necessary. If
a stable way of computing the CS decomposition is known then this can be directly
used to compute the GSVD since the GSVD is just a QR decomposition plus a CS de-
composition. This procedure was discussed by Van Loan in [79]. A different approach
was taken by Paige in [57], who used an algorithm based on cyclic transformations of
A and B. This idea was refined by Bai and Demmel in [4], which forms the basis for
the Lapack implementation of the GSVD.

The GSVD has several interesting properties. By combining the equations for A and

B in (3.7) we arrive at
AT Axy, = siBT"Bay, k=1,...,n.

Therefore, the squares of the finite generalized singular values oy, ...,0,4; are the

finite generalized eigenvalues of the generalized eigenvalue problem

AT Az = o’B" Bx.

The singular values o, k= 1,..., min{m,n} of a matrix A € R™*" can be charac-
terized as 1Az
) x
ov= max  min SoLR (3:9)
dim(H)=k
Let m > n. By ordering the singular values in ascending order (i.e. o < --- < g,)

an equivalent minimax characterization can be derived:

[ Az ([

GlIGR" | =ei\(0} lzlle

O — (310)

For generalized singular values a similar characterization is possible.
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Theorem 3.4.2 The generalized singular values o, k=1,...,7 4+ j of {A, B} can

be characterized as

L [Az]2
kT fcRr wemo) | Bally
dim(H)=k ‘ 2

Proof The singular values s; of the matrix 4 from (3.8) can be characterized as

. 1Qayl2
FT e e yle
dim(H)=k ° Yll2
Since of, = s/+/1 — s we obtain
. 1Qayll2
0= min  max

n T e
dir}r{(CI%:k ||5||621il 1 - 1Qayll3

The matrix R is nonsingular. Therefore dim(H) = dim({z € R"|Rxz € H}). Since

also
[Azlls — |Qayllz  [1Qayll2

IBzlla  [|Qsyll2 /1= [[Qay]]?

for y = Rx and ||y||2 = 1 the result follows. |}

Generalized singular values are closely related to principal angles between subspaces.

Theorem 3.4.3 Let §; < --- < 6,4; < ©/2 be the principal angles between the
subspaces A and B of R". Let Py be the orthogonal projector onto A and Py its
orthogonal complement. Let the matriz B be defined such that its columns form a
basis of B. Then the finite generalized singular values oy, k = 1,...,r + j of the
pencil { P4 B, P,B} are related to the principal angles 0y, by o}, = tan 6.

Proof The proof is a simple consequence of the CS decomposition in (3.5). Let
B = @pR and multiply (3.5) by R to obtain

L) =[5 W] 2] v .

With Py = Q4Q% and Py = I—Q Q% equation (3.11) is just the generalized singular
value decomposition of the pencil {PjB, P4 B}. Since the generalized singular value
pairs (sg,cx), k = 1,...,n are the sines and cosines of the principal angles between A
and B and ¢, > 0 for k =1,...,r + j, the result follows. |}
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An interesting corollary of this statement is a minimax characterization for the tan-

gents of principal angles between subspaces.

Corollary 3.4.4 Let the notation be as in Theorem 3.4.3. Then 0,,...,0,4; can be

characterized as

P
tanf, = min max M, k=1,....,r+7. (3.12)
R weH\(0) | PaBzx ||

Proof The result follows directly from Theorem 3.4.2 and 3.4.3. |}

To conclude this section we show how the generalized singular values of the pencil

{A, B} can be expressed as angles between certain subspaces.

Corollary 3.4.5 Let A € R™*™ with my; > n and B € R™*™. DefineY = {g and

assume that rank(Y) = n. Let ) be the space spanned by the columns of Y and define
Dy C R™*™2 qg the space of vectors which first my entries are zero. Let the finite
generalized singular values of the pencil {A, B} be o1,...,0.1j. Then the principal

angles 0 < O < /2 between Y and Dy are given as tan 8y, = oy.

Proof Let Pp, be the projector onto Dy and Pﬁo its orthogonal complement. The
generalized singular value pairs of { Pp, Y, Pp,Y} are identical to those of {A, B}. The

proof therefore follows immediately from Theorem 3.4.3. |}

A similar result is also proved in 87| by Zha.

3.5 The GSVD as a unified approach for the Method
of Particular Solutions

We are now ready to show how to apply the GSVD to the Method of Particular

Solutions. Let A()) := span{u™, ... u(™} be a given space of particular solutions
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satisfying —Awu = Au in 0. Asin the approach of Barnett we can attempt to minimize

the boundary tension

)= Tl

over all u € A(\), where |[ullsq, ||u|lq and the corresponding inner products are

defined as in Section 2.4. Every u € A(\) can be written as

u = Z zru®.
k=1

We can rewrite this expression using a matrix-vector product form by defining a

semi-infinite matrix A®)()\) as?

AN = [ur(2), ..., un(z)], 2 € Q.
(A Matlab toolbox that can operate with such matrices was recently developed by
Battles [9]). The columns of this matrix are not vectors of functions evaluated at
discrete points but the functions themselves. Every element u € A(\) now has the

simple form u = A®)(\)z. By defining the two semi-infinite matrices

AP = AP, ze o9,
AP () = AP, zeq,

the tension ¢(u) can be reformulated as

1A% (Ve los
t(x) = . 3.13
= AT el 1

We are interested in the minimum

AS (A
tm(A) = min 45 Nzllon ?8; )xHaQ.
Tl AT N)zlo
If the matrices A(BS)(/\) and Ags)()\) were discrete, the solution would simply be given
by the smallest generalized singular value of the pencil {AS)(/\), Ags)()\)}. Since this
is not the case one way of computing ¢,,()) is to square ¢(z) and to solve the corre-

sponding eigenvalue problem. In our semi-infinite matrix notation this becomes

AZNTAY Nz(A) = p(W) AP (NTAY (V) (N)

2In this section we use the index s to distinguish semi-infinite matrices from ordinary matrices
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where the matrices AY (AT A% (X)) and AP (AT A () are defined as
(AP NTAT )iy = (i uidan, (AP WTAP )y = (i, u5)a.

These are just the matrices F'(A) and G()) from the generalized eigenvalue problem
(2.6). But we want to avoid working with a squared formulation. So how can we work
with AS)()\) and Ags)()\) directly? We could attempt to discretize these two matrices
by evaluating the column functions of AS)()\) on a number of boundary collocation
points and the column functions of Ags)()\) on some interior points. This then leads

to the discrete problem

where o;(A) is the smallest generalized singular value of the discretized pencil
{Ag(\), Ar(N)}?. From Corollary 3.4.5 it follows that o;(\) = tan0;(\), where 6;()\)
is the angle between the discretized spaces A(\) and Dy. Therefore, we have

tm(A) = tan 01 ().

So when do we have F(\) ~ Ag(A\)TAp(\) and G(\) =~ Ar(\)TA;()\) ? Every entry
of F(\) and G()) is an L? inner product, which is evaluated by a quadrature rule.

Using the trapezium rule and equidistributed points on 92 we obtain

N
Fyi(N) = h Y u(z)ul(z),

k=1
where h is the distance between two points on 0€2. If the same evaluation points are
used as discretization points for Ag(A\) we find F ~ hAp(\)T Ap(\), where the error
F(\) — hAg(\)T Ap()) is determined by the error of the quadrature rule. Similarly,
we have G(\) = h2A;(M\)A;()\) using a quadrature rule on a regular grid with grid size
h. By a scaling argument we can assume h = h = 1. Hence, the error t,,(\) — o1()\)
depends on the underlying quadrature rule. We do not want to discuss this in greater
detail here since for practical purposes it is not necessary to choose the discretization
points such that o(A) is close to t,,(A). This would lead to a very high number of

interior points. Instead we just need enough interior points to guarantee that the

3We recently learned that in unpublished work Eisenstat also considered using the GSVD for the
Method of Particular Solutions. His starting point was the minimization of error bounds for the
MPS.
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approximate eigenfunctions stay bounded away from zero. In most experiments this

was achieved by choosing just a few dozen interior points.

Let us now summarize the results from this chapter. To repair the MPS of Fox,
Henrici and Moler it is necessary to additionally use interior points. Using boundary
and interior points we can formulate a subspace angle method that minimizes the
smallest principal angle 6;(\) between A(X) and Dy, where these two spaces are
represented on the boundary and interior discretization points. The subspace angle
method computes for each A the value s; = sin0;(\). An equivalent formulation of the
subspace angle method can be derived as the generalized singular value decomposition
of the pencil {Ag(\), A;(N\)}. For the smallest generalized singular value o;(X) of
this pencil it follows from Corollary 3.4.5 that oy(\) = tané;(\). Therefore, the
subspace angle method can be seen as a direct generalization of the original MPS by
going over from computing the smallest singular value of Ag(\) to computing the
smallest generalized singular value of {Ag(\), Ar(\)}. Barnett’s method solves the
generalized eigenvalue problem F(A)z(A) = pu1(A)G(N)z(N), which can be interpreted
as the square of the GSVD of {Ag()\), Ar(A)}. Squaring the GSVD problem leads
to a loss of accuracy as already discussed in Chapter 2. Further implications of the
squared generalized eigenvalue formulation in comparison to the GSVD are discussed
in Chapter 4. Heller’'s PWDM uses exactly one point in the interior but does not use a
GSVD approach to solve the resulting problem. Using the GSVD we can incorporate
an arbitrary number of interior points, thereby solving stability problems which can

result from only having one interior point.

At the beginning of this chapter we posed the two goals of formulating a well-
conditioned problem and having a stable method to solve this problem. From the
first example of the L-shaped region given in this chapter it seems that using interior
points together with the subspace angle method achieves these goals. Indeed, in the
next chapter we show that the smallest subspace angle 6;(\) is well-conditioned if A
is close to an eigenvalue A, of (1.1), allowing us to approximate eigenvalues of (1.1)

to high accuracy.



Chapter 4

Numerical stability

In the last chapter we derived the subspace angle method and its equivalent formu-
lation as a generalized singular value problem. The first results on the L-shaped
region looked promising. But we haven’t yet discussed the effect of ill-conditioning
in the basis on the reliability of the method. It is well known that singular values
are perfectly conditioned. The same is true for eigenvalues of symmetric matrices.
However, for generalized singular values the picture looks different. Depending on the
pencil {A, B}, the condition number of generalized singular values can be arbitrarily
bad. Since the GSVD underlies the subspace angle method, this raises the question
how reliable the subspace angle method is and if we can trust the results that we
obtain with it. This section starts with two examples that show how ill-conditioning
in the approximation basis can introduce visible numerical errors in the computed
generalized singular values. Then we will discuss currently known perturbation re-
sults and condition numbers for generalized singular value problems and apply them
to the subspace angle method to obtain accurate bounds on the forward error of the
method. In the last section of this chapter we compare the condition numbers in
the subspace angle method to those of the corresponding formulations as generalized
eigenvalue problem in Barnett’s method. For all computations in this chapter we use

standard Matlab functions.

43
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Figure 4.1: The GWW-1 isospectral drum. The singular corners are marked by dots.

4.1 Two examples for highly ill-conditioned prob-
lems

Our first example is the first of the two famous Gordon-Webb-Wolpert (GWW)
isospectral drums, shown in Figure 4.1. There are four singular corners around which
an eigenfunction of (1.1) cannot be analytically continued (more on analytic continu-
ation in Chapter 6). Highly accurate eigenvalue approximations can only be achieved
if these singularities are reflected in the approximation basis by using expansions with

Fourier-Bessel functions around the singular corners.

To obtain the first eigenvalue to 12 digits of accuracy, an expansion with 60 Fourier-
Bessel basis functions around each of the 4 singular corners is necessary. The resulting
eigenvalue approximation is A\; ~ 2.53794399980!. The tangent of the smallest princi-
pal angle computed with the Matlab GSVD function for this shape is plotted in Figure
4.2 (for GSVD computations we use throughout this thesis the Matlab GSVD func-
tion, which performs a QR followed by a CS decomposition). Before the curve bends

down to the first eigenvalue, it is heavily oscillating, but then it becomes smoother

! Beautiful pictures of the first eigenmodes on the isospectral drums and computations of their
eigenvalues to 12 digits of accuracy were published by Driscoll in 1997 [21].



CHAPTER 4. NUMERICAL STABILITY 45

Figure 4.2: The smallest generalized singular value o1 (\) for the GWW-1 isospectral
drum. Away from the eigenvalue, the curve shows large oscillations.

close to the eigenvalue. Figure 4.3 shows the condition number of A(\) = [AB(M} 2

Ar(X)

for different values of A\. For all these values of A the basis is numerically singular.
At the eigenvalue \; the condition number is 1.2 x 10'®. But still we are able to

approximate A\; to an accuracy of 12 digits.

An artificial but more striking example of the possible effects of ill-conditioning is
given in Figure 4.4. This shows the curve of the smallest generalized singular value
for the MPS on the unit square with 20 Fourier-Bessel basis terms around each of
the four corners. An expansion at a single corner would be sufficient to obtain the
first eigenvalue \; = 272 up to an accuracy of machine precision; the expansions at
the other corners are redundant. Due to the redundant information in the basis the
curve shows large oscillations. But these oscillations seem to decrease near A;. In
this chapter we show that even in the presence of such oscillations, highly accurate

approximations to eigenvalues of (1.1) are still possible.

2Here and in all other examples we work with bases in which every column is scaled to unit norm
to avoid ill-conditioning effects caused by the different scaling of basis functions.
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1.6

Figure 4.3: The condition number of the Fourier-Bessel basis in the case of the GWW-
1 isospectral drum. The basis is numerically singular for all values of .

15

o,0)

A

Figure 4.4: On a unit square expansions at all four corners lead to large oscillations
in the computed generalized singular values.
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4.2 Perturbation results for principal angles between
subspaces

The subspace angle algorithm computes the smallest principal angle between the
spaces A(A) and Dy represented by the matrices A(A) and Dy. The space Dy of func-
tions that are zero at the boundary points is exactly represented by the orthonormal
columns of Dy. But the matrix A()\) consists of basis functions evaluations and is
usually highly ill-conditioned. Therefore, it is feasible to ask what changes in the

principal angles are caused by small changes in A(\).

Let A € R™™ m > n be given and denote by R(A) the space spanned by the columns
of A. Let A € R™*"™ be a small perturbation of A. The first question is how far
away is the space R(A) from the space R(A+JA) spanned by the columns of A+JA.
This question was answered by Wedin in 1983.

Theorem 4.2.1 (Wedin, [86]) Let 6,,...,0, be the principal angles between R(A)
and R(A+ S6A). Then

sinfp < [|5A[2|ATl2, k=1,...,n.

Proof Let P4 be the projector onto R(A) and Ps,s4 the projector onto A + 0A.
Then (I — Paysa)(A+ JA) =0 and therefore

(I — Paysa)0A = —(I — Paysa)A.
We have P4, = AA" and therefore
(I — Pyisa)0AAT = —(I — Pay54)Pa.
The sines of the principal angles 0 are the singular values of (I —Pay54)P4. Therefore,

sinf < ||(I — Pagsa)Palla < [[6A]2 A2 1

Hence, if the columns of A form a highly ill-conditioned basis of R(A), the space
R(A+§A) can flutter arbitrarily under small perturbations 0 A. Let us now ask how

the principal angles between the range of the column spaces of the matrices A and
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B change under small perturbations. From the last theorem we can expect that the
perturbation bounds essentially depend on the condition numbers of A and B. But
depending on the direction of the perturbations one can obtain significantly better
bounds. This was analyzed by Golub and Zha in 1994.

Theorem 4.2.2 (Golub, Zha, [31]) Let A and A, and B and B have the same

rank, i.e.

rank(A) = rank(A) =p rank(B) = rank(B) = q
and assume p > q. For any orthogonally invariant norm || - ||, let the condition
numbers of A and B be defined as follows:

R(A D = IANA2,  &(B, - 1D = BB

Let S be the matrixz of sines of the principal angles and C' be the matriz of cosines of the

principal angles between R(A) and R(B). Similarly let S and C be the corresponding

matrices for the principal angles between the perturbed spaces R(A) and R(B). Then

we have
- A—A B-B
|C = Cll2 < V24 K(A, ]| - ||)<30891M + k(B, || - ||)COS¢1u
|A] | Bl
and
~ A—A B-B
IS = Sll2 < V2 K(A, || - H)Cos92M +K(B, | - H)COSqﬁzu ,
1Al Bl
with,

where C(A, A) is the orthogonal complement of R(A) N
C(B, B) is the orthogonal complement of R(B) N R(B) i

spectral norm we can substitute the constant V2 with 1.

This result does not only depend on the size of the perturbation but also on its
direction. The problem with this error bound is that it treats all principal angles
together. If the theorem delivers a perturbation bound for the principal angles of,
say, 107°, this is reasonable for the larger angles but catastrophic for very small
principal angles. We are especially interested in very small angles. Therefore, we
need to treat them separately. Since the subspace angle algorithm can be interpreted
as a generalized singular value computation, we can apply condition numbers for

generalized singular values to obtain error estimates.
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4.3 Condition numbers for generalized singular value
problems

It is well known that the singular values of a matrix A are perfectly conditioned under

perturbations in A. This follows from the fact that if o is a singular value of A, then

A : .
f?T 0l and eigenvalues of symmetric
matrices are perfectly conditioned (see [40] for a proof).

40 are eigenvalues of the symmetric matrix

For generalized singular value problems the situation is more complicated. Condition

numbers for these problems were defined and analyzed by Sun [71].

Let A € R"™? and B € R™*? and define Y = {g] Furthermore, let rank(Y’) = p.

We define a perturbed pencil {A,B} as A = A+ E and B = B+ F. If (s,¢) is
a generalized singular value pair of {A, B}, the corresponding perturbed generalized

singular value pair of {4, B} is denoted by (3, ). Furthermore, let o = Sand 6 =

[SHIVN

be the corresponding generalized singular values. Then a condition number ¢(o) for

o can be defined in the following way.

Condition number for generalized singular values Let 74,75 and & be positive
parameters. Then the condition number ¢(o) of a generalized singular value o of the
pencil {4, B} is defined as

c(o) = (lsirr(l) sup 4 _50|
- H(HE”2 nFug)T <5 §
YA B -

If y4 = v = & =1 then ¢(0) is an absolute condition number. Relative condition
numbers are obtained for the parameters v4 = ||A|2,78 = ||B||2 and £ = o. By
setting £ = 0 or F' = 0 one obtains the condition numbers

|6 — o] |6 — o]

calo) =lim su cglo) =1lim su
) 5_’0%«?}”:0 §o ) éﬁomﬁijzo g0
YA — YA —

The forward error can be estimated as

~ T 2
5=l < o) (HEHz’ HFHz)
§ YA VB .

o H(HEHQ’ uFu2)T

YA B

[e.9]
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The following theorem expresses the condition number ¢(o) in computable quantities.

Theorem 4.3.1 (Sun, [71]) Let x be the right generalized singular vector associated

with o. Then the condition number c¢(o) can be expressed as

(o) Nl Azl + 7l Brll)

A2 (4.2)

If we assume that v4 = yg = £ = 1 then we obtain for the resulting absolute condition

number the expression

e el
c(o) = ||Bx||2(1+ ) . (1+0) (4.3)

; _ s _ llAz|2
since 0 = © = 150

and ||Bz||s = c¢. Therefore, if the generalized singular value o is

small, the condition number ¢(c) mainly depends on ||z|2. Let [8‘4} R be the QR
B

decomposition of and let 7 be the smallest singular value of R. Then a crude

A
B

upper bound on ||z||; is given by 77!

since from Theorem 3.4.1 it follows that there
is a vector v with [[v]|s = 1 such that z = R™'v. We find ||z|s < 77!. By using the

structure of the GSVD we can often give better bounds on ||z||s.

Lemma 4.3.2 Let 0 = s/c be a generalized singular value of the pencil {A, B} and

let x be its corresponding right generalized singular vector. Then

1

- 4.4
- (4.4)
where T4 and T are the smallest singular values of A and B and 7 is the smallest

singular value of Y = {é} .

. s ¢
7]z < min{—, —,
TA TB

Proof The case ||z]ls < 77! was already discussed. From Theorem 3.4.1 it follows

that ||Az|ls = s and ||Bz||z = ¢. With & := x/||x||2 we obtain [|z||; = Az, and

[

||l = 7535+ Since [|AZ[]s > 74 and ||BZ[|z > 75, the proof follows. |}

From Lemma 4.3.2 it follows that if one of the matrices A, B or Y is well-conditioned,
then ||z||3 is small. Otherwise ||z||2 is only small if s << 1 or ¢ < 1. The case ¢ < 1 is
not interesting for us since then s &~ 1. But the subspace angle method aims to find
a A for which the sine s;(\) of the smallest principal angle between A(\) and Dy is

small.
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4.4 Backward stablility of the subspace angle method

To apply the bound on the forward error in (4.1) we need to know the backward error

of the subspace angle method. The algorithm consists of two steps. First the QR

) = |8 e

is computed. Then in the second step the smallest singular value s1(\) of Qp(A) is

decomposition

computed, which is the sine of the wanted principal angle. A general stability analysis
for the Bjorck-Golub algorithm for computing principal angles between subspaces is
given by Drmadc in [22]. Due to the special structure of the subspace angle algorithm

we can give a simplified analysis here.

Matlab computes the QR factorization of a given matrix A using the Lapack QR
factorization, which is based on Householder reflections. An analysis of Householder
QR algorithms can be found in [38]. Let ¥ := % where c is a small integer
constant and u is the unit round-off. Then for the Householder QR algorithm the

following theorem holds, which summarizes Theorem 19.4 of [38] and the discussion

afterwards.

Theorem 4.4.1 Let Q € R™" gnd R € R™™ be the computed QR factors of A €
R™ ™ (m > n) obtained via the Householder QR algorithm. Then there exists a

matriz Q € R™™ with orthonormal columns such that
A+ AA=QR,

where
[AAG )2 < FmnllAG, D2 7 =11
For Q it holds that
1Q = Qllr < V1Vmn-

We can now prove a mixed stability result of the subspace angle algorithm. The
following theorem is essentially a simplified version of Theorem 2.1 of |22], where the
general form of the Bjorck-Golub algorithm was considered. In the following theorems
we ignore the extra treatment of the possible O(€,4en) error from the evaluation of
the basis functions in A(\).
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Theorem 4.4.2 (Mixed stability of the subspace angle algorithm) Let 5;()\)
be the computed sine of the smallest principal angle from the subspace angle algorithm

AB()\) (n+m)xp
AI(A)} e R with

Ag(A\) € R™P and A;(\) € R™*P. Then there exists a value 51(\), which is the exact
sine computed from the subspace angle method applied to the matriz A(\) = A()\) +
AA(N), such that [5,(\) — 51(N)| < q(n,D)€mach + /DPVntmp and [|AA(:, 7) (N2 <
Yntm)pl| A7) (N2, where q(n, p) is a modestly growing function of n and p.

applied to the matriz of sampled basis functions A(\) = {

Proof Let Q(\) = {%B(())\\))} and R()\) be the computed QR factors of A()\) by the
I

Householder QR algorithm. Then the computed sine §;(A) is the smallest singular
valiie of O (M) + AQ(N), where [AQs(N)|l2 < (. p)émaen and a(n, p) is a modestly
growing function of n and p (see [1]| for details). Since singular values are perfectly
conditioned we have [$1(\) — §1(A\)| < q¢(n, p)€mach, where §1(A) is the exact smallest
singular value of Qp(\). From Theorem 4.4.1 it follows that there exists a matrix
Q()) with orthonormal columns such that [|Q(A) — Q(\)||r < VPV (ntmyp and A(X) +
AAQ) = QRO with [AAG DN < FnrmplAG )Nl Let 51(3) be the

exact smallest singular value of Qp(\). Then

51(A) = 31(A)]

IN

151 (A) — $1(A)] + |51 (A) — 51(N)]
Q(n:p)emach + \/1_7:}/(n+m)p

IA

since
1R = QW2 < 1Q = QllF < VPV n+mp:
and therefore [5;(\) = 51(\)| < VPYansmpp-

Theorem 4.4.2 states that the subspace angle method has a backward error component
resulting from the QR factorization, namely from A(X) + AA(X) = Q(A)R(\), where
Q()\) is a matrix with orthonormal columns and R is the computed upper triangular
factor and a forward error component resulting from the subsequent singular value
decomposition. However, this forward error component is in the order of machine
precision since singular values are perfectly conditioned. The important influence
is the error produced by working with A(A) + AA(\) instead of working with A(\).
Theorem 4.2.1 states that R(A(N)+AA(N)) can flutter almost arbitrarily under small

perturbations AA(N) if A(A) is ill-conditioned.



CHAPTER 4. NUMERICAL STABILITY 53

4.5 The forward error of the subspace angle method

In the last section we derived the backward error of the subspace angle method. By
combining this with the condition numbers derived in Theorem 4.3.1 we can now
derive bounds for the forward error of the computed subspace angle. Although under
small perturbations AA()) the space R(A(A)) can flutter arbitrarily, small principal
angles only suffer from small absolute perturbations, which will still allow us enough
accuracy for the subspace angle method to work and will also explain the behavior
in the Figures 4.2 and 4.4.

Theorem 4.5.1 Let A(\) = iB((;\‘))
I

Ag(A) € R™P and A;(X) € R™*P. Let T5(\) be the smallest singular value of Ag()\),

Tr(A\) the smallest singular value of Ar(X\) and 7(X) the smallest singular value of

be the matriz of sampled basis functions with

A(N). Let s1(X) be the exact sine of the smallest principal angle delivered by the
subspace angle method and let 51(\) be the computed value. Let c1(N) = /1 — s1(\)?
be the corresponding cosine. With

81()\) Cl()\) 1
8(A)" T1(A)" T(A)

the forward error of the subspace angle method is bounded by

)

v(A) := min(

siA) 1

+ Q(nap)emach + \/ﬁﬁ/(n-&-m)p + O(p(;?(n-i-M)pHA()‘)HQ)Q)? (45)

151(A) = s1(M)] < v(A)(T+

where q(n,p) is a modestly growing function of n and p.

Before we give a proof let us have a closer look at this error bound. The important
part of (4.5) is the first line. The second line can safely be assumed to be O(€pach)-
Consider now the case s1(\) < 1. Then ¢;(\) = 1 and (4.5) becomes

[51(0) = 510 £ v(N)FnrmppVPIAN[|2-

If Ynsmp = O(€maen) and [[A(N)||2 = O(1) the forward error is proportional to

V(N)€macn. But if Ag(A\) and A;(A) have a common numerical nullspace then 7(\) &~
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8(A\) ~ 77(\) & O(€macn)® and therefore v(\) &~ s1(A\)O(——). We obtain

€mach

151(A) = s1(N)] S Ks1(N) (4.6)

for a modest constant K > 0. K will usually be larger than 1. Therefore, we cannot
expect $1(A) to have any correct digits. But the absolute error |§1(\) — s1(\)| is
proportional to s;()\). Therefore, if say s;(\) = 1078, then also 5;(\) won’t be much
larger than 107%. Tt is not excluded that §;(\) might have a much smaller magnitude
than s;(A). But the resulting minima coming from oscillations of §;(\) are easily
distinguishable from true minima of s;(\) as the Figures 4.2 and 4.4 show. This gives
us enough information to determine the eigenvalues of (1.1) to high accuracy, since we
are only interested in the minima of the subspace angle curve and if the unperturbed
subspace angle curve becomes small, (4.6) guarantees that the computed curve also
becomes small. This reflects very well the behavior observed in Figure 4.4. But the
plot in Figure 4.2 looks much better close to the eigenvalue than predicted by the

error bound. This is discussed after the following proof.

Close to an eigenvalue the behavior in Figure 4.2 looks much better than the predicted

error bound. This is discussed after the following proof.

Proof of Theorem 4.5.1 From Theorem 4.4.2 it follows that |5;(A) — 51(\)] <
q(1, P)€mach + /DY (n+m)p, Where 51(A) is the exact value delivered from the subspace
angle method applied to the matrix A(X)+AA(X) with ||AA(:, 7)(A) ]2 < Antmpl|A:

y 1) (A)]J2- Let AA(X) be partitioned as A(N), ie. AA(N) = [iﬁB(())\ﬂ Define
I

01 (\) = arcsin5;()\). From Corollary 3.4.5 it follows that the smallest generalized
singular value 1(\) of the pencil {Ag(\) +AAp(N), Af(A) + AA;(N)} is the tangent
of (N, i.e. 51(\) = tand(\). Using (4.1) we find by choosing v4 = vp = £ = 1 that

71(A\) — a1 (A)] < (e (M)IAAN) |2 + O(IAAMN ),

where o1(\) = s1(A\)/c1 () is the smallest generalized singular value of { Ag(X), A;(\)}.
A short calculation shows that from [|[AA(,7)(N)|l2 < FmempllAG, 5) (A2 it fol-
lows that [|[AAN)|2 < /DPYmsmypl|AN)||l2. Also for 6,6 € [0,7/2) it holds that
|sinf — sind| < |tanf — tan f]. We obtain

[51(0) = 51N < e(01(N) F s mpvPIAN 2 + OPFmmp AN 2)*). (4.7)

3This holds since we assume all columns of A()) to be scaled to unit norm. Otherwise, the
computed smallest singular values of Ag(\) and A;(A) can become arbitrarily small if the columns
are badly scaled.
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The distance |3;(A) — 5(\)| is given by Theorem 4.4.2 as

|§1 ()\) — 51 ()‘)| S q(n7p)€mach + \/2_7:}/(n+m)p (48)

From Theorem 4.3.1 and Lemma 4.3.2 the condition number ¢(o;(\)) can be estimated

as V.1

S1

clor(N) <v(N(1+ —=)——.
( 1( )) ( )( Cl()\) Cl()\>

Combining (4.7), (4.8) and (4.9) finishes the proof. |

(4.9)

How sharp is the estimate in Theorem 4.5.1 7 The amplification factor of the backward
error mainly depends on the estimate of ||x1(A)||2 from Lemma 4.3.2, where z1()\) is
the right generalized singular vector for the smallest generalized singular value oq(\).
So let us have a look at the estimated value for |z(\)||2 from Lemma 4.3.2 and
the computed value of ||z(\)]]2 from Matlab’s GSVD function. Figure 4.5 shows the
estimated value of ||z (\)]|2 (dashed line) compared to the computed value of ||z1 ()2
(solid line) around the eigenvalue A\; of the GWW-1 isospectral drum. The closer A is
to A; the smaller becomes ||x1(\)[|2, which is just the predicted behavior by Lemma
4.3.2. But what does it mean for the subspace angle method if ||z ()\)[]> &~ 10 away
from A7 Since s1(\) = || Ag(A)z1(N)|]2 = O(1) away from Ay, the vector x;(\) must
lie close to the nullspace of Ag()\) and is just scaled up such that s;(A\) = O(1). By
a similar argument the vector z1(\) also lies in the nullspace of A;(\) away from ;.
Hence, the approximate eigenfunction is meaningless away from \; and just governed
by rounding errors. This is the reason for the oscillations at the beginning of the curve
in Figure 4.2. When \ approaches A; the vector x;(\) moves out of the nullspace
of A7(\) but stays in the nullspace of Ag()\). For example, at A = X\; — 107> we
have ||z1(\)]|2 & 10°. Therefore, if x1()\) is in the numerical nullspace of Ag(\) we
can expect [[Ag(A)x1(A)|l2 & 1077 (since then ||Ag(N)z1(N)|l2/[lz1(N)]|2 &~ 10716) and
1 Ar (N2 (V) ||2/)lz1(M)|l2 & 1072 (since ||[A7(A)z1(N)]|2 = 1). Indeed, we obtain the
following values: ||[Ag(A)z1(\)]]2 & 9.95 x 1075, [|[Ag(AN)xi(N)|l2/||w1(N)]]2 ~ 7.85 x
1075 [JA;(N)z1(N)]l2/lz1 (M) ||l2 & 7.89 x 10719, These values differ slightly from the
predictions since the smallest singular values of Ag(A\) and A;(\) are not exactly
107% but in the magnitude of 107, But the qualitative behavior corresponds to

what we predicted.

Let us summarize these results. In the ill-conditioned case the subspace angle method

always seems to choose a function that is associated with a right singular vector x;
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Figure 4.5: The three figures show a comparison between the estimated value of
|z(A\)]| (dashed line) and the computed value for ||z(\)||2 (solid line) around the first
eigenvalue \; of the isospectral drum. The closer we get to A; the smaller ||z(\)]]2 is.
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which lives in the approximate nullspace of Ag(A). When X\ approaches an eigenvalue
of (1.1) the vector z; moves out of the nullspace of A;(\) but stays in the nullspace
of Ag(X\). Therefore, the dependence of the norm estimate in Lemma 4.3.2 on the

smallest singular value of Ag(\) reflects this behavior very well.

In Chapter 2 we explained that the original MPS of Fox, Henrici and Moler fails
because it cannot distinguish between true eigenfunctions and functions that are zero
everywhere on the region. In the ill-conditioned case of the subspace angle method it
also happens that far away from an eigenvalue the right generalized singular vector
x1(A) lives in the nullspace of A(X). But the key difference to the MPS of Fox, Henrici
and Moler is that such approximate eigenfunctions are scaled up by the high norm
of £1(A\) so that they are of unit norm at the boundary and interior points. This
scaling guarantees that away from an eigenvalue we cannot obtain an approximate

eigenfunction that is close to zero everywhere.

Except in extreme cases like the square region with expansions at all corners or at
similar regions, where all Fourier-Bessel expansions approximately span the same
space (for example if the region is a small perturbation of the square), the effect of
ill-conditioning is much less severe than predicted from the purely algebraic results in
Theorem 4.5.1. For example, in Figure 4.2 the oscillations are only visible far away
from an eigenvalue. The reason is that the basis functions in this example were chosen
to reflect the approximation problem, i.e. all basis functions contain useful informa-
tion to obtain accurate approximations for the eigenvalues and eigenfunctions on the
region. Therefore, although the basis is highly ill-conditioned, it only has redundant
information far away from an eigenvalue where the high number of basis functions is
useless. Closer to an eigenvalue the structure of the problem leads to a much better
behavior than can be predicted by purely looking at the condition number. This is
also the reason why the oscillations are so much different than for the square region
in Figure 4.4. Here, the basis was artificially chosen to always contain redundant
information by introducing expansions around all corners of the region. An expan-
sion around only one corner already delivers enough information to approximate the
eigenvalues on the square to high accuracy. Therefore, by artificially introducing
redundant information we obtain high oscillations around the subspace angle curve
which stay bounded from above relative to the curve. This is exactly the behavior

predicted by Theorem 4.5.1. But for most applications this extreme behavior won’t
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occur. One of the few examples where such a behavior can be observed without artif-
ically introducing redundant information is in the case of perturbations of the square
such that we obtain a quadrilateral at which the eigenfunctions have singularities at
all four corners. Then approximations at all corners are necessary to obtain highly
accurate eigenvalue approximations but we can observe similar oscillations as in Fig-
ure 4.4 since except very close to the corners all expansions approximately span the
same space in the interior of the region. Then Theorem 4.5.1 tells us that although we
have these oscillations, we can obtain approximations to the eigenvalues and eigen-
functions to high accuracy since the oscillations stay bounded from above relative to
the subspace angle curve. Hence, we are still able to spot the minima of the subspace

angle curve with high accuracy.

4.6 The GSVD and generalized eigenvalue problems

In Section 3.5 we derived the connections between the subspace angle method and
the generalized eigenvalue approach of Barnett. Let us now have a closer look at the

comparison of the numerical stability of both methods.

A normwise perturbation bound for generalized eigenvalue problems is given in |26].

There, the authors derive condition numbers for the generalized eigenvalue problem
Ax = A\Bx

under normwise perturbation of A and B. Let the distance between the pencils { A, B}
and {A, B} be defined as

6 = min{w > 0; |A — A||; < wa and |B — Bl < wf},

with «, 5 > 0. Setting a = ||A]|2 and 3 = || B]|> leads to a relative normwise distance.
Let A be a semi-simple finite eigenvalue of the pencil {A, B}. Then the condition

number ceig(A) associated with A is

(+ [AB)lll2llll2

ei A) =
cois(2) |y* Bzl

(4.10)

where y is the left eigenvector associated with A. This condition number is slightly

different from the one given by Stewart and Sun in [65]|. They can treat infinite
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eigenvalues by stating the eigenvalue problem as fJAr = aBz. But this leads to
the use of more complex metrics since now the effect of perturbations on a two-
dimensional parameter space (a,3) has to be considered. This is done in [65] by

using the chordal metric

|d — 57|
a, D), 76 = ’
R Y T

which leads to the condition number

2]yl

ViaP + 5P

where («, 3) is normalized such that o = y*Ax and § = y*Bx. Here we are only

Cchordal((av 6)) =

interested in small eigenvalues \. Therefore, the use of the chordal condition number is
not necessary and we use the condition number c;, () defined in (4.10). Furthermore,
we will set @ = =1 in (4.10).

In Section 3.5 we showed that Barnett’s method can be interpreted as minimizing the

smallest eigenvalue g3 () of
Ap(N)T Ap(Nz(A) = p(\)Ar(N) T Ar(Mz(N), (4.11)

which is equivalent to finding the smallest generalized singular value o1(\) of the
pencil {Ag()\), A;(\)} since p;(A\) = o3(\). But the condition numbers of the two
problems differ significantly. The condition number of the smallest eigenvalue 1 (\)

of 4.11 is given as

| _ ) l=M)3
cas(1N) = o TR

This is approximately the square of the condition number

(1 + a1 (W[N]l
[AL(A)z (M)l

c(o1(N) =

for the corresponding generalized singular value o(A). Therefore, in terms of numer-
ical stability it is always advisable to use the formulation as a GSVD problem instead
of a generalized eigenvalue problem. In Figure 4.6 we show the curve of u(\) for the
GWW-1 isospectral drum computed by using the generalized eigenvalue formulation
(4.11). Without rounding errors it should be equivalent to the square of the curve in
Figure 4.2. But the curve in 4.6 seems to be completely garbled. Many of the values

are negative, although the generalized eigenvalue problem only admits nonnegative
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Figure 4.6: The generalized eigenvalue curve for the GWW-1 isospectral drum

eigenvalues. Some of the values returned by Matlab were even complex. These are

artefacts of the ill-conditioning present in the eigenvalue formulation.

In [6] Barnett overcomes these ill-conditioning issues by projecting out the nullspace
which causes this ill-conditioning. Using our notation this can be done in the following

way. Let
Ar(X) =UNENV V)T

be the singular value decomposition of Ag(A). Now define a threshold € and let
o1(A) > -+ > 0,(A) > € k > 1 be the singular values of A;(\) that are larger than
€. Partition V(A) as V() = [Vi(A) Va(N)] with V(X)) = V(:, 1:k) and Va(A) = V(:

,k + l:end). Then the regularized generalized eigenvalue problem is defined as
Vi) AN Ap(MVi(N)E(A) = pNV AN Ar(NVI(N)Z ().

A similar strategy was proposed and analyzed by Fix and Heiberger in [24]|. The right-
hand side matrix now has the singular values 67 > - - > g7 > ¢2. Therefore, to remove
all numerically zero singular values of A;(A\)TA;()\) we need to chose € > \/€mgen. In
|6] Barnett uses a threshold of ¢ = 107, i.e. ¢ = 107".

We can apply the same strategy to the GSVD formulation. Then, instead of finding
the smallest generalized singular value oy () of the pencil {Ag(\), A;(\)} we find the
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smallest generalized singular value &1 (\) of {Ag(A\)Vi(N), Ar(A\)Vi(A)}. However, the
following strategy to obtain a regularization matrix V;(\) is more suitable. Let

] - (3] e

be the initial QR decomposition which has to be formed in the subspace angle method.
Now let

R(\) = Ur(\)ERr(N)VR(N)" (4.12)

be the SVD of R(A). The regularization matrix Vi () is defined as the first k£ columns
of Vg(\) associated with those singular values of R(\), which are above the threshold
€. The generalized singular values of {Ag(A)Vi(A\), Ar(A\)Vi(N)} are now obtained
from the CS decomposition of the pencil {Qp(N\)Ug(:, 1:k), Qr(N)Ug(:, 1:k)}. The
smallest generalized singular value of {Ag(\), A;(A)} is only modestly changed with

this strategy if it is not too ill-conditioned. This is shown in the following theorem.

Theorem 4.6.1 Let 01 = s1/cy be the smallest generalized singular value and x; its
corresponding right generalized singular vector of the pencil {A, B} with A € R"*?
and B € R™P. Let the reqularization matriz V; € RP** be obtained by the strategy
described above and denote by 6; 7 = 1,...,k the generalized singular values of the

pencil {AVy, BVy}. Then

a) For all generalized singular values 6; of the pencil {AVy, BV1},
0j < 0

b) Ing.Z'lHQ <, then
S1 +€H$1”2

o1 <01 < — .
I P

Proof Let V5, be the orthogonal complement of Vi, i.e. V = [V} V5] is an orthog-
onal matrix. Then [|AVay|la < €|lyll2 and [|[BVayll2 < €|y||2 for all y € RP since

[ {AVQ} llo < € Let x1 = Viys + Vaya. We have

[ AVIy ]2 — (| Az |l2 < [[AVIY1 — Azl = [[AVays|lz < €]l1]l2

and
|Bx1|l2 — |BViyill2 < ||Bzy — BViyi|le = || BVayzll2 < €lly2]l2
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It follows that

| AViy ]2 < | Az1][2 + €[|yal]2
1BViyilla — [|Bxill2 — €l|yall2

if || Bx1||2—€||ly2||2 > 0. But this holds since || Bx1||2 = ¢1, ||y2]l2 < ||z1]|2 and therefore

| Bxi|l2 — €lly2llz = c1 — €llyall > 1 — €l|a1 |2 > 0.

Together with [|Az||s = s; we find

|AViy: |2 < s1 + €|z ||2
[BViyilla = c1 — €l|z]l2

From the minimax characterization in Theorem 3.4.2 it follows that

S1 + €||ZE1||2

o1 S ————=——-
c1 — €|zl

The fact that 0; < ¢, j = 1,...,k follows immediately from Theorem 3.4.2 since
restricting the pencil {A, B} to {AV;, BV;} corresponds to minimizing only over a

subset of all possible spaces of dimension j in Theorem 3.4.2. |}

A similar result for the regularization of the ill-conditioned eigenvalue problem was
proved in [24]. If o1 (Ax) < 1 at an eigenvalue \j, of (1.1) we obtain for the perturbed

generalized singular value &1 (\g):

N o1( M) + €llzr (M) ]2
) S
= e PRSI

= o1(M) + (1 + a1 (A))ellzr (M) 12 + O((Ellz(Ae)[12)),

since s1(Ax) &~ o(Ar) and ¢1(Ag) = 1. The magnification factor (1401 (Ag))||z(Ag)]|2 is
essentially the condition number ¢(o;(Ax)). This can be expected since we ask for the

change of a singular value under a small perturbation in the pencil {Ag(\g), Ar(Ax)}-

In Figure 4.7 we plot the curves for the sine of the smallest generalized singuar value
o1(A) and for the smallest generalized eigenvalue p;(A) on the GWW-1 isospectral

drum in the regularized case. For both plots we use the same regularization matrix

V1 obtained from the QR decomposition of [iB(())\\;} followed by the SVD of the R
I

factor with a threshold of € = 107!, The oscillations at the beginning of the subspace
angle curve now fully disappear and the generalized eigenvalue curve, although still
garbled, now shows a much better behavior than the non-pivoted curve in Figure

4.6. The reason for the better behavior of the generalized singular value curve is
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Figure 4.7: The pivoted generalized singular value and generalized eigenvalue curve
on the GWW-1 isospectral drum.
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that due to the pivoting also the condition number of Ag(A)Vi()) is now in the order
of magnitude of 10* for all A > 0 instead of 10'® in the non-pivoted case. This
gives enough accuracy to remove the oscillations of the subspace angle curve away
from the first eigenvalue A\; of (1.1) on this region (compare to Figure 4.2). Also the
generalized eigenvalue curve improves. But the threshold € is too small to remove the
whole common numerical nullspace of A;(A\)TA;(\) and Ag(\)TAg()\). To achieve
this we would need that € > 107%. In this example there is hardly any penalty due
to the pivoting. The value oy(\) at the eigenvalue )\; grows from 1.7 x 107! to
2.1 x 107, The reason is that ||z(\;)||2 & 4.9 x 103, and therefore the error bound
in Theorem 4.6.1 is approximately €||z(Ay)[]2 ~ 4.9 x 1071,



Chapter 5

A posteriori accuracy bounds

In this chapter we want to answer the following question. Given the subspace angle
O(A\) between the spaces A(\) and Dy how can we bound the relative distance of A
to the next eigenvalue of (1.1). To answer this question we cannot work in spaces
sampled at boundary and interior points. Therefore, by A(X) we always denote the
space consisting of all particular solutions in C?(Q2) N C(Q) satisfying (1.1a) but not
necessarily (1.16), and by Dy we denote the space of all functions in C3(Q) N C(f)

which are zero on 0f).

Error bounds for the MPS were derived by Fox, Henrici and Moler in 1967 [25] and
these results were simplified and extended by Moler and Payne in 1968 [55]. An
excellent overview of error bounds for elliptic eigenvalue problems was written by
Still in 1988 [66]. The bounds by Moler and Payne are included as special cases in
that paper. In this chapter we first review the bounds by Moler and Payne and extend
them to the subspace angle method. Then we apply these bounds to obtain a highly
accurate inclusion for the first eigenvalue of the L-shaped region computed with the
subspace angle method. In this thesis we are mostly concerned with the eigenvalue
problem (1.1), but most of the bounds given in this chapter can be extended to the
following more general setting. Let H be a separable Hilbert space with inner product
(-,+) and induced norm || -||. Let T" be an operator with domain D(T'), such that D(T')

is dense in ‘H. Furthermore, let T" by symmetric, i.e.

(u, Tv) = (T'u,v), wu,v e D(T)

65
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and let 7" have a pure point spectrum {);} and corresponding orthonormal eigenvec-
tors u;, which are complete in ‘H. By T we denote an extension of 7' to a domain
D(T) such that Tu = T for all w € D(T) and D(T) ¢ D(T) C H.

For the eigenvalue problem (1.1) the Hilbert space H is the space of square integrable

functions L?(€) with inner product

(u)a = | ule,p)ole. p)dudy.
Q
For the operator T" we have T'= —A and

D(—A) = {u € C(ﬁ) N CQ<Q) : u‘aQ = 0},

~

which is just the space Dy used in previous chapters. The extension D(T) in this case
is the space C(Q2) N C%(Q)

5.1 Accuracy bounds and the subspace angle method

The first error bound for the MPS of which we are aware was proved by Fox, Henrici
and Moler! |25].

Theorem 5.1.1 (Fox, Henrici, Moler [25]) Let A and u be an approzimate eigen-
value and eigenfunction of (1.1) normalized to ||ullq = 1 which satisfy the eigenvalue

equation (1.1a) but not necessarily the zero boundary conditions (1.1b). Let

€ = max |u(z)]

and assume € < 1. Then there ezists an eigenvalue N, of (1.1) satisfying

A=Al _ V2et e
A - 1—€

(5.1)

The advantage of this theorem is that all information needed for the upper bound in
(5.1) can be obtained from computed data. This enabled Fox, Henrici and Moler to

give upper and lower bounds for the computed eigenvalues.

!They proved the error bound not only for the eigenvalue problem (1.1) but also for eigenvalues
of slightly more general elliptic operators.
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We do not give the original proof of this theorem here but instead present a proof by

Moler and Payne for a very similar bound.

Theorem 5.1.2 (Moler, Payne [55]) Let T be a symmetric operator with domain

~

D(T) and extension D(T') as defined above. Let \ be an approzimate eigenvalue
and u € D(T) the corresponding approximate eigenvector of T satisfying Tu = \u.

~

Assume there exists w € D(T) with

Tw=0 (5.2)
and
u—w € D(T). (5.3)
Let
ol
[l

and assume € < 1. Then there exists an eigenvalue N\, of T satisfying

A A
A sl&!s—' L
1+e 1—e€

Proof Let

an = <ua un>7 by, = <w7un>a
where u,, is the normalized eigenfunction associated with the eigenvalue \,. We have
(u—w, Tuy) = (T(u—w),up) = (Tu,u,) — (Tw, uy).

and therefore
An(an — by) = Aay,

or equivalently

An — A
3 a, = b,.
Choose A, such that
Me= Al AN
|)‘k| n |)‘n| '
For this k it holds that
Ak = Al

for all n. We obtain

’)\k — )\’2 S 2 < - b2
‘)\kP Za” - Z n’
n=1 n=1
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Since s 19

€< =
Efle a

the proof follows. |}

To evaluate the error bound in Theorem 5.1.2 the norm of w has to be determined.
In the case T'= —A this means that a boundary value problem has to be solved. But
since the boundary values of w are known ||w|q can be easily estimated. From the

maximum principle for harmonic functions it follows that
< |9 =0 =10
lwlle < [Qfmaxjw(z)] = [Qf max jw(z)] = [Qf max u(z)],

where |Q| = [, 1dzdy is the area of Q. We obtain

Ak — Al |Q max,ean |u(z)]

54
SV (5-4)

Another possibility is to bound ||w/||g using eigenvalues of a Stekloff eigenvalue prob-
lem [66, 43|, which is defined as

A’u = 0in Q
u = Au—q—ZzOon oS (5.5)

It can be shown (see for example |42]) that the smallest eigenvalue ¢, of (5.5) is

characterized by

faa h*ds

¢1 = min ST
Ah=0in Q fQ h2dx

It follows that

_1
12lle < g1 *l|Allae

for all functions h satisfying Ah = 0 in ). This immediately leads to the following
bound of € in Theorem 5.1.2 if T = —A:

Ak = Al 1 Jlulloc

AT lulle

(5.6)

As a corollary we obtain a bound on the relative error in terms of the principal angle

G(\) between A(X) and Dy.
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Corollary 5.1.3 For the angle O(\) between the spaces A(X) and Dy it holds that

RV

< g tan 6(N).
k

Proof Denote by |||ul|| = /|[ul|g + [Ju]|3q the mixed norm induced by the inner
product (-, -) defined in (3.2). For every u € A()\) we have

sup <U,, U) = ||u||Q7 (57)
vEDy
[[[v][|=1

since from (u,v) = [, u(z,y)v(z,y)dzdy for every v € Dy and the Cauchy-Schwarz
inequality it follows that (u,v) < ||u|lo for every v € Dy with |||v||| = 1. Equality in
(5.7) follows from the fact that u can be expanded in € in terms of the eigenfunctions
uy € Dy of (1.1). Combining (3.1) and (5.7), we get

cosf(A) = sup |ulq. (5.8)
u€A(N)
[llull|=1

It follows that

T T2
tanf(\) =  inf V1= lully = inf HUHaQ (5.9)
veay  ulle ued) lulla

[lull|=1

Since for every u € A(\) (5.6) holds it follows from (5.9) that

| Ae — A7

< g 2 tand()). B
Ak

Hence, the subspace angle is a measure for the optimal error bound which is possible
by approximating from A(\), while Theorem 5.1.2 only uses one element u € A(\) to
obtain a bound on the relative eigenvalue error. In applications A()) is not the space
of all particular solutions but the span of a finite number of particular solutions.
Then Corollary 5.1.3 is still valid. But usually at an eigenvalue \; we will have
tan@(\g) > 0, i.e., the bound on the relative error can be larger than zero at an
eigenvalue. Similar bounds for the eigenvectors are also possible. Moler and Payne

established the following theorem.
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Theorem 5.1.4 (Moler, Payne [55]) Using the hypotheses and notation of Theo-

rem 5.1.2, assume in addition that ||uljq = 1. Let

a = min —Mn — A
AnF Nk ‘)‘n| 7

and let uy be the normalized projection of u onto the eigenspace of \,. Then

2

€ €
o= willo < S(1+ )t

N

If we choose for € the tangent of #(\) we obtain the following corollary.

Corollary 5.1.5 We use the notation of Corollary 5.1.3 and Theorem 5.1.4. Then
for every § > 0 and é = q;% tan @(\) there exists a function u € A(N), ||ullq =1 such
that
€ e 1
Ju—uglla < S(1+ )+

Proof The proof follows by choosing a function u € A()\) that comes sufficiently
close to the infimum in (5.9). |}

Further results for the case in which the approximate eigenfunction u satisfies neither
Tu = M nor u € D(T) are given in [43] and [66]. We finish this section with a
very interesting result by Still [66]. The idea is the following. If an approximate
eigenfunction @ satisfies the zero boundary conditions (1.1b) but not necessarily the

eigenvalue equation (1.1a) the Rayleigh quotient

N U, —Al)g

pi) := {8 20 <ﬂ7ﬁ>sz>

is a quadratically good approximation to an eigenvalue in the sense that if the distance
of @ to a normalized eigenvector uy, is O(e), then the distance of p(a) to Ay is O(€?).
Unfortunately, the functions u € A(\) do not necessarily satisfy the zero boundary
conditions. But if we define w as in Theorem 5.1.2 as the harmonic function with the
same boundary data as u € A(\), we can apply the Rayleigh quotient to u — w and

obtain

L (i )

plu—w) = (u—w,u —w)q (u—w,u —w)q
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From the properties of the Rayleigh quotient we can hope that

4 <1 § <u<10’5,;1—u>£>9)

is a quadratically good approximation to an eigenvalue. This is made precise in

the following theorem by Still, which also includes the case that the approximate

eigenfunction u does not necessarily satisfy —Au = Au.

Theorem 5.1.6 (Still [66]) Given u € D(T)\D(T), |lul| = 1, A € R, define the
function r by
r=Tu— \u.

Let dy(p) and d_(p) be defined as

di(p) = min A, —pl, d_(p) = min A, —pl,

Av> Ak A<

for a given eigenvalue A\ of T.

~

a) For a solution w € D(T) of

~

Tw=0, u—weDT),

let

_ _ Aw +rfla
V] = UuU—w, €1 —m

Then with the Rayleigh quotient py = p(v1) given by

(Aw + 7, v1)

=)+
o <U17U1>

the inequality
_ (261)2
d+(p1)

holds for some eigenvalue A\ of T

(261)
<A —p1 <
SAE— 1S d,(pl)

b) For a solution R € D(T) of

TR=Tu— M, u—ReD(T)

let R
v =u— R, €= |)\|ﬁ

luw = RII
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Then with pa = p(ve) given by

g = A + <>\R, 'U2>’
<1)27 1)2>
the inequality
2 2
_(2e) SA—p2 < (2c2)
d(p2) d—(p2)

1s valid.

Since for the MPS it holds that Tw = Au and therefore r = 0 part b) of Theorem

5.1.6 gives no more information than part a). In practice, the correction term

(Aw + 7, v1)

(v1,v1)

usually cannot be easily computed. But nevertheless, the result is interesting, since

it shows that with a small correction to A a quadratic accuracy is possible.

5.2 Verifying 13 digits of the first eigenvalue on the
L-shaped region

In this section we use the bound by Moler and Payne to verify the first eigenvalue
of the L-shaped region to 13 rounded digits of accuracy and compare it to approxi-
mate bounds obtained from the computed subspace angle. The starting point is the
subspace angle method. We discretize the boundary of the L-shaped region with 500
Chebyshev distributed points on each side not adjacent to the reentrant corner. In ad-
dition 50 interior points are randomly chosen. Using a Chebyshev distribution on the
boundary has the effect that near the corners of the region the absolute value of the
approximate eigenfunction stays smaller than with equally distributed points. The
eigenfunction is approximated with a basis of N = 80 Fourier-Bessel terms around the
reentrant corner. The matrix A()\) of particular solutions evaluated at boundary and
interior points is normalized such that ||[A(A)(:,k)|]2 = 1 for k =1,..., N. The sub-
space angle method performs a QR factorization of A(A\) and computes the smallest
singular value of the first part @g(\) of Q(X) corresponding to the boundary points.

We denote the corresponding singular vector of () by v. As eigenvalue estimate
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we use the value A = 9.6397238440219 which was obtained from the computation
underlying Figure 3.4.

The resulting approximate eigenfunction evaluated at all points is given as u = Q(\)wv.
But we need the coefficient vector of w in the original basis A(X). Therefore, we have

to solve

AN = QM.

Since A(A\) = Q(A)R()) this is equivalent to the system of equations R(A)c = v. Due
to ill-conditioning the error between the computed vector ¢ and the true vector ¢ might
be large. Nevertheless, the residual || R(\)¢ — v||o will be small. The reason is that by
ignoring that the computed () is not exactly orthogonal the vector ¢ is the exact right
generalized singular vector of a small perturbation of the pencil {Ag(\), A;(\)}. By
Lemma 4.3.2 and the discussion after Theorem 4.5.1 we can then expect ||¢|ls = O(1)

if \ is close to an eigenvalue of (1.1). Since
[1R(A)e —vlls = |AREs < [|AR]s[e]l2,

where AR is the backward error of solving R(\)c = v it follows that ||R(\)¢ — v||2 is

small.

Indeed, in our case we have
[ROA)E—v|ls = 1.11 x 1071

and
|AN)E — Q(AN)vl]2 = 2.19 x 1071,

Therefore, the coefficient vector ¢ defines an approximate eigenfunction that is small
at the boundary points (||Ag()\)c|]2 & 2.48 x 107') and large at the interior points
(I|A7(A)é|l2 = 1). To apply the error bound from (5.4) we need to estimate the
expressions max,ego |u(z)| and ||u|l, where u is now the approximate eigenfunction
defined by the coefficient vector ¢. The L?-norm |jul|q can easily be estimated with

a trick already used in [25]. Let G be the circular sector around the reentrant corner
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with radius 1 and angle %ﬂ' that fits into the L-shaped region. Then
lully > lullE
- [ (ute.de.y)
€]
N ! m9 2
— Z ékéj/ Jgk(\/XT)Jgj(\/Xr‘)rdr/ sin gk‘@sin §j0d9
0 0

kyj=1
3 o [
= Zﬂzlé?/o J%k(\/Xr)zrdr, (5.10)
-

where ¢, is the kth coefficient of u in the non-scaled Fourier-Bessel basis (for the actual
computations we use a scaled basis). The last integral has an analytic expression in
terms of Fourier-Bessel functions. But for convenience we just evaluate it to high
accuracy using the Matlab quadl function. In addition we use only the integral of

the lowest order Bessel term in the above sum. We find

3 1
Jullo > ’él|\/iﬂ/0 Jgk(\/Xr)%dr. (5.11)

Figure 5.1 shows |u(x)| on the boundary collocation points. The plot is scaled with
the area of the L-Shaped region and the lower bound for ||ul|q from (5.11). Hence,

the maximum of the curve is an upper bound for the error in (5.4).

The computed curve shows oscillations around the true function values due to round-
ing error effects. Since these oscillations also lead to values that are larger than the
true values we still obtain a good upper bound. With the upper bound of the scaled
lu(z)| of 1.5 x 107 we obtain the inclusion from (5.4) that

9.639723844021754 < Ay < 9.639723844022043

for the true first eigenvalue \; of the L-shaped region. This gives 13 rounded digits
correctly. Indeed, from Figure 3.4 we believe that the true value is 9.6397238440219
to 14 digits of accuracy.

How does this bound compare to the subspace angle estimate in Theorem 5.1.3 7
We know neither the constant ¢; nor the exact subspace angle §(\). However, if we
assume that tan0(\) = o1(A), where o1()) is the smallest generalized singular value
of the pencil {Ag()\), A;(A\)} we can use (5.1.3) for an approximate estimate if ¢; is

not too small. In our case we obtain o;(\) ~ 2.48 x 107! leading to a similar error
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Figure 5.1: Numerically computed values of |u(x)| on the boundary collocation points
after scaling by the square root of the area and the estimated value of ||u||q. Rounding
errors lead to oscillations around the true function values.
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Figure 5.2: The same plot as in Figure 5.1 but now for the value A = 9.6397238,
which is the first 8 digits of the first eigenvalue of the L-shaped region.
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estimate as in (5.4). If we use the approximate eigenvalue A = 9.6397238, which is
correct to 8 digits we obtain o1()\) ~ 2.8 x 1073, Indeed, the plot in Figure 5.2 shows
that the relative error is at most 1.5 x 1078, This demonstrates that usually it is not
necessary to apply the error bound in (5.4) to obtain a good error estimate. A good
rule of thumb is that the relative error of the eigenvalue approximation is smaller

than or equal to the computed smallest generalized singular value o;(\).



Chapter 6

Convergence rates via complex
approximation theory

While the previous chapters were concerned with the stable computation of eigenval-
ues and the derivation of accuracy bounds we will now discuss what the approxima-
tion properties of the basis are. In the 1940’s Vekua discovered close relationships
between solutions of elliptic partial differential equations and holomorphic functions
in the complex plane [80]|. This work was one of the motivations for the Method of
Particular Solutions by Fox, Henrici and Moler. A very good survey of this theory
was written by Henrici in 1957 [36] and we will review some of the results of his paper
to give a short introduction to Vekua’s theory. Closely related is the question of ana-
lytic continuation of solutions of elliptic PDE’s. Classical papers on this subject were
written in the 1950’s by Garabedian [28] and Lewy [48] and we review Garabedian’s
results in the special case of the eigenvalue problem (1.1). We will then show how to
connect Vekua’s results with classical results from complex approximation to obtain
convergence estimates for the Method of Particular Solutions. Using analytic contin-
uation and conformal mappings we derive bounds for the exponential convergence of
the MPS on regions with at most one corner singularity. For regions with multiple
corner singularities we review algebraic convergence rates which go back to Eisenstat
in 1974 [23] and were later improved by Still in the 1980’s |67, 69]. Based on these
results we show how to obtain increasing algebraic convergence rates for regions with

multiple singularities.

7
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6.1 An introduction to Vekua’s theory

In this section we will closely follow Henrici’s beautiful presentation of Vekua’s theory
in [36]. Before we start let us briefly review what is meant by a real analytic function

and by a complex analytic (holomorphic) function and how these two are related’.

Let u be a real function of the two variables x and y in a region 2. Throughout
this chapter we assume that €2 is bounded and simply connected. Furthermore, the
boundary 0f2 is assumed to be a piecewise analytic Jordan curve. The function u is
called real analytic at a point (xg, 7o) € €2 if in a neighborhood of this point it can be

represented as a Taylor series of the form

u(z,y) = Z Cnm (T — 20)" (Y — y0)™,

n,m>0

where
1 0", yo)

~nlm! Oxnoym

Cnm

A complex function ¢ of the complex variable z = x + iy is holomorphic at z, if it is
complex differentiable at zy. This is equivalent to having a Taylor series expansion of

the form

o(z) = Z cr(z — 20)".

in a neighborhood of z5. The coefficients ¢, are given as

1d (z0)
cr = ——¢(2).
TP EA
If ¢ depends on several complex variables zq,..., 2, € C" it is called holomorphic if

it is holomorphic in each of its complex variables. This is equivalent to the property
that ¢ has a convergent Taylor series in the N complex variables z1,. .., z, (see for
example Chapter 2 of [72]).

Let u be real analytic at a point (zg,yo). Then u can be extended to a holomorphic
function in two complex variables by allowing x and y to take complex values in a small
neighborhood S C C? around (xg,yo). This follows from the absolute convergence of

the Taylor series of u [49]. We can write the holomorphic continuation in the following

1Often the term analytic is used for holomorphic functions. To distinguish between real analytic
and complex analytic functions we will always use the term holomorphic instead of complex analytic.
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way. Let 2 =x + iy and z* = x — iy. We have Z = 2* if and only if x and y are real.
Define

2 72

) =

It follows that U(z,Z) = wu(z,y). If we let z and z* vary independently around

z 4 2* z—z*)

20 = xo + 1yo and Zp, there exists a neighborhood S(z9) C C of zy such that U is
holomorphic in the region [S(zp), S*(20)] C C?, where S*(z) = {Zz : z € S(z0)} is
the complex conjugate region of S(zp). For an arbitrary real analytic function this
holomorphic continuation is only possible in a small neighborhood S(zp) around z.
Vekua’s theory asserts that for solutions of certain elliptic PDEs this continuation
is not only possible in the small but in the large, i.e. if u is analytic in € then U is
holomorphic in [©2, Q*]. To state the results of Vekua Henrici defines three classes of

functions:

I This class contains all functions which are twice continuously differentiable in

Q.
IT This class contains all functions f which are real analytic in 2.

ITT This class consists of all functions u of Class IT which possess a holomorphic
extension U into the region [Q,Q*] € C2. Hence, for every point 25 € © there
exists a neighborhood S(zp) such that Q C S(zp) and U is holomorphic in

[5(20), 5" (20)]-

A simple example given by Henrici is the class of harmonic functions. Let u be
harmonic in €. Then wu is real analytic, i.e. in Class II and it is well known that there

exists a function ¢ holomorphic in €2 such that

u(z,y) = Re{o(2)}, z€ Q.

Define the function ¢(z) := ¢(z), which is holomorphic for z € Q*. Now let

1

Ule,2) = 5[6(2) + 3]

Then U is holomorphic in [, Q*] and it holds that
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Therefore, U is the unique holomorphic extension of u into [2, 2*]. Let now the linear

elliptic partial differential equation Lu be defined as

ou @

£U($,y) = Au(x,y) + a(x,y)—(x,y) + b(l’,y) ay

e (z,y) + c(z,y)u(z,y) = 0. (6.1)

The following theorem is a classical result of the theory of elliptic PDEs [29].

Theorem 6.1.1 [f the coefficient functions a, b, ¢ are in Class 11 then every solution
w of Lu =0 in Class I is also in Class I1.

Vekua proved the following even stronger result.

Theorem 6.1.2 (Vekua) If the coefficient functions a, b, ¢ are in Class I11, then

every solution u of Lu =0 in Class I 1s also in Class I11.

For Theorem 6.1.2 it is essential that (2 is simply connected. Consider the following
example. The harmonic function u(z,y) = log(x* + »?) is harmonic in every annulus
A surrounding the origin, but the holomorphic extension U(z, z*) = log z + log z* is

not holomorphic in [A, A*].

If £ = A then any holomorphic function ¢(z) defines a solution of Lu = 0 via
u(z,y) = Re{o(z)}. Vekua showed that this is just a special case of a more gen-
eral relationship between holomorphic functions and solutions of elliptic PDEs with

coefficient functions belonging to Class III. Define
1 z4+2* 2 =2 242" z—2"
A N = = b
(z,2°) 4{“( 2 2 )*” < 2 ' 2 )}’
B(z,z") = 1 a Z+Z*,Z_.Z* — b Z+Z*,Z__Z* ,
4 2 21 2 21

1 (24 2* z—z*)

Cz27) = ?( 2 2

Let ¢ be any holomorphic function in 2 and fix 2y € €2. Define the integral operator

I[¢; 20)(2,2%) = %{G(z,z_o,z,z*)¢(z)+ Zqzﬁ(t)H(t,z_o,z,z*)dt—i-

20

G(zo,z*,z,z*)gb(z*)—l—/z gg(t*)H*(zo,t*,z,z*)dt*} (6.2)
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with
H(t,t*,z,2") = B(t,t")G(t,t",z,2") — E(t,t*,z,z*),
H*(t,t"z,2") = A(t,t)G(t,t,z,z)—%(t,t,z,z).

For z* = Z these equations simplify to

I[¢; 20](2,Z) = Re {G(z,z_o,z,i)qﬁ(z) +/ o(t)H(t,Zo, 2, E)dt}
20
= Re{V|[¢;20](2,2)}.
The function G(t,t*, z, 2*) is the complex Riemann function for £. We will not go into
further detail about its definition here. A detailed description is given in [36]. For

some equations this function is explicitly known. If £ = A, then G(¢,t*, z,2*) = 1,

and for the Helmholtz operator £ = A + A it is given as

Gt t*, 2, 2°) = Jo(WA/(z — 1) (z* — t¥)).

We can now establish a 1—1 relationship between holomorphic functions and solutions

of elliptic PDEs with coefficient functions in Class III.

Theorem 6.1.3 (Vekua) Fiz zy € Q2. Then there ezists a unique function ¢ holo-
morphic in Q with ¢(zy) real such that

u(z,y) = Re{V[g;izo]}(2,2), z=x+1iy €
U(z,z") = I[¢p;20](2,2%), (z,2%)€[Q,Q7.

Moreover,
d(z) =2U(z,%z9) — Ul(20,20)G (20, Z0, 2, 20) - (6.3)

An equivalent integral representation, which does not depend on the complex Rie-
mann function but can be approximated directly from the coefficients of the elliptic
equation, was developed by Bergman [11]. In [64] Schryer uses it to construct partic-

ular solutions for elliptic PDEs with polynomial coefficient functions.

From now on we will say that ¢ is associated with v or u is associated with ¢ if
u = Re{V[¢; 20]}. Let us apply this theorem to two examples. First let £ = A. Then

V reduces to the identity operator and we obtain

u(z,y) = Re{o(2)}.
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Furthermore, from (6.2) we find

Uz, 2%) = 116 20 (2, ) = 5 {8(2) + ()}

These are just the results we derived earlier for £ = A. Now let £ = A + X and let
Q) be the wedge with interior angle 7w/« (see Figure 2.1). An eigenfunction of this

region is given as
u(r,0) = Jap(VAr)sinakd, keN, > 0.

We want to derive the holomorphic function ¢ associated with u. Let z = re®. Then

u(r,0) = Jop(VAV2Z) ([)ak—<\f>ak /(20).

From Theorem 6.1.2 it follows that the unique analytic continuation of u(z,y) into
the region [Q2, Q*] C C? is given by

IR
ISEIR

Uz, 2%) = Jan(VAV22) ( Zi )ak — (@)ak /(2i) (6.4)

since U(z, z*) is holomorphic in [, Q"] and u(z,y) = U(z,Z). Bessel functions can

be expressed by power series as
Jz/ — _ 7 \n
@)= anl=)

for certain parameters a,.> Therefore, (6.4) becomes

*\ 1 ak *\ ak ak . 1 n *\N
Ulz2") = o (2% — (21)°%) VA ;an(—i) (Azz")™ (6.5)
From Theorem 6.1.3 it follows that

¢(Z) = ZU(Zaz_O) - U(Zo,?o)G(Zo,Z_o, 272_0)'

By a continuity argument we can fix zg = 0 and obtain together with (6.5)

o(2) = %\/Xakaozak.

For u(z,y) = Jox (VA1) cos aké we obtain similarly ¢(z) = \/Xakaozak.

Let us summarize these results.

>The a,, are defined by the recurrence relation ag = m, ap = ap-1/(n(n+v)).
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Lemma 6.1.4 Let Q be a wedge with interior angle w/a and let L= A+ X. Then

1
e Ju(VAr)sinakd = Re{V[iz®*,0]}(z,z),
Ve (VAr) {VI [}(2,2)

Qo
1
ak

Qo

Jo(VAr) cosakl = Re{V[z°¥,0]}(2,7).

The functions defined by Re{V[iz**, 0]} and Re{V[2*,0]}(z,Z) are sometimes called
generalized harmonic polynomials (see for example [52]) since for £ = A they lead to

the harmonic polynomials 7°* sin akf and r** cos aké.

To establish rates of convergence for the Method of Particular Solutions the smooth-
ness of the holomorphic function ¢ associated with a solution u of Lu = 0 is important.
This was analyzed by Eisenstat in [23]|. He showed that u and its associated function
¢ have the same smoothness behavior on the boundary. To state his theorem we need

the following definition.

Let f be defined on a closed subset S of the complex plane. Then f is Holder
continuous with exponent 0 < v < 1 if there exists K > 0 such that

|f(z1) — f(22)| < K|z1 — 2|7, for all 21,25 € S.

Define CP7(€2) as the space of functions that are p times continuously differentiable
in 0 and whose pth derivative is Hélder continuous with exponent ~ in Q. Eisenstat

proved the following extension of Theorem 6.1.3.

Theorem 6.1.5 (Eisenstat [23]) Let 2 have no interior or exterior cusps, i.e. for

the angle w/ay at each corner q it holds that 0 < w/a, < 2m. Fiz z € Q.

1. Let ® € CP7(Q) be holomorphic in Q and define
u(z,y) == Re{V[®(2), 20]}(2,%), z=2xz+iy€ Q.

Then u € CPY(Q) and satisfies Lu = 0 in €.

2. If u € CPY(Q)) satisfies Lu = 0 in €, then there exists a unique holomorphic
function ® € CP(Q) with ®(z) real such that

u(z,y) = Re{V[®(2),2]}(2,2), z=x+iyecQ
Uz, 2*) = Ip;20)(2,2%), [2,2"] €[Q,Q7. (6.6)
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Moreover, ®(z) = 2U(z, %) — U(20, 20)G (20, Z0, 2, Z0)-

6.2 Analytic continuation of eigenfunctions via re-
flection

An important application of Vekua’s theory are reflection principles for solutions of
elliptic PDE’s. Let the boundary 02 contain a segment o of the y—axis. Courant and
Hilbert [61] described how to analytically continue solutions of the eigenvalue problem
(1.1) across o. The analytic continuation is simply given as u(x,y) = —u(—=z,y) for
(x,y) in the mirror region ' defined by reflecting 2 at the y-axis. In 1954 Garabedian

[28] established reflection principles for the equation
Lu(z,y) = Au(z, y) + c(z,y)u(z,y) =0

with zero boundary conditions on an arbitrary analytic arc. This was generalized
to elliptic PDEs of the form (6.1) and more general boundary conditions by Lewy
[48]. In the book by Garabedian [29] the extension of these results to some nonlinear
elliptic PDEs is described. Here, we just discuss the case £L = A + X and use the
technique described in [28]. Let ¢ be an analytic segment of the boundary which is
parameterized in the form w = R(w) for w € o, where R is a holomorphic function
in a neighborhood of ¢. For example, if ¢ is a part of the z—axis then w = w on

2 on ¢ and

o and therefore R(w) := w. If o is a circle with radius r then ww = r
R(w) := r?/w. This example shows that in general R is not an entire function.
Assume that zp € 0. Then the function u(z,y) = U(z,Z) can be expressed by

Theorem 6.1.3 as
_ o : oG, _  _
U(z,Z) = Re< G(2,%y,2,2)p(2) — gb(t)g(t, 20, 2, 2)dt ¢ .

20

By partial integration and using (6.3) this equation becomes

_ _ o “oU, o
U(z,z) = U(z0,%0)G (20, 20, 2, Z) + 2Re E(t’ 20)G(t,Zo, 2,2)dt ¢ , (6.7)

20

since U (zo,Z0)G (20, Z0, 2, Z) is real and G(z,%y, 2,Z) = G(20,%0,2,%0) = 1 for L =
A+, If u(x,y) satisfies zero Dirichlet boundary conditions on o we have U(zg,Zp) = 0

and therefore

U(z,Z) = 2Re {/: %—Itj(t,z_g)G(t,z_o, Z,E)dt} : (6.8)

0
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Define -
T(z) = | 57 (t2)G(t %0, 2, R(z))dt. (6.9)
From (6.8) it follows that

0=U(2,2) =2Re{T(2)} =T(2) + T(2)
for z € o since u(z,y) = U(z,Z) satisfies the zero boundary conditions there and

Z = R(z2) on 0. T is holomorphic in §2 close to ¢ and has zero real part on o.

Therefore, we can reflect it across o as

T(z) = ~T(R()) (6.10)

Hence, T defines a holomorphic continuation of 7 if R(z) maps complex numbers
close to o on the other side of the boundary line o. But this is always the case as can
be seen by linearizing R(z) close to zy. To obtain the reflected function @(z,y) the

following two steps are necessary. From (6.9) it follows that

T(R(2)) + / %—[tj(t,zo)G(t,zo, z, R(2))dt =0 (6.11)

0

is a Volterra integral equation® defining the holomorphic continuation of U(z,z) out-
side Q. From (6.7) the analytic continuation of u(x,y) across o can then be obtained.
Computing the analytic continuation of an eigenfunction w is complicated since it
involves the application of Vekua operators and the solution of an integral equation.
But usually we are only interested in the existence of the analytic continuation into
a certain region and this only depends on 9f). Consider for example solutions of the
eigenvalue problem (1.1) on the unit disk. Then R(w) := 1/w and we can analytically

continue any eigenfunction to the whole of the complex plane.

Another simple consequence of reflection principles for eigenfunctions is the analytic
continuation in the neighborhood of certain corners of regions. Let u be an eigenfunc-
tion in a wedge with interior angle w/k, k € N. Then by continued reflection u can

be analytically continued to an eigenfunction in a wedge with interior angle 7. One

3A Volterra integral equation has the form w(z) — f;o K(z,t)w(t)dt = f(z). If f is holomorphic
in Q and the kernel K(z,t) is holomorphic in [Q2,Q] C C? the solution w(z) is holomorphic in  [36].
After partial integration (6.11) is of this form in the region of analyticity of T
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Figure 6.1: A region defined by the intersection of two circles

final reflection then yields the analytic continuation of u in a whole neighborhood of
the corner. Hence, any eigenfunction can be analytically continued around a corner
that locally consists of two straight lines meeting at an interior angle 7 /k, where k is
an integer. If k is not an integer this is generally not possible. Around a corner with

interior angle 7/a any eigenfunction u of (1.1) can be expanded into the series,

u(r,0) = Z oo (VAT sin k6. (6.12)
k=1
which is absolutely convergent to w in a neighborhood of the corner [67]. Asymptot-
ically, we obtain
u(r,0) = yr®sin af + o(r?), (6.13)

for a constant v depending on the normalization of u. This was proved by Lehmann
in 1957 [47] for more general elliptic PDEs. Therefore, if « is not an integer u can in
general not be analytically continued around the corner. If the corner does not consist
of two straight lines then apart from some special cases u cannot be analytically
continued around the corner either. As an example consider the region 2 defined by
the intersection of two circles I'; and I'y with radius 1 such that the angles at the two

corners are 7/2. Figure 6.1 shows this region.
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Theorem 6.2.1 No eigenfunction on the region ) of Figure 6.1 can be analytically

continued across the two corners of 0S2.

Proof Assume that there is an eigenfunction u of (1.1) on € that can be analytically
continued around the two corners of (2. Then we can reflect u across the upper
boundary segment of ) to obtain a function that is analytic inside the disk defined
by I'1 and also in a neighborhood of I'y. By analytic continuation of the lower zero
boundary line we obtain u|r, = 0. Therefore, the analytic continuation of u defines
an eigenfunction of (1.1) on the disk enclosed by I';. A nodal line of this eigenfunction
is the upper boundary segment of 2. But nodal lines of eigenfunctions on a disk can
only be concentric lines around the center of the disc or straight lines emerging from

the center of the disc, a contradiction. |J
Let us summarize our results in the following definition and theorem.

Definition A corner consisting of two straight lines meeting at an interior angle 7 /k,

where k € N, is called reqular. Otherwise, it is called singular.

Theorem 6.2.2 If a corner is reqular any eigenfunction can be analytically continued

into a neighborhood of it.

In the following we will use the analytic continuation results from this section to

establish exponential convergence of the MPS on certain regions.

6.3 Convergence estimate for regions with no singu-
lar corners

In this section we establish convergence estimates of the subspace angle method for
regions without singular corners?. Before we review some results of complex approx-

imation let us first establish the connection between the subspace angle method and

4Exponential convergence of the MPS on regions whose boundary is an analytic Jordan curve
was also theoretically established by Still in [67] but without giving exact asymptotic exponential
convergence rates.
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complex approximation. For a set S C C define the supremum norm ||¢| s as
[¢lloc,s == sup [¢(2)].
z€8

Since we assume that € is bounded the Vekua operator Re{V[¢; 29|} is bounded in
I Nl by

IRe{V[#; 20]} | o2 < ||G||oo,gz||¢||oo,g+/ IH || all¢llcondlt] < Kv @]l oo
20
(see [23]).

For the equation —A + Au = 0 the constant Ky depends in addition to the region €2
also on the parameter A\. Let us denote by V4 the space of all holomorphic functions

¢ associated with functions u € A()) for a fixed 2z € (.

Lemma 6.3.1 Let (M, uz) be an eigenpair of (1.1). Fiz zy € Q and let ¢ be the
holomorphic function associated with uy. Let u € A(M\;) and denote by ¢ € Vg4 its
associated holomorphic function. Denote by O(\;) the principal angle between A(\g)
and Dy. Then

tan 0(Ae)[[ulle < Cllo — drlln

for a constant C' > 0 that depends only on A\, and €.

Proof We have

[ullon = llu = urllao < Cillu = urlloo o0 = Cillu — willog < CLEVI6 = Grllom

for a constant C; > 0 that depends on (2. Therefore, with C' = C| Ky,

[ullog < Cll¢ — lloo0- (6.14)
Since
tanf(\y) = inf lulla
u€A(N) ||U||Q
we obtain

[ulla tan 6(Ax) < [lulla0-

Together with (6.14) the result follows. |}
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Since
[[ulle = llurlle] < lu—ulla < Cll¢ — drllon

for a constant C' > 0 depending on € and A, the factor ||ul|q is close to 1 if ¢ is a good
approximation of ¢ and ||ug|lq = 1. Hence, the factor ||u|lo has little influence. The
important consequence of this lemma is that tan#(\;) can be bounded by the error
of approximating ¢, with functions ¢ € V4, giving a link between subspace angles
and complex approximation. In a similar form this Lemma was already proved in [23]

but without using the notion of subspace angles.

After establishing the link between the subspace angle method and the approxima-
tion of holomorphic functions let us review some results of complex approximation
theory which we will need to establish convergence rates. Let the error Ey g () of
approximating a holomorphic function ¢ in a compact set K C C with polynomials

of maximal degree N be defined as

En k(¢) = min max |¢(z) — p(2)],

pelly zeK
where Iy is the space of polynomials of maximal degree N. The first question is
whether it is possible at all that Ey x(¢) — 0 for N — oo, i.e. if the function ¢ can
be arbitrarily well approximated on K by polynomials. If C\ K is connected and ¢ is
holomorphic on K this was shown by Runge in 1885. His result is often referred to
as the beginning of complex approximation theory (see |27, 53| for an overview of the
history). The original theorem of Runge cannot be applied if ¢ is not holomorphic
on OK. A more general result was proved by Mergelyan in 1951 [53]. He showed
that En x(¢) — 0if C\K is connected and ¢ is holomorphic in the interior of K and
continuous on OK. This is a great improvement on Runge’s theorem since ¢ needs
not be holomorphic on 0K any longer. The result includes several previous results as
special cases (for example, the Weierstrass approximation theorem for approximation

on an interval [a, b]).

The next question is the speed of convergence of Ey x(¢), i.e. how fast does En k(¢)
go to zero? For simplicity we assume that K is a simply connected compact set
bounded by a piecewise analytic Jordan curve. Let C' = 0K. Then the equipotential

curves C, are defined in the following way.

Equipotential curves Let w = ®(z) be the conformal map of the exterior of K to

the exterior of the unit disc {w € C : |w| > 1} normalized in the standard way at
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Figure 6.2: The definition of equipotential curves

infinity®. The equipotential curve C, of radius p > 1 is defined as C, = {z € C :
|®(2)| = p} (see Figure 6.2).

Furthermore, by the conformal distance of a point z to a region {2 we denote the value
p such that z € C,.

For p > 1 the curve C,, is always an analytic Jordan curve [84|. The term equipotential
curve comes from potential theory. The function gx(z) = log|®(z)| is the Green’s
function for K, which is up to an additional constant the equilibrium potential of K
(see 62| for a beautiful introduction). With this definition we can now give the first

statement of the rate of convergence of Ey x(¢).

Theorem 6.3.2 Suppose p > 1 is the largest number such that ¢ is analytic inside
C,. Then

Enk(¢) = O(R™Y)

holds for every R < p, but for no R > p.

Proof The classical reference for a proof of this theorem and its implications is Walsh

[84]. A more accessible proof is given in [27|. |}

We are now ready to prove exponential convergence rates for the subspace angle

method on regions without singular corners.

®(z) is of the form ®(z2) = cz +co+ < + ... with ¢ > 0.
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Theorem 6.3.3 Suppose (g, uy) is an eigenpair of (1.1) on Q with boundary C' =
0. Let ||lug|lo = 1 and assume that there exists R > 1 such that uy, is analytic inside
and on Cr. Fix zy € Q) and let

N
An(Ai) == {Z Ji(V/ Akr)(a;sin jO + bj cos j0) : a;,b; € R}
5=0
be the space of Fourier-Bessel functions of maximum order N expanded around zy.
Then

tan Oy (Ay) = O(R™Y)

as N — oo, where Ox(\g) is the subspace angle between An () and Dy.

Proof Although the hypothesis is different, the proof is very similar to the proof of
Theorem 8.3 in [23|. From Lemma 6.1.4 it follows with o = 1 that V4 = IIy. Let ¢y
be the holomorphic function associated with u,. Then from Theorem 6.3.2 it follows
that

min [py — dullg = OR™). (6.15)

pNEll N
as N — o0o0. Let py be the best approximation of ¢, from IIy. Together with Lemma
6.3.1 we find
IRe{V[pn; 20} o tan Ox (\x) = O(R™Y).

We can estimate ||[Re{V[pn;20]}|la as

IRe{V[pn; 20lHle = [Jukll = [[ur — Re{V[Pn; 20] } |
> 1= Cllug — Re{V[pn; 20]}H| o
> 1-CKy|py — Orllwn

= 1-0OR™)

for a constant C' > 0 that depends on 2. Therefore, |[Re{V [pn; 20]}||q approaches 1
and it follows that
tan QN()\k) = O(R_N) I

To find the maximal convergence rate we need to know how far across { an eigen-
function uy of (1.1) can be analytically continued. The singularity z; of the analytic

continuation of u; with the smallest conformal distance to the region then gives the
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Figure 6.3: The circular L region and some of its equipotential curves. The dots are

singularities of the analytic continuation of an eigenfunction of the region.
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Figure 6.4: Any eigenfunction on the circular L region can be reflected to fill the
whole complex plane except for an infinite number of disks of radius 1 positioned on

a regular grid.
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convergence rate of the subspace angle method. Let us demonstrate this with an ex-
ample. Figure 6.3 shows a region €2, which is similar to the L-shaped region but with a
quarter circle of radius 1 instead of the reentrant corner. The figure also shows some
of the equipotential lines C,, computed with Driscoll’s Schwarz-Christoffel Toolbox
[20]. The two dots mark singularities of the analytic continuation of an eigenfunction.
Their positions are obtained in the following way. We can reflect any eigenfunction u
across each of the straight lines of €2. The resulting eigenfunction lives in the region
shown in Figure 6.4. We can further reflect it to cover the whole complex plane apart
from an infinite number of disks of radius 1 ordered on a regular grid. But how far
can we reflect an eigenfunction into the disk? Consider for example the two upper
disks in Figure 6.4. Let us take a point 2y lying on the straight line between these
disks. We can reflect it across the right circle and obtain a point z; lying on the same

line but inside the upper right disk. The position of z; is obtained from the equation

(20— (2420)(z1 — (24 20) = 1.

Now we can reflect z; again in the upper left circle to obtain a point z5 in that disk.
Then we can reflect again in the right circle and so on. The two limit points of this
iteration are not the centers of the disks, but are determined by the condition that
the reflection of the left limit point in the right disk is exactly the left limit point
and vice versa. Due to the symmetry of the region their distances to the centers of
the two disks must be equal. This leads to the two limit points z;, = —v/3 + 2i in
the left disk and to zp = /3 + 2i in the right disk. We cannot analytically continue
u further into the two disks on the line z + 2i, x € R. Therefore, the points z; and
zr are singularities of the analytic continuation of u. By symmetry we obtain many
more singularities such as the point zp = 2+ iv/3. The points zg and zg are plotted
in Figure 6.3. There might be other singularities with a smaller conformal distance
to 2. But if such singularities exist their conformal distance will not be significantly
smaller than that of zp and zg since the upper line in Figure 6.4 is the shortest
connection between two disks and therefore leads to the smallest penetration into the
two disks by reflection. For example, if we reflect between the lower left circle and the
upper right circle we obtain two singularities whose conformal distance to the region
is larger than that of zr. With the Schwarz-Christoffel toolbox we obtain the value
p ~ 1.476 for the conformal distance of zg to (2. Approximating with Fourier-Bessel

sine and cosine functions we obtain from Theorem 6.3.3

tan HN()\k) = 0(147671\[)
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tanfn (A1)

-15

Figure 6.5: The theoretical convergence rate for N — oo (dashed) and the measured
convergence (solid) on the L circle region. The measured convergence fits well with
the predicted rate.

for an eigenvalue A\, of (1.1) on the circular L region, assuming zp is the singularity
with the smallest conformal distance®. In Figure 6.5 we compare the computed value
of tanfy(A;) with the estimated maximal convergence rate. For A\; we used the
approximation \; ~ 7.02025391131. The convergence stops at N = 70 since \; is
only known to about 12 digits of accuracy. The measured convergence curve first
seems to move away from the estimated straight line. But then the slope of the
measured convergence slowly approaches the estimated value again and we obtain a
good match between the estimated slope and the measured slope. We always have to
keep in mind that the estimated convergence rate is an asymptotic rate for N — oc.

The transient behavior of the measured curve can differ from this.

Another interesting example is the half annulus with radii 7y = 1 and ry = 2 as shown
in Figure 6.6, where also some equipotential curves are plotted. The closest singularity
is at 0 leading to a theoretical convergence rate of O(1.167"). By increasing r, we
could make the asymptotic rate of convergence arbitrarily close to 1. The reason
for this slow convergence is that the approximation basis is not a very good one.

All eigenvalues on the half annulus are also eigenvalues on the full annulus. But

6In a strict sense, we can only say that tan Oy (\y) = O(R™Y) for R < 1.476 if 1.476 is the exact
maximum radius of analyticity. But since 1.476 is just a numerically estimated value we will omit
this and just say that the rate is O(1.476=).



CHAPTER 6. CONVERGENCE RATES 95

Figure 6.6: A half annulus region and its mapping function. The dot marks the
closest singularity of an eigenfunction of the region.

the corresponding eigenfunctions are given as linear combinations of Fourier-Bessel

functions of the first and of the second kind by

Umn = {Ym(k‘m,n)Jm (km;r) — I (kmn)Ym (kmanr)] [A cosmb + Bsinmb),

where £k, , is the nth root of

Vi (5) = st () <0

a a

and Y,, is the mth Bessel function of the second kind [44]. Therefore, although by
approximating with Fourier-Bessel sine and cosine functions inside the half annulus we
are guaranteed exponential convergence, it is not a good basis since the eigenfunctions
also involve Bessel functions of the second kind, which have a singularity at 0. The
convergence curve for tan 6y (A1) on this region is shown in Figure 6.7. It agrees very
well with the predicted value of O(1.167).
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Figure 6.7: Convergence of the subspace angle method on the half annulus region
(solid). The dashed line shows the theoretical asymptotic rate of convergence.

6.4 Exponential convergence on regions with one sin-
gular corner

Only in the case in which 92 has no singular corner can we apply Theorem 6.3.3 to
obtain an exponential convergence estimate. Let us now extend this result to the case
in which 0€) has exactly one singular corner whose adjacent arcs are straight lines.
In such a case any eigenfunction on  can be analytically continued across Q except
close to the singular corner. This is for example the case for the L.-shaped region. We

need the following lemma.

Lemma 6.4.1 Let 0 be a corner of 02 with interior angle 7/a, which is formed by
two straight arcs from which the right one is part of the real azis as shown in Figure
2.1. Let u be an eigenfunction of (1.1) on Q. Then the unique holomorphic function ¢
associated with u by the Vekua operator such that u = Re{V [¢; 0]} is purely imaginary

on the arcs adjacent to 0 and has the absolutely convergent expansion
o0
P(z) = Ziékzak, G eR, ze{z:]z| <R}NQ
k=1

for some R > 0.
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Proof There exists R > 0 such that
u(r,0) = Z ¢jJoj(V/ Agr) sin ajf (6.16)
j=1

is an absolutely convergent series for r < R and 0 < 6 < 7/a. Together with Lemma

6.1.4 it follows that there exists real coefficients

~ Cj\//\_kaj

9T T il (aj + 1)

such that for |z| < R we have
B(z) =Y ie;z. (6.17)
=0
The absolute convergence of this series follows from the fact that

(1—¢) <|J(2)] < 2l <7

2I(v+1)

for every € > 0 and v > (7, €) sufficiently large (see for example [67]). Hence, the
terms in (6.17) can be bounded by the terms in (6.16).

From (6.17) it follows that ¢ is purely imaginary on {z : |z| < R} N 0€2. By analytic

continuation along the arcs ¢ is also purely imaginary on the whole of both arcs. |}

Using this lemma we can show that the singularity can be removed by a conformal

map of the region.

Lemma 6.4.2 In the notation of Lemma 6.4.1, define the region Q% as
QY ={2":2€Q}.
Then the function gg(w) = @(2) for w = 2% is analytic on Q.
This lemma states that by the transformation w = z* we obtain a function that is

analytic on the whole of Q@ and therefore in particular at w = z = 0. Hence, by the

transformation w = 2® we have removed the singularity of ¢ at 0.
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Proof From Lemma 6.4.1 it follows that

b(z) = Z i¢;2% (6.18)

J=0

in {z:]2] < R} NQ. Now let w = 2®. Then
P(w) = Ziéjwj.
=0

This is a power series in w. Tts absolute convergence for |w| < R* follows from the
absolute convergence of (6.18). Hence, 95 possesses a power series expansion around
w = 0 and is therefore holomorphic in a neighborhood of 0. Since by assumption q;

possesses no other singularities on Q it is holomorphic there. |

Let us now use these lemmas to determine the rate of convergence of the MPS in a
region with one singular corner. Assume that (2 satisfies the hypotheses of Lemma
6.4.1 and let (A, ux) be an eigenpair of (1.1) on Q with |lu|lq = 1. Denote by ¢y
the holomorphic function associated with wu; for zg = 0 and let qgk be the conformal
transplant of ¢y to the region Q%. Hence, ¢p(w) = ¢r(z) for w = 2% From Lemma
6.4.2 it follows that gz;k is holomorphic on Q@. Therefore, there exists R > 1 such that

min ||¢r — puleeae = O(R™Y).
pNn€Ellny

This estimate holds for all R < p, where p is the conformal distance of the closest

singularity of ¢y, to the region Q% (see Theorem 6.3.2). Let

N
pn(w) = chwj, c; €C
j=0
be the best approximating polynomial in IIy of ¢5. Then

N

pn(z) = Z 2"

k=0
and
16k — Pvlloen = O(R™Y)
in the z—domain. The Vekua transform u = Re{V'[px;0]} of py in the z—domain has

the form

N
u(r,0) = Z Ja; (VA1) (a;sin ajf + bj cos ajf)

j=0



CHAPTER 6. CONVERGENCE RATES 99

for real coefficients a; and b; depending on the coefficients ¢; of py. Now define

N
An(A) = {Z Jai(V Aer)(ag sin i@ + b cos ajf) = a;,b; € R}.

Jj=0

We obtain as in the proof of Theorem 6.3.3
tan Oy (Ax) = O(R™Y)

for the angle between Ay (\;) and Dy. Let us summarize this result as a theorem.

Theorem 6.4.3 Let Q) be a region with one singular corner with interior angle 7/«
as defined in Lemma 6.4.1 and let (A, ux) be an eigenpair of (1.1) on this region. Let
dr be the holomorphic function associated with w, and define ¢y by dp(w) = ¢p(2) for
w =2z Let

N

An(A) = {Z Joi(V/ Akr)(a; sin ajf + bj cos ajb) : a;j,b; € R}.
=0
Then there exists R > 1 such that for the angle On(\;) between An(Ng) and Dy it
holds that
tan HN()\k) = O(RiN)

This estimate holds for all R < p where p is the smallest conformal distance of a

singularity of ¢ to the region Q.

Hence, by adapting the space of particular solutions to the singularity we obtain
exponential convergence for regions with one corner singularity. For the L-shaped
region this was also investigated by Still in [67|. But he did not use conformal mapping
techniques to compute the exact asymptotic rate of convergence but rather gave

bounds on the convergence rate by directly estimating the Fourier-Bessel series.

Let us use this result to determine the rate of convergence if € is the L-shaped region.
By reflection we can determine all singularities around €2 and remove the singularity
at the reentrant corner with the map w = 2%/3. This is shown in Figure 6.8, where
0?3 and some equipotential curves are plotted”. The dots mark singularities of

the analytic continuation of eigenfunctions on {2 under the map to the w—domain.
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Figure 6.8: Equipotential curves of the L-shaped region after canceling out the reen-
trant corner at z = 0. The dots mark singularities of the analytic continuation of an
eigenfunction wu.

Computing the minimum conformal distance to Q%% of the singularities leads to
p ~ 1.54. A comparison between the measured convergence and this estimated rate
is shown in Figure 6.9. The estimated rate fits well with the measured rate. Again
the measured convergence is not fully identical to the estimated behavior for N — oo
since we only observe the curve up to N = 60. But for large N the measured slope

will eventually approach the estimated rate.

The convergence plot in Figure 6.9 was computed using Fourier-Bessel sine and cosine

functions of the form )
Jgj(\/ A7) sin §j9
and

2
Jgj(\//\lr) cos §j9

since this corresponds to polynomial approximation on the region Q%3. But the

Fourier-Bessel cosine functions do not satisfy the zero boundary conditions on the

"To compute the equipotential curves and the conformal distance of the singularities we used
Driscoll’s Schwarz-Christoffel Toolbox after discretizing Q%/3 to obtain a polygonal region. The
computations can also be done on a slicker way without this discretization, but we will not go into
that here.
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Figure 6.9: Measured convergence (solid) of tanfy (A1) compared to the estimated
convergence rate (dashed) for the L-shaped region using Fourier-Bessel sine and cosine
expansions.

arcs adjacent to the reentrant corner and it seems natural to only use Fourier-Bessel

sine functions. How does the convergence rate change in this case?

Approximating only with Fourier-Bessel sine functions corresponds to approximating
é(w) with polynomials that have purely imaginary coefficients. The best approxi-

mating polynomial in this class can be determined with the following Lemma.

Lemma 6.4.4 Let Q be the L-shaped region and denote by Q2/3 the reflection of Q3
at the real line as shown in Figure 6.10. Let ¢ be a function holomorphic in Q% with
no singularites in Q3 which is purely imaginary on the part of 903 intersecting
with the real line. Denote by py the best approrimating polynomial of degree N for

the function

~ H(z); 2z e Q3
P(z) = ( 2 .= 2/3
—0(z); z€Q
in Q2/3. Then py has purely imaginary coefficients and is the best approzimating
polynomial for ¢ in Q2/3 from the space of polynomials of mazimum degree N with

purely imaginary coefficients.

Proof Let ¢(Z) be the reflection of ¢(z) on the real axis. Then the best approximating
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Figure 6.10: The region from Figure 6.8 but now doubled in size by an additional
reflection. The dots are again singularities of the analytic continuation of an eigen-
function wuy.

polynomial for this reflection is py(Z). But it can be easily seen that ¢(Z) = —¢(2).

Therefore, pn(Z) = —pn(2z). With
N
Pn(z) = Z 2’
=0

for certain coefficients ¢; € C we find

N N

0=pn(E) +Pn(2) = Z(Cj +G) = ZQR,e{cj}zj

j=0 7=0

and therefore Re{c;} = 0 for j = 1,..., N. Now let py be the best approximating

polynomial for ¢ in Q2/3 from the space of polynomials of maximum degree N with

purely imaginary coefficients. Since the best approximating polynomial py for é on

22/3 also has purely imaginary coefficients and ¢ is symmetric around the real axis it

follows that py = pn. |}

For the MPS on the L-shaped region with Fourier-Bessel functions this result means
that the rate of convergence is determined by a conformal map of the region shown

in Figure 6.10. We obtain an asymptotic convergence rate of O(1.44="). Figure 6.11
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Figure 6.11: Measured and estimated convergence of the MPS on the L-shaped region
using only Fourier-Bessel sine functions.

shows the measured and the estimated convergence behavior on the L-shaped region if
only Fourier-Bessel sine functions are used. It is interesting to note that the observed
transient rate of convergence from Figure 6.11 seems to be about O(1.517"), which is
much closer to the asymptotic rate of convergence for the case that Fourier-Bessel sine
and cosine functions are used. This shows that the effect of omitting Fourier-Bessel
cosine functions from the basis is low and only becomes significant for N — oo. It
is also noticeable that the curve in Figure 6.11 bends up slightly as in the beginning
it seems to converge faster than in later steps. Eventually it will settle at a rate of
0(1.447N) for N — oo.

6.5 Convergence on regions with multiple singulari-
ties

Let us now apply the subspace angle method to the eigenvalue problem (1.1) on a
region €2 with more than one singular corner. For regions with one corner singularity
we were able show exponential convergence by canceling out the singularity with a
conformal map if the corner is bounded by the intersection of two straight arcs. So

the first question is if we can just use the same strategy for regions with multiple
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Figure 6.12: A region with two singular corners at z; and zj.

singularities. We will demonstrate all results in this section at the example region
shown in Figure 6.12. The four points of the quadrilateral are z; = 0, zo = .3 +
1/tan(3), 23 = 0.3 + 1/tan(3F) + 14, z4 = 1/tan(3) 4+ 1i. The corresponding
interior angles m/ay, k = 1,...,4 are defined by oy = %, g = 2, a3 = 2, ay = g.
Hence, the corners at z; and z4 are singular. Let uy be an eigenfunction of (1.1) on
the region €2 shown in Figure 6.12 and ¢, its associated holomorphic function around
21, i.e. up = Re{V'[¢; z1]}. Then from Lemma 6.4.1 it follows that
or(z) = Zicjzo‘lj, c; €R
j=1
close to z;. But close to z; we cannot expect ¢, to have this form. Close to that

corner the eigenfunction can be expressed as a convergent series of the form
e¢]
u(r,0) = ZajJMj(\//\kr) sin a0 (6.19)
j=1

with origin of the polar coordinates at z;. Together with (6.5) it follows that asymp-
totically
on(z) ~ Z cji(z — zg) Tl ¢, €C (6.20)
3,10
as z — z4. Generally, this needs not be a convergent series. One can show that if «

is irrational ¢, has an asymptotic expansion close to a corner 7/« in the terms 277
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J,l € N. If a = p/q is rational with (p, ¢) relatively prime the asymptotic expansion
can also have terms of the form (27 log z)™z7!, j I,m € N |85|. Let us now assume
we introduce the conformal map w = (z — z4)* to straighten out the corner at zy.
Then from (6.20) it follows that
on(w) ~ > ey
J1=0

close to w = 0. But this asymptotic series still has singular terms, which are now
of the form w’/®*!, Hence, although we have straightened out the corner at z; we
haven’t canceled out the corresponding singularity of ¢;. It follows that we can
always only cancel out one singularity of ¢, namely the singularity z; such that
ur = Re{V|[¢r;25]}. Due to the behavior of ¢, at the other singularities it is not
possible to cancel them out with the strategy used in the previous section. But as we
will see later, by a suitable choice of basis functions we can reduce the order of the

corner singularities and still obtain fast convergence.

Algebraic convergence estimates for the MPS were first analyzed by Eisenstat in 1974
[23]. This was further developed by Still [66, 67, 69] in the 1980’s. In 1999 Melenk [52]
published algebraic convergence results for approximation in Sobolev spaces. Here,

we will mostly use the estimates in the form given by Still.

Let Q have corners at zj,...,z,. Denote by wy = 7/ay,...,w, = 7/a, the cor-
responding interior angles. Let @ be the largest interior angle and define p :=
min{1,2 — w/xw}. If Q has a reentrant corner then p < 1 and pr is the exterior
angle at the reentrant corner. Furthermore, we assume that €2 has no interior or

exterior cusps, i.e. 0 < w, <27 for k =1,...,n. Let z5 € Q and define

N

An(Ag) = {Z Ji(V/ Akr)(a;sin jO + b; cos j8) : a;, b; € ]R} ,
5=0

where the polar coordinates are around zy. Still proved the following theorem, which

we present for the special case of the eigenvalue problem (1.1).

Theorem 6.5.1 (Still [69]) Let (Mg, ux) be an eigenpair of (1.1). Let p € N, 0 <

v < 1, be defined by p+ v = Z. Then u € C*7(2) and for any € > 0 there exists a
constant c(e) such that

c(e)

min |jup — un|| g < Nulpty)—¢’

unEAN(N)
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Figure 6.13: The plot shows the convergence behavior on a region with two singular
corners (solid line). The dashed line is the theoretical rate from Theorem 6.5.1.

This result was also proved by Eisenstat in a more general setting in [23]. Since eigen-
functions are analytic around nonsingular corners we only need to consider singular

corners for Theorem 6.5.1.

Figure 6.13 shows the convergence of the subspace angle method using the approx-
imation space A()\;) as defined above. For A\; we use the approximation \; =
48.4161682676614, which is believed to be correct to all given digits. The dashed
line in Figure 6.13 shows the convergence bound from Theorem 6.5.1. The corner
at z4 is the singular corner with the largest interior angle. From Theorem 6.5.1 the
convergence estimate

tanfy(A) < c(:)

€

for all € > 0 follows. The observed convergence in Figure 6.13 is even faster than
predicted by algebraic convergence estimates in the supremum norm. Indeed, Melenk
showed that bounding the approximation error in L? can lead to improved algebraic
convergence rates [52].® Therefore, although the error in the supremum norm is an
upper bound for the tangent of the subspace angle, more suitable function space

settings might give sharper bounds in this case. All algebraic convergence estimates

8For the approximation of functions that are holomorphic in the neighborhood of the region as
described by Theorem 6.3.2 the asymptotic exponential rates are the same in the supremum and L?
norm.
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depend on the smoothness of the eigenfunctions at the singular corners. If we can
improve the smoothness at the corners, faster convergence rates are possible. This
possibility was investigated by Eisenstat [23]. Consider the corner z;. As already

stated in (6.19), close to z4 uy has the series representation
ug(r,0) = Z ajJayi(V Agr) sin agjé.
j=1

By canceling out lower order terms of this series we can improve the smoothness of wy

at z4. If we enrich the approximation space by linear combinations of .J,,;(v/Axr) sin a4 56,

7 =1,...,n the problem of approximating u, can be interpreted as the problem of
approximating
Ug(r,0) == ug(r,0) — ZajJMj(\/)\kr) sin oy j0 = Z ajJo,;(\V/ Agr) sin oy j60
j=1 j=n+1

close to z4, which has a much weaker singularity at z4 than the function u;. If we
do the same at z; we can make the function %, as smooth at the corners as we wish.
It cannot become analytic close to the corners since no matter how many singular
terms we use the remaining terms in the series expansions around z; and z, will stay
singular. But still we can obtain high algebraic convergence rates. This is shown in
Figure 6.14, where we compare the convergence of the subspace angle method if the
approximation space is enlarged by the first two singular Fourier-Bessel terms around
the singularities at z; and z4 to the case of approximating just with Fourier-Bessel

terms in the interior of € as done in Figure 6.13.

Just by adding four singular terms we drastically increase the rate of convergence while
the additional computational effort is negligible since the number of basis functions
only grows from 201 to 205 at the step N = 100. We can even improve the rate
of convergence more by choosing in each step the same number of terms at the two
singularities as in the interior of the region. Figure 6.15 shows a double-logarithmic
and a semi-logarithmic plot of the resulting convergence curve. It decreases faster
than linearly in the double-logarithmic plot indicating super-algebraic convergence,
but decreases slower than linearly in the semi-logarithmic plot, which indicates a
rate slower than exponential convergence. We achieve an accuracy close to machine
precision after N = 26, which corresponds to 105 basis terms (26 Fourier-Bessel sine
terms around each of the singular corners, 52 Fourier-Bessel sine and cosine terms

in the interior and 1 Bessel term of order zero in the interior). In the case of using
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Figure 6.14: Comparison of the subspace angle method on 2 by only using Fourier-
Bessel terms in the interior of the region and by adding two singular terms around
each of the two singular corners z; and zj.

only Fourier-Bessel terms in the interior of the region shown in Figure 6.13 we needed
201 terms to bring the subspace angle down to just about 107, This shows how
essential it is to capture the corner singularities correctly. We can even reduce the
number of basis functions more. From Theorem 6.5.1 it follows that close to z; the
rate of convergence is O(N~3), while close to zy it is O(N~5). Hence, close to z; the
convergence is about twice as fast as close to z4. Therefore, it makes sense to choose
twice as many singular terms around z, as around z; to make up for this difference
in the convergence rate. This rule of thumb was pointed out by Descloux and Tolley
[18]. As a result we obtain the convergence curve shown in Figure 6.16. At about
N = 14 the subspace angle is already close to machine precision. This corresponds to
28 Fourier-Bessel terms around z,4, 14 Fourier-Bessel terms around z; and 29 Fourier-
Bessel terms in the interior of the region, i.e. overall 71 terms, which saves 34 basis
terms compared to the case that we approximate with the same number of terms

around both singularities as shown in Figure 6.15.

Let us summarize the results of this chapter. For regions with zero or one singular
corner we proved exponential convergence (Theorem 6.3.3 and 6.4.3). Moreover, by
conformal mapping techniques we were able to determine the asymptotic exponential

rate of convergence. For regions with multiple singularities the situation is different.
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Figure 6.15: Convergence of the subspace angle method if in each step the number of
terms at each singularity is also V. The upper plot shows the convergence behavior
on a double-logarithmic scale while the lower plot uses a semi-logarithmic scale. The
convergence appears to be faster than algebraic but slower than exponential.
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Figure 6.16: The rate of convergence if twice as many singular terms are used around
Z4 AS Z21.

Algebraic convergence rates for this case were previously analyzed by Eisenstat and
Still and in the setting of Sobolev spaces by Melenk. By a suitable adjustment of the
approximation spaces high algebraic convergence rates can be achieved. We demon-
strated numerically that this can be further improved by approximating not only with
an increasing number of Fourier-Bessel terms in the interior of the region but also
with an increasing number of Fourier-Bessel terms at the singularities. The numer-
ical convergence then seems better than algebraic but not yet exponential. This is
plausible, since we increase the smoothness of the function we wish to approximate in
each step by adding more singular terms. Therefore, the rate of algebraic convergence
grows with increasing N. But since the singularities do not fully disappear we cannot
expect exponential convergence. Nevertheless, the convergence can be made very fast
even in the case of regions with multiple singular corners. The only restriction is that
if a singular corner is not formed by two straight lines but by arbitrary analytic curves
logarithmic terms can appear in the expansion of ¢ close to that corner. Just by
using Fourier-Bessel functions we cannot capture those logarithmic terms and they

can lead to a slow down of convergence.
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6.6 A note on the convergence of eigenvalues

We conclude this chapter with a note on the rate of convergence of an eigenvalue
approximation A to an eigenvalue Ay of (1.1) in a region Q. From Chapter 5 we know

that
A — A

Ak

for a constant ¢ > 0 that depends on €). Therefore, if A is the minimum of the

< ctanf(\)

subspace angle curve, then

A — A

k

< ctanf(\) < ctan ()

and for a growing number of basis functions A converges at least as fast as tan 0(\).
But can the rate of convergence be faster than that of tan #(\;)? If @ is an approximate
eigenfunction from Dy instead of A(\) then a good eigenvalue estimate is given by
the Rayleigh quotient
(U, —At)q

<Q~L, a)ﬂ .

If the distance of @ to an eigenvector uy is O(e), then the distance of p(@) to Ay is

pla) =

O(€?) leading to a squared convergence behavior for the eigenvalue approximations.
The question is if such a “squared convergence" behavior also exists for the Method
of Particular Solutions. The Rayleigh quotient does not give us any new information
when we approximate from A(\) since if —Au = Au, then p(u) = X. However,
there are several examples where we numerically observe faster convergence for the
eigenvalue approximation than for the corresponding subspace angle. Figure 6.17
shows the convergence of the minimum of tanfy(\) for a growing number N of
basis functions on the L-shaped region. The dotted curve shows the distance of the
corresponding values A to the first eigenvalue \;. Until about N = 17 the eigenvalue
approximation A converges faster than tan6@y(A). This changes when tanfy(\) ~
1078 at N = 17. Then both curves seem to decrease with the same rate. Another
striking example is given in Figure 6.18. It shows the convergence of the smallest
subspace angle on the half annulus region from Figure 6.6. While the subspace angle
converges smoothly the corresponding eigenvalue approximations first converge with a
faster rate but then start oscillating and stagnate. We cannot yet explain the speedup
of the eigenvalue convergence in these two examples. But the conclusion is that if we
are only interested in a certain accuracy of an eigenvalue approximation then often we

need fewer basis terms than predicted from our convergence theory for the subspace
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Figure 6.17: Comparison of the eigenvalue and subspace angle convergence on the
L-shaped region
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Figure 6.18: Comparison of the eigenvalue and subspace angle convergence on the
half annulus region.
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angle. Therefore, it is useful to look not only at the value of the subspace angle when
observing the convergence of the subspace angle method for growing N but also to
check the number of stable digits in the corresponding eigenvalue approximations,
which in some cases can be significantly higher than predicted by the value of the

subspace angle.



Chapter 7

A domain decomposition method
based on the GSVD

The Method of Particular Solutions is a global approximation method in the sense
that the basis functions in A(\) live in the whole region 2. With the right tools from
linear algebra this idea can be turned into a stable and rapidly converging method,
as we have seen in the previous chapters. We can prove exponential convergence for
regions with zero or one corner singularity and also obtain arbitrarily fast algebraic

rates for regions with more than one corner singularity.

An alternative to global approximation methods are domain decomposition methods
that use particular solutions in each subdomain. This idea was introduced by De-
scloux and Tolley in 1983 [18]. Their method converges exponentially in arbitrary
polygonal regions and also overcomes the ill-conditioning of the basis functions. In its
original form, the accuracy of their method was limited to the square root of machine
precision. Also, domain decomposition methods are more complicated to implement
than global approximation methods. The problem of the limited accuracy was solved
by Driscoll in 1997 [21], who computed the first 25 eigenmodes of the two isospec-
tral drums to 12 digits of accuracy with this method. Instead of minimizing the
smallest eigenvalue of a certain parameter-dependent eigenvalue problem Driscoll’s

improvement computes zeros of the derivative of an eigenvalue.

In this chapter we present a modification of the method of Descloux and Tolley based

on the minimization of a generalized singular value. This approach provides another

114
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solution of the square root of machine precision problem and has the additional ad-
vantages that it avoids computing L?-inner products and evaluating derivatives of
possibly ill-conditioned eigenvalues. Like that of Descloux and Tolley, our method is

easily adapted to planar regions other than polygons.

Descloux and Tolley used Taylor series estimates to show the exponential convergence
of their method. This has the disadvantage that it only works if an eigenfunction
can be expanded into a convergent Taylor series on each subdomain. Also, Taylor
series estimates only give optimal convergence rates on circles. We overcome these
problems by using Vekua's theory and analytic continuation to establish exponential
convergence rates. These estimates are asymptotically optimal and can be applied to

a larger class of regions than Taylor series estimates.

7.1 The method of Descloux and Tolley and its re-
formulation as a GSVD problem

Let €2 be a polygonal region. Assume that 2 is partitioned into subregions {2y, ..., €,
such that Q; N Q; = 0 for j # [ and 9Q; N IN either contains no corner or consists
of two straight arcs meeting at a corner of 9€2. An example of such a decomposition
is given in Figure 7.1 for the region described in Section 6.5. The internal boundary
082; N O between two subdomains ; and € is denoted by I';;. If I'j; consists of
only a finite number of points (as is for example the case for I'j3 in Figure 7.1) we
set I'j; := (). The number of nonempty internal boundary segments I';; is denoted by
n. In Figure 7.1 we have n = 4. Let 7/« be the interior angle of the corner of 052
intersecting with 0€2;. If 02, has no such corner we define a corner on 92N 902, with
interior angle m. Therefore, we can assume from now on that every boundary segment
0€); contains a corner of 9€2. Let z; be the position of this corner in 992;. Around
each corner z; we can approximate an eigenfunction wuy, of (1.1) with a Fourier-Bessel

series of the form
N;

fj,Nj (r,0) = Z agj)fj,Nj,i; (7.1)

i—1
with
fingi(r,0) = Jaji(\/Xr) sin 16,



CHAPTER 7. DOMAIN DECOMPOSITION GSVD 116

1 B 23
r34
0.8f
QS
0.6}
r
L 23
0.4 r12
0.2} Q Q,
Or Z z,

-04 -0.2 0 02 04 06 038 1

Figure 7.1: A domain decomposition for the method of Descloux and Tolley.

where the origin of the polar coordinates is z;. Outside Q; we define fingi(r,0) =0,
i =1,...,Nj; to restrict the support of f;n; to Q_J On the boundary segments of {2
adjacent to z, this expansion automatically satisfies the zero boundary conditions.
But we need to satisfy compatibility conditions on the internal boundary segements
I';i between €2; and €. Let I';; be a nonempty boundary segment. Then we need to

satisfy
fj,Nj (SC, y) = fl,Nl (I’, y)7 vfj,Nj (Q?, Z/) = Vfl,Nl (Z‘, y)

for (x,y) € T';'. Leta = (af,... ,a%f, . ,agp), . ,ag\]g) be the vector of all coefficients
from the Fourier-Bessel expansions (7.1) with length N := Ny + --- 4+ N,,. Each such

vector can be assigned a unique basis function from the space

./ZlN<)\) = {f c C2 (U QJ> : f’QJ = fj’N].} ,

j=1

Tt would be sufficient to demand that %f]‘wj (z,y) + %fj,N_j (x,y) =0 for (z,y) € T'j;, where

% is the outward normal derivative on ;. But since the effort of computing the normal derivative
J

is essentially the same as that of computing the full derivative we will work with the full derivative
as Descloux and Tolley did.
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of all particular solutions of the method of Descloux and Tolley (on the internal

boundary lines I';; we let f undefined). We define the two quadratic forms

Z(A\a) = Z/F fin, = fin? + IV fin, = V fun | ds
i

<l
P

Kva) = 3 / o [2d(z, ),
j=1"%%

where the dependence on A comes from the Fourier-Bessel expansions f; v, on A. Both
quadratic forms can be written as Z(\,a) = a’ I(A\)a and K()\,a) = a” K()\)a, where
I(\) € RY*N is symmetric positive semi-definite and K()\) € RMY is symmetric
positive definite. Therefore, the minimum of Z(\,a)/K(\,a) over all a € RY is the

smallest eigenvalue pi1(A) of the generalized eigenvalue problem
I0)2() = sVE (N2, (7.2

Descloux and Tolley did not use the formulation as a generalized eigenvalue problem.
By only evaluating /C(A, a) in a sector contained in each subdomain one can use the
same trick as in (5.10) and obtain a diagonal right-hand side matrix K(\) whose
diagonal elements are explicitly known. Therefore, it is easy to reduce (7.2) to the
standard eigenvalue problem K~Y2IK~Y2y()\) = p1(N)y()\). While the formulation
as a generalized eigenvalue problem has the disadvantage that the two matrices 1(\)
and K (\) can have a common numerical null-space caused by linear dependencies of
the basis functions on each subdomain, this problem is avoided in the formulation as

a standard eigenvalue problem.

As in the method of Barnett, the problem with (7.2) is that a squaring is involved,
which leads to a loss of accuracy. This effect was analyzed by Driscoll in [21]. Fol-
lowing an idea of Vavasis he repaired the method of Descloux and Tolley by finding
the zero of the derivative () instead of minimizing the locally quadratic function
w1 (A). By differentiating (7.2) with respect to A and multiplying on the left by z(\)

one obtains
z(AN)(I'(A) = p(N)KE'(N)z(N)

(M)TE Nz ()
Since /(M) behaves linearly around a zero of p(\), the accuracy of solving u/(\) = 0

1A =

is comparable to the accuracy to which the values p/(\) can be determined. With this
modified algorithm Driscoll computed the first 25 eigenvalues of the GWW-isospectral
drums to 12 digits of accuracy. The disadvantage of this approach is that in addition
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to the value p(\) we have to compute its derivative /(). Furthermore, we are still

working with eigenvalue formulations, which can be ill-conditioned.

We have found that a solution of this problem problem is to reformulate (7.2) as a

generalized singular value problem. We need the semi-norm

N

11l = (Z . i 6) = i + 19 5, —sz,Nl<s>|2ds>

g<li

and the norm

1fllg = (Z/ |fj7N,-(:v,y)|2dwdy> = (lefjvzvjll?zj>
puriviel j=1

for f € Anx(\). These are just the square roots of the quadratic forms Z and K. The
semi-norm || - ||r is well defined since although f is not defined on I';; the restriction
fin; of f to the subdomain €2; is defined on I';;. Now let

o(A):= min M (7.3)
ue Ao} [[ullg

As in Section 3.5 we can discretize {2 and I'j; to turn (7.3) into a generalized singular
value problem. Only the matrices will be slightly more complicated because of the
structure of the norms used here. We discretize each I';; by points z(]) eIy, k=
1,...,Mj; and each subdomain §2; by points zt(]) €y, t=1,...,L;. Therefore, we
have M = .
subdomains and L = Z§=1 L; discretization points in the union of all subdomains.
We now define the matrix A;(\) € R34V as

=[]

M, discretrization points on the interior boundaries between the

where each row of F'()) is associated with one internal boundary collocation point zil

on I'j; and defined as

il il
[fl,Nl,l(Zi)’"'7f1N1,N1(Zk) ">fj ( ) "'7fj,Nj»Nj(Zi)?
) _fl,N[,l(Zk )7 ey _fl,Nl,Nl(Zil)a .. ]
Since we restricted the support of a Fourier-Bessel basis function fn, 5 to Q, all

elements of the row which are not associated with basis functions in §2; or €); are

zero. The matrix VF' is defined as
OF
oz
oF | *

Oy

VFE =
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Hence, each boundary collocation point zil is assigned to two rows in VF. One row
consists of the partial derivatives in the z-direction of the basis functions evaluated
at zil and the other row consists of the corresponding derivatives in the y-direction
evaluated at zil, where the derivatives belonging to basis functions in €2, are as in the
definition of F multiplied by —1. Again, we set all elements in the rows associated
with zil that do not belong to basis functions in €2; or {); to zero. Furthermore, we

define a matrix As(\) as
G
Gp
where the ith column of G is the basis function f; x, ; evaluated at the points Et(j) €
Q;,t=1,...,L;. The definition of () in (7.3) now becomes

R . [ A1 (N)z]]2
6(A)= min —F—-
W= i) T4l

and d(\) is just the smallest generalized singular value of the pencil {A;()\), Ay(A\)}.

As an example, let us do this for the region €2 shown in Figure 7.1 with the decompo-
sition into four subdomains given there. Figure 7.2 shows the value 6(\) for various
values of A\. In each subdomain we used 10 Fourier-Bessel basis functions. All non-
empty interior boundary lines I';; were discretized with 50 equally spaced points and
each subdomain €); was discretized with 20 random interior points. The curve has

two minima pointing to the first two eigenvalues.

In this example we used a division into four subdomains. But €2 only has two sin-
gular corners at z; and z4. Therefore, we could attempt to only divide €2 into two
subdomains such that each of the subdomains has one singular corner. For example,
let €2 be subdivided by the straight line formed by I'y3 and I'y4. Then we need to
additionally impose the condition that the norm of the approximate eigenfunctions
is be minimized on the line from 2z, to z3. But this is easily accomplished similarly
to the subspace angle method by discretizing the boundary line from z, to z3 with
collocation points and including in the matrix A;(A) two blocks which consist of the
basis functions around z; and z; evaluated at these additional boundary collocation
points. Figure 7.3 shows the value 6(\;) for a growing number N of Fourier-Bessel
basis functions in each subdomain, where \; ~ 48.4161682676614 is the first eigen-

value of (1.1) on Q. In the case of two subdomains we have an accuracy close to
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Figure 7.2: The domain decomposition GSVD method on a quadrilateral with 2
singular corners.
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Figure 7.3: Comparison of the convergence of (\;) for a growing number N of basis
functions in each subdomain in the cases of division into two subdomains and four
subdomains.
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machine precision after N = 40 steps, while in the case of four subdomains we have
an accuracy of only 107 at N = 40. The reason for this slow convergence in the case
of four subdomains is that the singularity of the eigenfunction at z4 is very close €23
slowing down the convergence there. Hence, in the case of four subdomains not only

do we need more basis functions but the convergence rate is slower.

A striking feature of both curves is that in contrast to global approximations whose
convergence on this region was discussed in Section 6.5, we seem to observe exponen-
tial convergence. In the next section we prove that the domain decomposition method
indeed converges exponentially and compute the asymptotic rate for the solid curve

in Figure 7.3.

7.2 Exponential convergence of the domain decom-
position method

Based on Taylor series estimates Descloux and Tolley proved exponential convergence
of their domain decomposition method. However, their estimates have two (related)
disadvantages. First, we need to guarantee that the subdomains are chosen such that
the eigenfunction has a convergent Taylor series on each subdomain. Second, Taylor
series estimates only deliver the true asymptotic convergence on circles. For other
regions Taylor polynomials are not optimal and therefore do not deliver good bounds
for the asymptotic convergence rate. The results in this section are illustrated for
the region 2 from Figure 7.1 using a subdivision into two subdomains with internal
boundary I' :=I'15 UI'14. Let us denote by Ql the subdomain below I' and by Qg the
subdomain above I'. Since with only two subdomains we also have to minimize the
error of the approximate eigenfunctions on the right boundary segment from z5 to 23,

we introduce a slightly different quadratic form Z(),a) defined as

T0a) = 3 [ 15006 = fi O + 9 Fim (5) = Vg ()

J<l
p

w3 [ A opas
; oono,

If the domain decomposition of Descloux and Tolley is used, the last sum of f()\, a)

is always zero and we have Z(\,a) = Z(\,a). Therefore, this slightly more general
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approach includes the original method of Descloux and Tolley as a special case. For

each A the method computes in the non-sampled case
Y2\, a)
A) = in ———".

o) = i 0 a)

Let (A, uz) be an eigenpair of (1.1) on Q. We can estimate Z()\, a) as

T0wa) = 3 [ 1 (9) = o) + [V i (5) = Vg (9

J<l
p

[ A oPds
; oonon,

Y [Hfj,Nj —uplr, + lue — fin o, + IV fin, = Vurlior,

j<l

p
IV = Vi) + G Y 1w — il p0ron,
j=1

IA

< O IVEHN, = Vulor, + IV fin, = Vel p,
i<l
p
+ Gy N = fim, (7.4)
j=1

where C4, (s, C3 > 0 are constants which depend on 2. Hence, we need to estimate
the rate of convergence of the functions f;n, to uy restricted to Q_j and the rate of
convergence of the derivatives of f; y; to the derivatives of u;, on the internal boundary
lines I'j;. Take for example the subdomain Q, from the region in Figure 7.2. The only
singularity of wuy in Q_l is at z; = 0. Let ¢ be the holomorphic function associated
with wuy such that uy = Re{V[¢y; 21]}. From Lemma 6.4.1 it follows that

[ee)
or(z) = Zickz 5. ¢, €R
k=1
close to z;, and using Lemma 6.4.2, we know that the function ¢(w) := ¢p(2) for

w = 2z is holomorphic in a neighborhood around z;. Therefore, ggk is holomorphic on

Qf/g’. We can now proceed exactly as in the example of the Li-shaped region in Section

6.4. The two closest singularities to Ql in the conformal sense are z; and the point

! 2
Zl - tan%w

uy at the boundary line connecting 25 and z3. Since we only use Fourier-Bessel sine

+ 0.6. The singularity at z] is obtained by reflection of the eigenfunction

functions we have to reflect the region Qf/?’ across the real line before computing the
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mapping to the exterior of the unit disk. The conformal distances of zi/:)’ and 218/3
to this reflected region are then approximately given as 2.82 and 5.34. Therefore, we

obtain

min g —uf 5 = 0(2827M),
ueAn (Ag) oo

if Ny is the number of Fourier-Bessel basis terms in (. Similarly, for approximating
with Fourier-Bessel functions around z4 in the region Qz we obtain

min g — ul_ = = O(186%),
u€AN (Ag) 00,352

where the conformally closest singularity is 2 = ﬁ +0.6, which is the image of the
3

singularity at z4 under reflection of u; at the boundary line from 25 to z3. Combining

these results we obtain

min fJug — ull g = O(1.86°7)
ueAn (A1) ’

if N := N; = N,. On arbitrary polygonal regions we obtain similarly the following

result.

Lemma 7.2.1 There exist numbers R; > 1, j =1,...,p and functions uy € A(\y)

such that for their restrictions UN|Qj = fj.n; to §; it holds that

_N;

Hfj,Nj - uk”oo,(TJ = O(R] ])

as N; — oo.

Proof The proof proceeds exactly as in the example given above. It is only essential
that uy has at most one corner singularity in each subdomain Q_j, which is guaranteed

by the domain decomposition. |

It is now left to estimate the convergence of the derivatives of the Fourier-Bessel basis
functions to Vuy on the internal boundary line I'. We need the following technical

lemma.

Lemma 7.2.2 Let {fN)} be a sequence of real analytic functions defined in the in-

terval I := [a,b] and having a holomorphic continuation to the region Q@ C C. If

| f M sos = O(R™N) for N — oo then || f'™) || = O((R — 6)~N) for every 6 > 0.
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Proof Fix § > 0. Then there exists a neighborhood S of I in 2 such that || fV)||0.s =
O((R—6)™") for N — 00.2 Now choose € > 0 such that K. :={z: |z —x¢| =¢, 2 €
C} c S for all g € I. Then

) 1 JFM(e
f(N)(g;O) = 5= /K ﬁdf

for zg € I. It follows that
1
|/ ()] < ng(N)Hoo,s =O((R—0)™")

and therefore
1F ™o,y = O((R = 6)~) (7.5)

for every 6 > 0. |}

We are now able to estimate the expression ||V f;n, — Vu,lloor,- By Lemma 7.2.1
there exists a sequence a¥) € RV and associated basis functions finy, J=1,...,p,
N =37"_| Nj such that

1 fin; — wklloo,r;, = O(R; )

forall j =1,...,p. Now fix 6; > 0. Then there exists a region D such that I';; C D

and

I fi.v; = tklloo.p = O((R; = 61)7™7).
Let (xo,40) € I'j; and define iy, (z) = fjn,(z,%0) — ux(7,0) in a small interval
I =[xy —€,29 + €| for an € > 0 such that I X yo € D. From Theorem 6.1.2 it
follows that 4y, can be continued to a holomorphic function in a neighborhood of I

independent of N;. We can now use Lemma 7.2.2 and find that for every d, > 0
[y, loo.r = O((R; — 61 — 65) ™),
which implies that

— O((B; = )™™)

0 0
’a—xfj,Nj (z0,%0) — a—xuk(xo,yo)
for 6 = 61 + d2. Similarly, we obtain

= O((R; = 0)™).

0 0
‘a—yfj,Nj (70, %0) — a_yuk(x()ayO)

2In the case of polynomial approximation this is called overconvergence, the effect that approxi-
mations to analytic functions in a region € also converge in a neighborhood of € if the function is
analytic there (see [84], §4.6-4.7).



CHAPTER 7. DOMAIN DECOMPOSITION GSVD 125
Since (z9,yo) was chosen arbitrarily on I';; we find

IV fin; = Vglloor, = O((R —0)~")

for every 0 > 0. Combining this result with (7.4) yields

I a' ZO M) (7.6)

for every 6 > 0 and N; — oo. R, is the exponential rate of convergence of ap-
proximating u; on the subdomain ;. If Ny = --- = N, =: N and R = min; I2;,
then

T, a®V) = O((R — §)2M).

Let us now estimate IC(Ag, a™). Assume that ||ug||q = 1. Then

p
Kk a™) = > w113,
j=1

p
2
> > (lwlle, = I1fin, — wlle,]
j=1
P 2
> 3 [lulle, = Cll i, — wrllocs |
j=1
P N2 p
> 3 [lualle, = O™ = D lhuell, =1 (7.7)
j=1

1

J

for a constant C' > 0 which depends on €. Combining all results we obtain the
following theorem which establishes exponential convergence rates for the domain

decomposition method.

Theorem 7.2.3 Let (A, uy) be an eigenpair of (1.1) with ||ug|lo = 1. Then

min ———= O((
a€RN IC Z )
for every 6 > 0 and N; — oo, j = 1,...,p. The numbers R; are the exponential

convergence rates from Lemma 7.2.1 for approximating u, on Q_J with functions in

An(\).
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Proof Let 0 < € < 1. From (7.7) it follows that there exists Ny such that (), (™) >
1 —efor N; > Ny, j=1,...,p. Together with (7.6) we find

min 2w, a)
a€ERN IC()\k, CL)

for Nj — o0, j=1,....,p. |

For our example domain ) of Figure 7.1 we computed the rates of convergence R;
and Ry on the two subdomains Ql and QQ in this section. They were R ~ 2.82 and
Ry =~ 1.86. If we use the same number N of Fourier-Bessel basis functions on both

subdomains it follows from Theorem 7.2.3 that

F1/2
o(A) = min (A, a)

———— = 1.86)™).
ack2N IC1/2( )\, a) O((1.86)"")

Figure 7.4 shows the measured convergence of
d(A) = o(N)

for a growing number of basis functions. This time we did not use the fixed value
A = A\ but the minimum of the curve of 6(\). The dotted line is the convergence
behavior of the position A of the minimum of the curve to the first eigenvalue A\; and
the dashed line is the estimated rate 1.86=". In this plot we used the same number N
of basis functions on Ql and Qg. But the rate of convergence on Ql is approximately
2.827N and on ) it is 1.867N. To balance these different convergence rates we can
use different numbers of basis functions on the two subdomains as in Section 6.5. We
want to achieve 2.82°M = 1.86"™2 which results in 22 = 196282 1 67 Therefore,

N1 log 1.86
it is more suitable to use 3NN basis functions on {25 and 2N basis functions on €2;.

The resulting convergence curve is plotted in Figure 7.5. The curve for 6()\) reaches
its minimum in Figure 7.5 at N = 13, which corresponds to 65 Fourier-Bessel basis
functions, while the minimum in Figure 7.4 is reached at N = 38 corresponding to

76 basis functions.

Let us compare the convergence rates computed in this chapter with the convergence

estimates of Descloux and Tolley. The radius p; of Ql is

p1 = max |z — 21| ~ 0.87,
zefh
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Figure 7.4: Comparison of estimated and measured convergence for the domain de-

composition method
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Figure 7.5: Convergence of the domain decomposition method with 2V basis functions
on 2y and 3N basis functions on 5.
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while the closest singularity is z4, with |z4] ~ 1.08. Using Taylor series estimates as
Descloux and Tolley did we find (li—‘l“)g/g’ ~ 1.78 for the exponential rate of convergence
on €y, while we computed an exponential rate of R; ~ 2.82 on this subdomain.
Similarly, Taylor series estimates deliver an exponential rate of 1.05 compared to our
computed value of 1.86 on Q. Hence, by just using Taylor series estimates we obtain
a convergence estimate that does not have anything to do with the true convergence
behavior, while our value comes close to the slope of the observed curve in Figure 7.4

and is asymptotically correct for N — oc.

When is it preferable to use a domain decomposition method and when should we use
global approximations as in the subspace angle method? The obvious advantage of a
method based on global approximations is its lower programming effort. Furthermore,
using a bad domain decomposition can considerably slow down the convergence, as
shown in Figure 7.3. But finding an optimal domain decomposition is a nontrivial
task, if possible at all. In Section 6.5 we needed at least 71 basis functions to ob-
tain a smallest generalized singular value close to machine precision. In the domain
decomposition method presented here this was achieved by using 65 basis functions
(the case N = 13 in Figure 7.5). However, in the domain decomposition method we
also have to compute derivatives of the basis functions, resulting in an overall higher
computational effort. The theoretical advantage of domain decomposition methods is
that they converge exponentially on polygonal regions. But as shown in the example
presented here, this does not necessarily mean that the computational effort is lower

to obtain an accuracy close to machine precision.

The picture looks different for multiply connected regions. Consider the region ()
shown in Figure 7.6. This region has four singular corners with interior angles 37
Fourier-Bessel functions to capture these singularities are of the form J%ﬁk(\/Xr) sin %’Tk‘@,
resulting in branch lines that always intersect the region. Therefore, we cannot use
global basis functions that are adapted to the singularities. However, by using a
domain decomposition, we can divide €2 into four simply connected subdomains, on
which it is possible to use basis functions that are adapted to the singularities, mak-
ing accurate eigenvalue computations possible. In Chapter 8 we compute some of the
eigenvalues and eigenfunctions of the region in Figure 7.6 using the domain decom-

position GSVD method.

Another application where domain decomposition methods are of advantage is if
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Figure 7.6: A multiply connected region with four singular corners.

we have several subdomains which are only weakly linked and we have additional
information about the eigenfunctions in each subdomain. Then this approach can be

used to quickly find good approximations for eigenfunctions in the whole region.



Chapter 8

Examples of computed eigenvalues
and eigenfunctions

In this chapter we present accurate computations of eigenvectors and eigenfunctions
of several different regions. Most of the examples are computed with the subspace
angle method as described in Chapter 3. If we use a different approach like the domain
decomposition GSVD we state it in the corresponding section. For each eigenfunction
we print all digits that we believe to be correct. The plotted eigenfunctions are
normalized such that their maximum absolute value is one and we always plot black
level curves which go from —0.9 to 0.9 in steps of 0.2. Further examples including

unbounded regions can be found in [75]. Section 8.5 was also published in [14].

8.1 The L-shaped region

The L-shaped region was the central example in the paper by Fox, Henrici and Moler
in 1967. At the end of the 1970’s Moler used it to demonstrate the power of his new
computer numerical system MATLAB. Also, every numerical analyst will have seen
the MATLAB logo, which is a variant of the first eigenfunction of the L.-shaped region.
After using this famous region in all chapters of the thesis we finally want to show
some of its eigenfunctions computed with the subspace angle method. In Figure 8.1
we show six eigenfunctions of the L.-shaped region. The 3rd and the 104th eigenvalue

are special. They are also eigenvalues of the unit square and have the exact values

130
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A3 = 272 and A\jgx = 5072, The 104th eigenvalue is especially interesting as it is a

triple degeneracy, i.e. Ajg3 = A1o4 = A105. This comes from the fact that
50=5+5=1+7=7+1°

and therefore there exist three linearly independent eigenfunctions sin(57x) sin(5my),
sin(mx) sin(77x), and sin(77x) sin(7y). The numbers of the eigenvalues are obtained
by counting the minima of the subspace angle curve. To count multiple eigenvalues
correctly we also need the higher subspace angles from Definiton 3.2. The idea is that
if we have a double eigenvalue the smallest and the second smallest subspace angle
will go to zero since we have a two-dimensional eigenspace and therefore also a two-
dimensional intersection between A(\) and Dy. In Figure 8.2 some higher subspace
angle curves around the value A = 5072 are plotted. At the triple degeneracy the

curves for the smallest three subspace angles go to zero.

8.2 The circular L region

Let us now have a look at a slight variation of the L-shaped region. Instead of
the reentrant corner we have a quarter circle of radius one. The asymptotic rate of
convergence of the MPS on this region was computed in Section 6.3. Figure 8.3 shows
some of the eigenvalues and eigenfunctions of this region. As far as we are aware of

there are no degenerate eigenvalues any longer on this region.

8.3 Symmetric and unsymmetric dumbbells

In this section we compare the eigenvalues and eigenfunctions of two dumbbell shapes
shown in Figure 8.4. The left dumbbell consists of two squares of side length 7 which
are coupled by a bridge of length and width 7. In the unsymmetric dumbbell the
side length of the right square is reduced from 7 to 0.97. Let us first discuss the
symmetric dumbbell. Without the connecting bridge the region would consist of two

squares, each with eigenvalues

4% 0,5 =1,2,....
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Figure 8.1: Some eigenfunctions of the L.-shaped region.
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Figure 8.2: Sines s1()\), ..., s4(A) of the subspace angles 01 (), ..., 04(\) between A(\)
and D for the L-shaped region. At A\ = 5072 there is a triple degeneracy.

Hence, the eigenvalues of the two unconnected squares are
2,2,5,5,5,5,8,8,10,10,10,10,....

By introducing the connection between the squares we obtain a simply connected
region with lower eigenvalues and with broken degeneracies. But we can expect that
the first eigenvalues of the connected region will be close to the first eigenvalues of
the two unconnected squares. Some of the eigenfunctions of the symmetric dumbbell

are plotted in Figure 8.5.

If we break the symmetry the eigenfunctions will change dramatically. Assume that
the bridge between the squares at the unsymmetric dumbbell does not exist. Then
the eigenvalues of the left square are different from the eigenvalues of the right square.
Hence, an eigenfunction of the region consisting of both squares is always zero on one
of the squares. If we introduce the connection between the two squares we can expect
that for example the first eigenfunction on this region will be small in the right square
since without the bridge it would be zero there. Correspondingly the eigenfunction
belonging to the second eigenvalue will be small on the left square. Hence, the
eigenfunctions belonging to smaller eigenvalues become localized due to the small
perturbation that destroys the symmetry of the dumbbell. Only for higher eigenvalues

can we expect global eigenfunctions to occur since then the local wavelength of an
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A,=7.02025391131 1,=13.7865850133

1,=18.101759822 1,=25.224874085

A5,=225.46200 A y00=436.51095

Figure 8.3: Some eigenfunctions of the circular L region.
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Figure 8.4: A symmetric and a nonsymmetric dumbbell region.

eigenfunction becomes smaller than the width of the bridge. Some eigenfunctions of

the unsymmetric dumbbell are plotted in Figure 8.6.

Figure 8.7 compares the subspace angle curves for the symmetric and the nonsym-
metric dumbbell. The blue and the green curve for the smallest and second smallest
subspace angle are almost identical since smaller eigenvalues are clustered in pairs.
Close to A = 5 all four subspace angle curves become small, indicating a cluster of
four eigenvalues. In the unsymmetric curve the eigenvalues are more separated and
we can observe some interesting features of the subspace angle curves. Consider for
example the first two eigenvalues. The blue curve for the smallest subspace angle
has minima close to these eigenvalues. But between them the blue curve goes up
again and almost crosses the green curve belonging to the second smallest subspace
angle. In the figure it seems that the curves even cross. Only by zooming into the
graph does it become visible that the blue and the green curve come close between
A = 2 and A = 3 but avoid each other. These avoided crossings were investigated
by Barnett in [8]. It is interesting to look at the approximate eigenfunctions be-
longing to the smallest and the second smallest subspace angle before and after the
avoided crossing. This is shown in Figure 8.8 and 8.9. The left plot of Figure 8.8
shows the approximate eigenfunction corresponding to the smallest subspace angle at
A = 2.1, just before the avoided crossing, while the right plot shows the approximate
eigenfunction corresponding to the second smallest subspace angle at this value of \.
Figure 8.9 shows the same functions but now for the value A\ = 2.2, which is after
the avoided crossing. Before the avoided crossing occurs the function associated with
the smallest subspace angle looks like the first eigenfunction on this region while af-
ter the avoided crossing it looks like the second eigenfunction. The second smallest
subspace angle shows just the opposite behavior. Thus we see that the most rapid
change in the approximate eigenfunctions appears at the avoided crossings and fur-
thermore, the functions associated with higher subspace angles are approximations

to the eigenfunctions of neighboring eigenvalues.
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A5, =39.634544

Figure 8.5: Some eigenfunctions of the symmetric dumbbell. The first eigenvalues
are close to those of the square with side length .
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1,=1.9582193 1,=2.4050102

A5,=40.900767 A14,=80.003552

Figure 8.6: Some eigenfunctions of the nonsymmetric dumbbell. The first eigenvalues
are localized. But also for some higher eigenvalues localization can occur at the
corresponding eigenfunctions.
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Symmetric Dumbbell
Nonsymmetric Dumbbell

Figure 8.7: Subspace angle curves for the symmetric and the nonsymmetric dumbbell.
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Figure 8.8: Approximate eigenfunctions corresponding to the smallest (left) and sec-
ond smallest (right) subspace angle at the value A = 2.1 before the avoided crossing

occurs.

Y

-

Figure 8.9: The same plot as in Figure 8.9 but now for the case A\ = 2.2, after the

avoided crossing.
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8.4 The GWW isospectral drums

In 1966 Kac |41] asked the famous question “Can one hear the shape of a drum?”.
This question asks if there exist two distinct regions which have the same spectrum.
A beautiful survey of this question was given by Protter in 1987 [60]. But the answer
was first found by Gordon, Webb and Wolpert in 1992 [32| and it is no, one cannot
hear the shape of a drum. Two of the simplest isospectral regions which they found
are the GWW isospectral drums. However, the proof of isospectrality does not give
the eigenvalues. Highly accurate computations of the eigenvalues were first done by
Driscoll in 1997 |21]. He used a modification of the domain decomposition method
by Descloux and Tolley (see Chapter 7 for an introduction) to compute the first 25
eigenvalues of the GWW isospectral drums to 12 digits of accuracy. In Figure 8.10 we
present some of the eigenvalues of the isospectral drums computed with the subspace
angle method, showing that our method is at least as accurate as that of Descloux,

Tolley and Driscoll.

8.5 Eigenvalue avoidance

The phenomenon of eigenvalue avoidance is linked to the question of how likely it is
that a given operator has multiple eigenvalues. In 1929 von Neumann and Wigner
[83] showed that the set of real symmetric N x N matrices with multiple eigenvalues
has codimension 2, which means that this set has two degrees of freedom less than
the set of all symmetric matrices and is therefore unlikely to be encountered by
chance. Let us look at the family of matrices F(t) := A + tB, where A and B
are real symmetric N x N matrices and ¢ is a real parameter. If A and B are
randomly chosen the eigenvalues A\y(t),k = 1,..., N of F(t) might come very close
to each other. But they will probably not intersect since we only have one degree
of freedom t but two conditions for a multiple eigenvalue. This eigenvalue avoidance
phenomenon is beautifully explained by Peter Lax in his textbook Linear Algebra [46],
and illustrated by a picture on the cover. Eigenvalue avoidance is not only observed
for finite dimensional operators. Uhlenbeck in 1976 |76] and Teytel in 1999 [73]

showed that these results can be generalized to certain classes of selfadjoint operators
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Figure 8.10: Some eigenfunctions of the GWW isospectral drums. Both regions have

the same spectrum.
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eigenvalue

Figure 8.11: Eigenvalue curves for a parameter-dependent rectangle. At L = 1 the
second and third eigenvalues intersect. Eigenvalue crossings for some higher eigenval-
ues are also visible.

acting on Hilbert spaces. A beautiful analysis of eigenvalue crossings on triangles was
published in 1984 by Berry and Wilkinson [13].

In this section we want to make this phenomenon visible using the subspace angle
method. Consider a rectangle with side lengths L and 1/L. If we let L take values
from 0.5 to 2 then for L = 1 we obtain a square and the shapes for L = 0.5 and L = 2
are identical. Hence, for the eigenvalues \¢(L) on this region we have \;(0.5) = A\x(2).
At L = 1 the second and third eigenvalue cross since on a square we have \y = As.
The eigenvalue curves A\ (L) for the first eigenvalues on this region are shown in Figure
8.11. Now assume that we perturb the shape slightly, i.e. the new shape is defined
by the four points 0, L, L —p+i/L, i/L, where p > 0 is a small perturbation. Then,
as in the finite dimensional case, we cannot expect eigenvalue crossings to occur any
more. The eigenvalues might still come close but they will not intersect. For the
value p = 0.2 this is shown in Figure 8.12. All eigenvalue crossings have disappeared.

It seems that the eigenvalues avoid each other.

If we decrease p further then Ay(1) and A3(1) will come closer and eventually be
equal for p = 0. How small can we make p and still numerically detect that these

two eigenvalues are distinct? This is a good test for the accuracy of the subspace
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Figure 8.12: Eigenvalue curves for a perturbed parameter-dependent rectangle. All
eigenvalue crossings have disappeared. The eigenvalues avoid each other.

angle method. Figure 8.13 shows the subspace angle curve close to 572 (the second
eigenvalue on the unperturbed square) for p = 107'3 and L = 1. The curve has two
minima pointing to the two different eigenvalues A\ and A3 on the perturbed region.
Since the subspace angle is of the order of magnitude of 1074, we can assume that
the minima are within a relative error of roughly 1074 the correct eigenvalues. The
curve in Figure 8.13 is also another nice example for the perturbation results derived
in Chapter 4 for the subspace angle method. Due to ill-conditioning in the basis the
curve shows oscillations which become smaller as we approach the minima making
it possible to detect the eigenvalues to high accuracy and therefore to distinguish A,

and )3 even for the small perturbation p = 10713.

8.6 A region with a hole

Until now we have always considered simply connected regions. In this section we
want to give our first example of a multiply connected region. It is an annulus, in
which the outer and the inner circle have different centers. The inner circle has radius
0.5 and center at 0. The outer circle has radius 1 and center at 0.4. As basis functions

we use linear combinations of Fourier-Bessel functions of the first and of the second
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Figure 8.13: The subspace angle curve for a slightly perturbed unit square. Although
the perturbation p has the value 10713 two distinct eigenvalues are recognizable.

kind in the form

N N
Z Vi (V) <A§/N) cos kf + B;N) sin k@) + Z T (V) (ASN) cos kf + BEN) sin k@) :
k=0 k=0

(8.1)

The idea is that this is analogous to approximating a holomorphic function in an
annulus with a Laurent series. This approach can also be justified from the fact that
every solution of —Awu = Au in a circular annulus Ry < |z| < Ry can be expanded in
a series of the form (8.1) with N — oo (see [80], §22). Figure 8.14 shows some of the

eigenvalues of the annulus region.

The subspace angle method can also do regions with several holes. Such a region is
shown in Figure 8.15. The inner circle is of radius 1 and the outer circle is of radius
2. In the upper plot the small holes are of radius 0.4, while in the lower plot the
radius of the right small hole is reduced to 0.3. The eigenfunctions are approximated
by linear combinations of Fourier-Bessel functions of the first and second kind around
the big center hole together with Fourier-Bessel functions of the second kind around
the small holes. Similarly to the example of the dumbbell we can see localization

effects of the eigenfunctions if the symmetry is broken.
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1,=15.318633901022 1,=23.177576852935

A5, =340.64138020913 A0,=624.94625449594

Figure 8.14: Some eigenfunctions of a circle with a hole. An interesting localization
effect is visible in the eigenfunction of Aiqp.
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A,=13.24425

Figure 8.15: Eigenfunctions on a circular region with five holes. As in the example
of the dumbbell the breaking of symmetry leads to localization.
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8.7 A square with a square shaped hole

While in the previous section the holes in the region did not have singular corners, we
now consider a square with a square shaped hole. The inner boundary is a square with
side length one and lower left corner at zero while the outer boundary is a square with

side length three and lower left corner at —0.5 — 0.5¢. The four inner corners of the

3
2

compute the eigenvalues and eigenfunctions by cutting the region along its symmetry

region are singular with interior angle s7. The outer corners are regular. We could
axis in two halves to obtain two simply connected regions. The odd modes are then
obtained by computing the eigenvalues on the half region with zero Dirichlet boundary
conditions and the even modes are obtained by computing the eigenvalues of the half
region with zero Neumann conditions along the symmetry axis and zero Dirichlet
boundary conditions on the other sides. But by slightly changing the position of the
inner square the symmetry would be lost and this would not be possible any longer.
Therefore, we directly use the domain decomposition GSVD method to compute the
eigenvalues and eigenfunctions on the whole region. This can be done by dividing the
region into four subdomains, each of which contains one singular corner. Figure 8.16
shows some eigenfunctions of the region computed with the domain decomposition
GSVD. To obtain the first 7 digits of the presented eigenvalues around 40 basis
functions are needed at each singular corner. The corresponding smallest generalized
singular value is of the magnitude 1072 which shows a squared convergence effect
for the eigenvalue on this region. The exponential convergence rate is relatively slow

since the eigenfunctions have singularities inside the inner square.
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1,=8.713789 1,=13.013411

A5, =94.38700 A100=181.2349

Figure 8.16: Some eigenfunctions on the square with a square-shaped hole. Only for
eigenfunctions belonging to higher eigenvalues is the local wavelength small enough
to fully penetrate the lower left part of the region.



Chapter 9

Conclusions

This chapter summarizes the contributions of this thesis and gives an outlook to
further research questions in numerical linear algebra, approximation theory and for

further applications.

9.1 Numerical linear algebra

The first chapters of this thesis were concerned with how tools from linear algebra
can be applied to the MPS in order to obtain a stable and accurate algorithm. The
original MPS of Fox, Henrici and Moler used the determinant of square matrices
containing the basis functions evaluated at boundary collocation points to determine
an eigenvalue. In Chapter 2 we showed that this approach generally fails on more
complicated regions. The method gets somewhat better behaved if one chooses many
more boundary collocation points than there are basis functions [54]. In terms of
numerical linear algebra this means going away from determinants of square matri-
ces to singular values of rectangular matrices. But as we showed in Chapter 2 the
fundamental problem of spurious solutions remains. We need a method which also
uses information about the approximate eigenfunctions in the interior of the region.
Two such approaches are the PWDM by Heller and Barnett’s method. But while the
first one only partially solves the stability problems of the MPS the latter one is only
accurate up to O(y/€nacr) and explicitly has to deal with the ill-conditioning in the

basis functions as we showed in Section 4.6.

149
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Based on principal angles between subspaces we developed a stable and accurate
method in Chapter 3. The principal idea was to introduce additional interior points
and to minimize a certain angle between two subspaces. We then showed that
this is equivalent to minimizing the smallest generalized singular value of the pencil
{Ap(X\), Ar(N\)}. Hence, the MPS becomes stable by going over from singular value

computations to generalized singular values.

We also showed that Barnett’s approach can be interpreted as solving the generalized

eigenvalue problem
Ap(N)T Ap(Nz(A) = p(A\) AN Ar(N),

which is just a squared formulation of our method. In Section 4.6 we compared
the GSVD approach with the formulation as generalized eigenvalue problem and
showed that the GSVD is a more stable and accurate tool for the MPS. Again it
is advantageous to use a tool for rectangular matrices (GSVD) rather than one for

square matrices (generalized eigenvalues).

The GSVD and other algorithms that work on rectangular matrices are still less
developed than square matrix methods. While there is a variety of methods for large
structured eigenvalue and generalized eigenvalue problems, we are only aware of two
methods for the GSVD of large and structured problems [39, 87|. Such methods
would especially be useful for the domain decomposition GSVD approach proposed
in Chapter 7.

B
conditioned has not yet been very much explored in the literature. In most articles

about the GSVD it is assumed that Y is well-conditioned. In this thesis we showed

Also the stability of the GSVD for matrix pencils {A, B} such that ¥ = [A} is ill-

that the GSVD can also deliver meaningful results for heavily ill-conditioned prob-
lems. Since ill-conditioned bases appear in a variety of applications further research

of the GSVD in such situations can lead to new robust algorithms.

Another question is that of the resolvent and pseudospectra for the Method of Par-
ticular Solutions. Figure 9.1 shows an extension of Figure 3.2 into the complex
plane by taking complex values for A\. This raises the question of how subspace

angles are connected to pseudospectra and the resolvent norm of the Laplacian. Let
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30

Figure 9.1: Extension of Figure 3.2 to the complex plane. The plot shows the level
curves |sq(A)| = 0.0.5,0.1,0.15, ... for the L-shaped region.

r(A) := (M + A)~! be the resolvent function of the Laplacian. The resolvent norm is
defined as

[r(M == sup |Ir(Mullo.
u€L?(Q)
llullo=1

For the MPS we can define a similar function using the cotangent of the subspace
angle between A()\) (here A(X) is the space of all possible particular solutions as
defined in (1.2)) and Dy. Then

cotO(A) = sup |ulq.
u€A(N)
l[ullo=1
Both functions, the resolvent and cot §(\), have poles at the eigenvalues. Finding
a meaningful connection between both would also lead to a meaningful connection
between subspace angles and pseudospectra. Although the Laplacian is a selfadjoint
operator and therefore its pseudospectra are simply disks around the eigenvalues, a

connection to subspace angles could lead to interesting new insights.

An example is the method of Vergini and Saraceno (see [82] or the introduction in the
thesis of Barnett [6]). It solves a generalized eigenvalue problem that depends on the
parameter A\ and computes from the generalized eigenvalues approximate distances to
the eigenvalues of (1.1) closest to A. The advantage is that only one matrix decom-
position is necessary to obtain approximations for several eigenvalues of (1.1). Also
the resolvent norm is a distance computation since for the Laplacian ||[r(\)|| = m,
where )\ is the eigenvalue of (1.1) closest to A. But while the resolvent norm is well

understood there are still many open questions concerning the method of Vergini and
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Saraceno. For example, currently it only works satisfactory on star-shaped regions.
But it has many connections to Barnett’s method, which can be regarded as a squared
version of our subspace angle computations. Therefore, connecting the resolvent and

cot O(A) might give new insight into the method of Vergini and Saraceno.

9.2 Approximation theory

Another major aspect of this thesis is the approximation theory for the Method
of Particular Solutions. Based on results of Vekua and Garabedian we derived in
Chapter 6 exponential convergence estimates for the MPS for regions with zero or
one singular corner and computed the asymptotic exponential rates for several regions
using conformal mapping techniques. For regions with multiple singular corners we
have numerical results indicating faster than algebraic convergence if an increasing
number of basis functions at the singular corners is used. In Chapter 7 we extended
our results to domain decomposition methods and thereby improved the original

estimates of Descloux and Tolley.

But still there are several open questions concerning the approximation theory of
the MPS. We do not yet have a theoretical analysis of the convergence rate shown
in Figure 6.15 which would give convergence estimates of our method for regions
with multiple singularities. Also the convergence of the MPS in the case of multiply
connected regions has not yet been investigated. For example, in the region shown in
Figure 8.14 we observed rapid convergence to the solution. We think that there is a

close connection to rational approximation in the complex plane.

In this thesis we always used Fourier-Bessel basis sets. These are easily adapted to
reflect corner singularities of the eigenfunctions and are directly connected to poly-
nomials via the Vekua theory. However, in some applications other basis sets are
preferable. For example, in the case of the Bunimovich stadium billiard a combina-
tion of real plane waves and evanescent waves leads to very good results |6, 81|. How
do Fourier-Bessel basis sets compare with real plane waves? Figure 9.2 compares the
convergence behavior of the subspace angle method for the first eigenvalue on the
circular L region with Fourier-Bessel functions and real plane waves. Both basis sets

should lead to the same convergence behavior as there are no corner singularities on
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Figure 9.2: Comparison of real plane waves and Fourier-Bessel functions on the cir-
cular L region. Although they should both have to the same theoretical asymptotic
rate of convergence the numerical behavior is completely different.

this region. But with real plane waves the convergence stops at about 1073 while
the convergence of the Fourier-Bessel basis set continues until about 107! (it cannot
converge further since we know \; only to 12 digits of accuracy). Explaining this
phenomenon would lead to new insight to the question of when to use which basis

set.

A very different basis set is used in the Method of Fundamental Solutions. There,
one approximates the solution of (1.1) by linear combinations of singular particular
solutions (in our case Fourier-Bessel functions of the second kind), which lie on a curve
enclosing Q (see for example [17, 51]). In [17] it is stated that these basis sets behave
favorably compared to Fourier-Bessel functions since all fundamental solutions behave
uniformly on the region. This is not true for Fourier-Bessel functions which become
exponentially small in 2 for increasing order. But further numerical experiments
are necessary to determine if fundamental solutions really lead to a better numerical
behavior than Fourier-Bessel basis sets, and it is yet unclear how corner singularities

are approximated with such basis sets.
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9.3 Further applications

In this thesis we focused on solutions of the Laplace eigenvalue problem (1.1) with
Dirichlet boundary conditions. Neumann boundary conditions can also easily be
implemented. Instead of the basis functions evaluated at boundary collocation points
the matrix Ag(\) then contains the normal derivative of the basis functions evaluated
at the boundary collocation points. The algorithms described in this thesis can also be
applied to more general elliptic eigenvalue problems if particular solutions are known.
The numerical construction of particular solutions for elliptic PDEs with polynomial
coefficient functions was discussed by Schryer in [64|. If we want to go over to three
dimensional problems we could similarly as in 2d use particular solutions for the three
dimensional Laplace eigenvalue problem and find the eigenvalues with the subspace
angle method. Difficulties arise if the region has corners. In three dimensions corners
can have almost arbitrary shapes and it is a hard problem to find particular solutions

in 3d which are adapted to the corner singularities.

Another interesting application in 2d is the extension of the subspace angle method
to the biharmonic eigenvalue problem. This would give us a tool to compute Chladni

figures to high accuracy using particular solutions'.

In this thesis we have only treated interior eigenvalue problems. But also of great
interest is the solution of Helmholtz problems in the exterior of a region. Adapting the
subspace angle method to such problems could lead to many interesting applications

of the MPS in scattering theory.

A fascinating topic is eigenvalue problems on fractal drums. Computing eigenvalues
and eigenfunctions of the Koch snowflake shown in Figure 9.3 is a beautiful example
of this [5, 45|. Since approximations of this fractal have thousands of corners the
approach of capturing corner singularities by singular Fourier-Bessel functions does
not seem feasible. The basis size would be too big. Currently, the most successful
approach seems to be the one proposed in [5] which uses a conformal mapping tech-
nique for regions with thousands of corners to transplant the eigenvalue problem on

the snowflake into a system of nonlinear equations in a reference region. It would be

INapoleon would be fascinated by this!
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Figure 9.3: The Koch snowflake

fascinating to also find a way of using particular solutions for computing eigenvalues

to high accuracy for this region.

9.4 Do we have the best method for computing eigen-
values on planar regions?

It is dangerous to ask such a question since the best method always depends too
much on the specific application. If we want general purpose solvers for arbitrary
regions then methods like boundary element methods (BEM) or finite element meth-
ods (FEM) are probably the best choice. The picture looks different if we focus on
regions with piecewise analytic boundary and a small number of singular corners.
Then the subspace angle method is easily implementable and at the same time highly
accurate. Certainly, we could also tune general purpose methods like FEM to deliver
rapid convergence on such regions. But the beauty of the MPS together with the sub-
space angle approach is that writing a code for a certain region is often just a matter
of minutes due to its simple idea. For such problems the subspace angle method is
probably the best choice for many applications. It is not only fast and accurate but
also easily implementable. In Figure 9.4 we show Matlab code that fits on a single
page and computes the first three eigenvalues on the L-shaped region to 10 digits of

2

accuracy in just five seconds on a modern computer®. This is what we are striving

2This is an example of a“Ten Digit Algorithm" as proposed by Trefethen in [74].
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for in numerical analysis, finding simple and beautiful algorithms which deliver fast

and accurate solutions to our problems.
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% Ldrum.m Compute eigenvalues of Laplacian on L-shaped region
% T. Betcke and L. N. Trefethen 9/03

% The first three eigenvalues are computed by the method of
% particular solutions (Betcke & Trefethen, SIAM Review 2005).

% Compute subspace angles for various values of lambda:
N =36; k = 1:N; orders in Bessel expansion
np = 2xN; no. of bndry & interior pts
tl = 1.5%pi*(.5:np-.5)’/np; angles of bndry pts
rl = 1./max(abs(sin(t1)),abs(cos(t1))); % radii of bndry pts
t2 = 1.5%pi*rand(np,1); angles of interior pts
r2 = rand(np,1)./max(...
abs(sin(t2)),abs(cos(t2))); % radii of interior pts
t = [t1;t2]; r = [r1;r2]; bndry and interior combined
lamvec = .2:.2:25; S = []1; trial values of lam
for lam = lamvec
A = sin(2*t*k/3).*...
besselj(2*k/3,sqrt(lam)*r);
[Q,R] = qr(4,0);
s = min(svd(Q(1:np,:))); S = [S s]; % subspace angle for this lam
end

= N =

= =

==

Convert to signed subspace angles:

I = 1:length(lamvec); % all lam points

J = I(2:end-1); % interior points

J = J( S(I)<S(J-1) & S(I)<S(I+1) ); % local minima

J =J + (S(J-1)>S(J+1)); % points where sign changes
K = 0%I; K(J) = 1;

S = S.*%(-1) . cumsum(K) ; % introduce sign flips
subplot(3,1,1)

hold off, plot(lamvec,S), hold on % plot signed angle function
plot ([0 max(lamvec)],[0 0],’-k’) % plot lam axis

==

Find eigenvalues via 9th-order interpolation:
for j = length(J):-1:1
I=J(j)-5:J(j)+4;
lam = polyval(polyfit(S(I)/norm(S(I)),lamvec(I),9),0);
plot(lam*[1 1],[-1 1],°r?)
text(lam, .6,sprintf(’%13.9f°,1lam), color’,’r’)
end

% Plot the first eigenfunction:
[X,Y] = meshgrid(-1:.05:1,-1:.05:1); Z = X(:)+i*Y(:);
p = [0 1i -1+1i -1-1i 1-1i 1];
[in on] = inpolygon(real(Z),imag(Z),real(p),imag(p));
zB = Z(on); zI = Z(in&~on); z = [zB;zI]; t = mod(angle(z/i),2*pi);
A = besselj(2*k/3,sqrt(lam)*abs(z)).*sin(2xt*k/3);
[Q,R] = qr(A,0); [U,S,V] = svd(Q(1l:length(zB),:));
V =7V(:,end); Q = Q*V; [t,I] = max(abs(Q)); Q = Q/Q(I);
F = NaN*zeros(size(Z));
F(in&~on) = Q(length(zB)+1:end); F(on) = Q(1:length(zB),:);
F = reshape(F,length(X),length(Y)); subplot(3,1,2:3)
surf(X,Y,F), view(-150,40), axis off, zlim([0 .7])

Figure 9.4: This code computes the first three eigenvalues on the L-shaped region
to 10 digits of accuracy. Instead of using fminsearch the subspace angle curve is
converted to a curve which has sign changes close to the eigenvalues. These are then
determined by a 9th-order polynomial interpolation.
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