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Numerial Computation of Eigenfuntions of PlanarRegionsTimo BetkeKeble CollegeUniversity of OxfordA thesis submitted for the degree ofDotor of PhilosophyMihaelmas 2005In 1967 Fox, Henrii and Moler published a beautiful artile desribing the Methodof Partiular Solutions (MPS) for the Laplae eigenvalue problem with zero Dirihletboundary onditions on planar regions. The idea is to use partiular solutions thatsatisfy the eigenvalue equation but not neessarily the zero boundary onditions toapproximate the eigenfuntions. Unfortunately, their method beomes unstable formore ompliated regions inluding regions with several orner singularities, whihled to a deline of interest in suh methods in the numerial analysis ommunity.In this thesis we return to the original idea of Fox, Henrii and Moler and devisea modi�ation based on angles between subspaes that avoids the problems of theirmethod. Our new �subspae angle method" has lose links to the generalized singu-lar value deomposition (GSVD). We use this to show the stability of our methodand explain why the GSVD is a natural framework for methods based on partiularsolutions.Classial error bounds for the MPS were derived by Moler and Payne. We extendthese bounds to our method and verify the �rst eigenvalue on the L-shaped region to13 rounded digits of auray.The approximation theory of the MPS goes bak to results by Vekua. We use histheory and analyti ontinuation of eigenfuntions to prove exponential onvergene ofour method on regions with zero or one orner singularity. Using onformal mappingtehniques we ompute the exat asymptoti exponential rate on several regions. Forregions with multiple orner singularities we propose a hoie of basis funtions thatseems to lead to better than algebrai onvergene rates.We then show how to extend the GSVD approah to a domain deompositionmethod by Desloux and Tolley and improve their original onvergene estimatesusing Vekua's theory.Finally, we present eigenvalue and eigenfuntion omputations on many planarregions inluding the L-shaped region, isospetral drums and some multiply onnetedregions.
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Chapter 1
Introdution
1.1 The Dirihlet eigenvalue problemThis thesis is about the aurate numerial solution of the Laplae eigenvalue problemwith Dirihlet boundary onditions, de�ned by

−∆u = λu in Ω, (1.1a)
u = 0 on ∂Ω, (1.1b)where Ω is a bounded planar region. One of the early roots of the great mathematialinterest in this problem is the work of Chladni at the end of the 18th and the beginningof the 19th entury. He used sand to make the nodal lines in vibrating plates visible.Napoleon was so exited by these experiments that he set out a prie of 3000 frans foranyone who ould explain the mathematial theory behind these �gures. This priewas awarded in 1816 to Sophie Germain, who managed to partially explain them by�nding the fourth order PDE desribing vibrations of a plate but did not state theboundary onditions orretly. Although the mathematial theory behind Chladni's�gures di�ers from the membrane eigenvalue problem (1.1), his work an be seen asthe key starting point in the investigation of both phenomena.Aording to Lord Rayleigh [70℄, the mathematial analysis of the membrane eigen-value problem was �rst onsidered by Poisson, who investigated vibrations on a re-tangle. Important 19th entury ontributions were also made by Lamé, Clebsh,1



CHAPTER 1. INTRODUCTION 2Weber, Rayleigh, Shwarz and Pokels1.In the 20th entury the membrane eigenvalue problem gained large interest in theontext of Shrödinger's equation. It was shown that (1.1) governs quantum statesof a partile trapped in a two-dimensional well. Nowadays this equation plays animportant role in the �eld of quantum haos, whih has emerged in the last twenty tothirty years. Physiists in this �eld are interested in the behavior of eigenfuntionsfor very high energies, i.e. large values of λ [33℄.Among mathematiians the membrane eigenvalue problem gained a lot of attentionin the seond half of the 20th entury with Ka's famous artile from 1966 �Can onehear the shape of a drum?� [41℄. The question asks whether there are two distintplanar regions whih have the same spetrum. This was �rst answered in 1992 byGordon, Webb and Wolpert [32℄ who were able to onstrut suh isospetral regions.1.2 Drum omputations and a famous logoThe omputation of eigenvalues and eigenfuntions of (1.1) is a nontrivial problem.General purpose methods are for example �nite di�erenes, boundary element, or �-nite element methods. Another more speialized approah is the Method of PartiularSolutions (MPS), whih was introdued by Fox, Henrii and Moler in 1967. It usespartiular solutions that satisfy the eigenvalue equation (1.1a) but not neessarilythe zero boundary onditions. The idea is to �nd values of λ for whih there existlinear ombinations of the basis funtions whih are small on a given set of boundaryolloation points. This method was suessfully applied by Fox, Henrii and Molerto ompute the �rst eigenvalues on the L-shaped region to up to eight digits of a-uray. Most numerial analysts will have seen an example of this method withoutatually knowing it. The famous Matlab logo is derived from applying this method tothe L-shaped region and is an approximation of the �rst eigenfuntion on this region.Apparently, it does not satisfy the zero boundary onditions. For aestheti reasonsMoler hose the image in Figure 1.1 instead of the orret eigenfuntion. The orreteigenfuntion an be obtained with the Matlab ommand membrane(1,15,9,4). This1An extensive bibliography for the membrane eigenvalue problem an be found in the beautifulreview artile by Kuttler and Sigillito [44℄.



CHAPTER 1. INTRODUCTION 3

Figure 1.1: The famous Matlab logo.does not ompute the �rst eigenvalue but uses a stored onstant and only omputesthe eigenfuntion. The funtion used in the Matlab logo is obtained with the om-mand membrane, whih is equivalent to alling membrane(1,15,9,2). The ommandlogo internally alls the membrane funtion but formats the results suh that it is theMatlab logo in the familiar form shown in Figure 1.1.Unfortunately, the original MPS by Fox, Henrii and Moler fails for more ompliatedregions. This led to a deline of interest in this idea in the Numerial Analysisommunity. Until reently, the most suessful method for (1.1) has been a domaindeomposition approah by Desloux and Tolley [18℄, whih was later improved byDrisoll [21℄.While there was a deline of interest in the MPS among numerial analysists therehas been a growing interest in suh methods among physiists in the last twenty yearsunder the name of �point mathing methods". One of the original works is due toHeller [34, 35℄ who developed a method very similar to the MPS without knowingthe work of Fox, Henrii and Moler. His method and its generalizations are nowadaysfrequently used by physiists working in quantum haos and related �elds.1.3 The struture of this thesisThe starting point of this thesis was the original paper by Fox, Henrii and Molerfrom 1967. It bothered us that suh a beautiful idea should fail for more ompliatedregions suh as polygons with several orner singularities. Sine there are only a �nite



CHAPTER 1. INTRODUCTION 4number of known singularities on suh regions there should be a beautiful and robustmethod whih omputes the eigenvalues and eigenfuntions to high auray.This thesis an be roughly divided into four di�erent areas:1. E�ient tools from linear algebra2. Auray bounds3. Approximation theory4. Eigenfuntion omputationsChapters 2 to 4 and the �rst half of Chapter 7 belong to the �rst area. In Chapter 2and 3 we investigate the failure of the Method of Partiular Solutions of Fox, Henriiand Moler and introdue two tools from linear algebra, subspae angles and thegeneralized singular value deomposition (GSVD). With these tools we devise a newmethod in Chapter 3 whih we all the �subspae angle method� and show a �rstexample of it on the L-shaped region. Parts of Chapters 2 and 4 are also publishedin [15℄. The robustness of our method is investigated in Chapter 4, where we take alose look at the ondition numbers of ertain generalized singular values, whih arejust the tangents of subspae angles that we ompute in our method. It turns outthat our new approah even admits highly aurate omputations of eigenvalues andeigenfuntions of (1.1) if the basis of partiular solutions is highly ill-onditioned. Inthe �rst half of Chapter 7 we extend the idea of using generalized singular values toa ertain lass of domain deomposition methods for (1.1).Classial a posteriori auray bounds for the Method of Partiular Solutions aredisussed in Chapter 5 and extended to the subspae angle method. In the seondhalf of the hapter we use these bounds to verify thirteen rounded digits of the �rsteigenvalue on the L-shaped region. This is the most aurate omputation of the �rsteigenvalue on the L-shaped region that we are aware of.The approximation theory of the Method of Partiular Solutions is investigated inChapter 6. We show how to use results from Vekua and Garabedian to establishexponential onvergene estimates of the MPS for regions with zero or one singular



CHAPTER 1. INTRODUCTION 5orner and how one an ompute the exat asymptoti onvergene rates on theseregions using onformal mapping tehniques and analyti ontinuation of eigenfun-tions. These ideas are extended to domain deomposition methods in the seond halfof Chapter 7. For regions with multiple singular orners we devise in the last part ofChapter 6 an approah that seems to deliver faster than algebrai onvergene rates.Computations of eigenvalues and eigenfuntions of several regions are presented inChapter 8. We also take a loser look at the onept of higher subspae angles andavoidane phenomena between them. Parts of Chapter 8 are published in [14, 75℄.1.4 NotationMost of the notation used in this thesis is standard. Everything else will be de�nedwhen appropriate. Here we summarize some of the notation used throughout thethesis.By a region Ω we understand an open onneted set in R
2. In some setions (espeiallyin Chapter 7) we also use the term domain for a region. Often we will identify theomplex plane C with the set R

2 by the identity z = x + iy. We also frequently usepolar oordinates (r, θ) to denote a point z = reiθ. The losure of a region Ω is denotedby Ω. The omplex onjugate of a omplex number z is denoted by z and Ω∗ is theset of all omplex numbers whose omplex onjugate is in Ω, i.e. Ω∗ := {z : z ∈ Ω}.The area |Ω| of a region Ω is de�ned as
|Ω| :=

∫

Ω

1dxdy.For a salar real or omplex variable x we denote by |x| its absolute value. If x ∈ R
nthen |x| := (

∑n
k=1 |xk|2)1/2, where xk is the kth omponent of the vetor x. For

x, y ∈ R
n we denote by 〈x, y〉 = xT y the standard Eulidian inner produt and by

‖x‖2 := |x| its Eulidian norm. The maximum norm of a vetor x ∈ R
n is de�ned by

‖x‖∞ := maxn |xn|.Sometimes we use Matlab notation to denote parts of a matrix. Hene, if A is amatrix the �rst olumn of A is A(:, 1). For real matries we will use two norms. The



CHAPTER 1. INTRODUCTION 6spetral norm of A ∈ R
m×n is de�ned as ‖A‖2 :=

√

λmax(AT A), where λmax(A
T A) isthe largest eigenvalue of AT A and the Frobenius norm ‖A‖F is de�ned as ‖A‖F :=

√

tr(AT A), where tr is the trae operator. It follows diretly that ‖A‖2 ≤ ‖A‖F ≤
√rank(A)‖A‖2.The L2-inner produt 〈u, v〉 in Ω is de�ned by

〈u, v〉Ω :=

∫

Ω

u(x, y)v(x, y)dxdy.The assoiated norm is de�ned by ‖u‖Ω := 〈u, u〉1/2
Ω . We will also need the innerprodut of two funtions on the boundary ∂Ω. This is de�ned as the path integral

〈u, v〉∂Ω :=

∫

∂Ω

u(s)v(s)ds.Furthermore, we let ‖u‖∂Ω := 〈u, u〉1/2
∂Ω . The sup-norm ‖u‖∞,S of a funtion u in a set

S is de�ned as
‖u‖∞,S := sup

x∈S
|u(x)|.Sometimes we need the relative mahine auray ǫmach, whih is de�ned as thedistane from 1 to the next larger �oating point number. In IEEE double preisionthe value of this number is 2−52. We will also enounter the unit roundo� u whih is

2−53 in IEEE double preision arithmeti2.In most hapters we use the spaes A(λ) and D0 whih are de�ned as
A(λ) := {u ∈ C(Ω) ∩ C2(Ω) : −∆u = λu in Ω} (1.2)and

D0 := {u ∈ C(Ω) ∩ C2(Ω) : u|∂Ω = 0}. (1.3)Hene, A(λ) is the spae of all partiular solutions whih are ontinuous in Ω and D0is the spae of funtions whih are twie ontinuously di�erentiable in Ω and zero on
∂Ω. Depending on the setion the symbol A(λ) an also denote a subspae of thespae of partiular solutions or the spae spanned by a basis of partiular solutionsevaluated on a set of disretization points. Similarly, D0 an also mean the spae offuntions whih are zero on a given set of boundary olloation points. This will belear from the ontext and also stated again in the orresponding setions.2See [38℄ for a detailed desription of these quantities.



CHAPTER 1. INTRODUCTION 71.5 Basi properties of eigenfuntions on planar re-gionsWe now state without proof some basi properties properties of the solutions of theeigenvalue problem (1.1) whih are useful for the understanding of the following hap-ters. Referenes to further results and proofs are given in [44℄.All eigenvalues λk of (1.1) are positive. The �rst eigenvalue is always simple. We anorder the eigenvalues with multipliity aording to
0 < λ1 < λ2 ≤ · · ·with a limit point at in�nity, and the orresponding eigenfuntions an be hosen toform an orthonormal omplete set in L2(Ω). That is,
< ui, uj >Ω= δij,where ui is the eigenfuntion assoiated with λi and δij is the Kroneker delta. Onsome elementary regions the eigenvalues and eigenfuntions are expliitly known. Fora retangle with 0 ≤ x ≤ a, 0 ≤ y ≤ b the eigenfuntions are

um,n(x, y) = sin
(mπx

a

)

sin
(nπy

b

)

, m, n = 1, 2, . . .with orresponding eigenvalues
λm,n = π2

[

(m

a

)2

+
(n

b

)2
]

.In the ase of a disk of radius a the eigenfuntions are given by
um,n(r, θ) = Jm(

jmnr

a
)[A cos mθ + B sin mθ], m = 0, 1, . . . , n = 1, 2, . . .where jmn is the nth zero of the mth order Bessel funtion Jm. The eigenvalues are

λm,n =

(

jmn

a

)2

.If for two regions Ω1 ⊂ Ω2 then for the eigenvalues λ
(1)
k of Ω1 and λ

(2)
k of Ω2 it followsthat

λ
(1)
k ≥ λ

(2)
k .



CHAPTER 1. INTRODUCTION 8Among all regions with the same area the disk has the smallest eigenvalue λ1. Thisis the result of the famous Faber-Krahn inequality whih states that
λ1 ≥

π

|Ω|j
2
01.But a large region does not neessarily have a small �rst eigenvalue λ1. Let ρ be theradius of the largest insribed disk in a simply onneted region Ω. Osserman3 [56℄showed that

λ1 ≥
1

4ρ2
.In 1994 the value 1

4
was improved by Bañuelos and Carroll to 0.619 [2℄. It still remainsan open question what is the largest onstant e suh that λ1 ≥ e

ρ2 for general simplyonneted regions.The eigenvalues of (1.1) annot be arbitrarily distributed. An important result tothis e�et is Weyl's law,
λk ∼ 4πk

|Ω| as n → ∞.A proof an for example be found in [61℄.The nodal lines of uk are the set of points in Ω where uk = 0. Courant's nodal linetheorem states that the nodal lines of the kth eigenfuntion uk divide Ω into not morethan k subregions [61℄. The eigenfuntion of the �rst eigenvalue λ1 has no nodal lines,and by orthogonality it follows that λ1 is always simple.In symmetri regions eigenfuntions an be hosen to have either odd or even sym-metry. An odd eigenfuntion has a nodal line along the symmetry axis and an eveneigenfuntion has zero normal derivative along this axis. Further symmetry lasseswere investigated by Hersh [37℄. This an sometimes be used to redue the eigenvalueproblem (1.1) to a problem on a simpler region and was applied by Fox, Henrii andMoler to the eigenvalue problem on the L-shaped region.Eigenfuntions are real analyti inside Ω. The smoothness on ∂Ω depends on theregion. If a orner of ∂Ω onsists of two straight ars meeting at an angle π/k, where
k is an integer, then any eigenfuntion an be ontinued to an analyti funtion inthe neighborhood of the orner. Otherwise, eigenfuntions an have singularities at3In [3℄ Bañuelos and Carroll point out that this result even goes bak to Makai in 1965.



CHAPTER 1. INTRODUCTION 9the orner, whih have to be dealt with by the numerial method in order to ahievefast onvergene to the eigenfuntion. We will say muh more about these matters inChapter 6.For the eigenvalue problem (1.1) there are di�erent sets of partiular solutions. Usingseparation of variables in polar oordinates for the equation −∆u = λu one an derivethe solutions
Jαk(

√
λr) sin αkθ, Jαk(

√
λr) cos αkθ (1.4)for α, λ > 0 and k ∈ N, where Jαk is the Bessel funtion of the �rst kind of order

αk. We will all the funtions in (1.4) Fourier-Bessel sine and Fourier-Bessel osinefuntions. If αk 6∈ N these funtions are not C∞ at 0. A similar set of partiularsolutions is obtained by using Bessel funtions of the seond kind instead of the �rstkind in (1.4). We obtain
Yαk(

√
λr) sin αkθ, Yαk(

√
λr) cos αkθ.We will only need these funtions for the ase α ∈ N. It is important to note that

Yαk(x) → −∞ for x → 0. Therefore, the origin of the polar oordinates has to lieoutside the region if we want to use Fourier-Bessel funtions of the seond kind aspartiular solutions.Another lass of partiular solutions are real plane waves. In artesian oordinatesthese are given as Re{ei
√

λ(x cos α+y sin α)}, Im{ei
√

λ(x cos α+y sin α)},or equivalently in polar oordinates asRe{ei
√

λr cos(θ−α)}, Im{ei
√

λr cos(θ−α)} (1.5)for −π ≤ α ≤ π. These are waves osillating with wavelength 2π/
√

λ in the diretiongiven by α and onstant perpendiular to α. To obtain a set of 2N basis funtionsone usually takes α = kπ
N

for k = 0, . . . , N − 1. The following argument shows thatthis is a sensible hoie. It holds that
Jn(

√
λr)einθ =

−in

2π

∫ 2π

0

ei
√

λr cos(θ−τ)einτdτfor n ∈ N. Using the trapezoidal rule we obtain
Jn(

√
λr)einθ ≈ −−in

2N

2N−1
∑

k=0

ei
√

λr cos(θ−πk
N

)ein πk
N . (1.6)



CHAPTER 1. INTRODUCTION 10By ombining terms belonging to k and N + k it follows for n even thatRe{Jn(
√

λr)einθ} ≈
N−1
∑

k=0

α
(N)
k cos(

√
λr cos(θ − πk

N
)),Im{Jn(

√
λr)einθ} ≈

N−1
∑

k=0

β
(N)
k cos(

√
λr cos(θ − πk

N
)),for ertain real oe�ients α

(N)
k and β

(N)
k . If n is odd the same formulas are valid with

sin(
√

λr cos(θ − πk
N

)) instead of cos(
√

λr cos(θ − πk
N

)). Density results and approxi-mation properties of Fourier-Bessel funtions and real plane waves are investigatedin [68℄.A very interesting set of basis funtions are evanesent plane waves. These are ob-tained by hoosing a omplex shift α in (1.5). Then (1.5) is a wave osillating withwavelength 2π/(
√

λ cosh Im α) along the diretion Re α and deaying exponentially inthe diretion Re α + π/2 Sign(Im α) [12℄. Evanesent plane waves have been appliedwith great suess to obtain aurate eigenvalue approximations on the Bunimovihstadium billiard [6, 81℄.



Chapter 2
The Method of Partiular Solutions(MPS)
In 1967 Fox, Henrii and Moler published a beautiful artile �Approximations andbounds for eigenvalues of ellipti operators" [25℄ desribing the Method of PartiularSolutions for eigenvalue problems on planar regions. Based on theoretial work ofBergman and Vekua ([10, 80℄, see also Chapter 6) they approximated solutions of (1.1)by linear ombinations of partiular solutions that satisfy (1.1a) but not neessarily(1.1b). The boundary onditions were approximated using a olloation method.With this approah they omputed the �rst 10 eigenvalues of the L-shaped region toan auray of up to 8 digits. By deriving error estimates they were able to give lowerand upper bounds for eah eigenvalue.This simple and elegant method and its appliation to the L-shaped region led to manyrelated dissertations and artiles by Fox's and Mayers' students Donnelly, Mason,Reid and Walsh at Oxford [19, 50, 63℄ and Moler's students Shryer and Eisenstat atMihigan and Stanford [23, 64℄.Unfortunately, the MPS in the form proposed by Fox, Henrii and Moler su�ersfrom problems for more ompliated regions, espeially regions with several ornersingularities. This led to a deline of researh in the MPS in the 1970's. Indeed, thebest method known as of a year or two ago, developed by Desloux and Tolley in1983 [18℄ and improved by Drisoll in 1997 [21℄, is based on domain deompositionrather than global approximations. 11



CHAPTER 2. THE METHOD OF PARTICULAR SOLUTIONS 12While the MPS got less attention in the numerial analysis ommunity, it was in-dependently redisovered by physiists working in semilassial mehanis, quantumhaos and related �elds; this literature often speaks of methods of �point mathing�.One of the originators of this work is Heller, who in the 1980s used a method verysimilar to the MPS to investigate �sars� in high energy eigenstates of the Bunimovihstadium billiard [34℄. It is interesting to note that although Heller's method is nowa standard tool in physis, the only indiation he gave of it in [34℄ was the followingsentene:These are just a few of nearly a dozen types of sars found so far, using asimple algorithm written by the author.He gave a thorough explanation of his method a few years later in [35℄. Heller'sapproah was generalized and improved by his student Barnett [6℄.Another method based on partiular solutions is the saling method of Vergini andSaraeno [82℄. The advantage of their method is that it omputes good approxima-tions to many high energy eigenstates with just one matrix deomposition, as opposedto the traditional MPS, where several deompositions are needed to get one eigen-state aurately. Investigating this method has led to some interesting theoretialresults [7, 8℄. Unfortunately, the formulation of Vergini and Saraeno only worksfor star-shaped regions. But still it is a remarkable method that deserves furtherinvestigation.In this hapter we will �rst analyze the original MPS of Fox, Henrii and Moler. Thenwe will disuss in detail the failure of this method for more ompliated regions. Thisfailure and understanding it points the way to the more robust methods developed inthe later hapters.2.1 The MPS of Fox, Henrii and MolerThe idea of the MPS as proposed by Fox, Henrii and Moler is to take a set offuntions that satisfy (1.1a) and to �nd a parameter λ for whih there exists a linearombination of these funtions that is small on the boundary ∂Ω.



CHAPTER 2. THE METHOD OF PARTICULAR SOLUTIONS 13Let us onsider an in�nite wedge with interior angle π/α. The eigenfuntions of thiswedge are the funtions
u(r, θ) = Jαk(

√
λr) sin αkθ (2.1)for arbitrary λ > 0 and k ∈ N. The idea of Fox, Henrii and Moler was to approximate

0

0

π
αFigure 2.1: An in�nite wedge with interior angle π/α. The eigenfuntions (2.1) ofthis region are known as Fourier-Bessel funtions.eigenfuntions of a polygon ontaining a orner with interior angle π/α by linearombinations of Fourier-Bessel funtions of the form (2.1). Hene, we want to �ndoe�ients c

(N)
k and a value for λ suh that

u(r, θ) =
N
∑

k=1

c
(N)
k Jαk(

√
λr) sin αkθis a good approximation to an eigenfuntion of (1.1), i.e. u(r, θ)|∂Ω ≈ 0. On the arsadjaent to the orner with interior angle π/α, we automatially have u(r, θ) = 0.The rest of the boundary is disretized with olloation points zj = rje

iθj ∈ ∂Ω, j =

1, . . . , N . Condition (1.1b) now beomes
u(rj, θj) =

N
∑

k=1

c
(N)
k Jαk(

√
λrj) sin αkθj = 0, j = 1, . . . , N.This is equivalent to the system of equations

AB(λ)c = 0, (2.2)where (AB)jk = Jαk(
√

λrj) sin αkθj. In Chapter 3 we will also introdue a matrix AIonsisting of Fourier-Bessel funtions evaluated at interior points of Ω. One an solve(2.2) by looking for the zeros of det(AB(λ)), whih was the original approah of Fox,Henrii and Moler.



CHAPTER 2. THE METHOD OF PARTICULAR SOLUTIONS 14

1 2 3 4 5 6 7 8 9 10
10

−15

10
−10

10
−5

10
0

10
5

N

er
ro

r

Figure 2.2: The onvergene for the �rst eigenvalue of the unit square. In eah step
2N basis funtions and olloation points are used.Let us try this method on a simple region. On the unit square [0, 1]2 the eigenfuntionsare expliitly known as

um,n(x, y) = sin(mπx) sin(nπy), m, n = 1, 2, . . .with orresponding eigenvalues
λm,n = π2

(

m2 + n2
)

.We expand around the orner at z = 0. Then the Fourier-Bessel basis funtionsare automatially zero on the two sides adjaent to z = 0. Eah of the other twoboundary sides is disretized with N olloation points. Therefore, 2N basis funtionsare hosen to obtain a square matrix AB(λ) ∈ R
2N,2N . The onvergene behavior ofthe MPS for the �rst eigenvalue 2π2 is shown in Figure 2.2. The �gure seems to showat least �spetral" onvergene, i.e. onvergene at the rate O(N−s) for every s > 0.Indeed, from the onvergene theory developed in Chapter 6 it follows that the rateof onvergene is O(R−N) for eah R > 1. This example seems to hint that the MPSmight be a powerful method. But the example is still too simple to reveal muh.Therefore, let us try a more ompliated region.Figure 2.3 shows the famous L-shaped region. We approximate around the reentrantorner with linear ombinations of Fourier-Bessel funtions of the form J 2

3
k(
√

λr) sin 2
3
k.
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α = 2

3

Figure 2.3: Disretization of the L-shaped region for the MPS.This anels out the singularity of the eigenfuntion at the reentrant orner and the-oretially leads again to spetral onvergene, as we will show in Chapter 6. The zeroboundary onditions are automatially satis�ed on the ars adjaent to the reentrantorner. Eah of the other sides is disretized using N olloation points.To avoid numerial under�ow in alulating det(AB(λ)) due to bad saling of theFourier-Bessel basis eah olumn of AB(λ) is now saled to have unit norm. The�rst eigenvalue of the L-shaped region is λ1 ≈ 9.6397238440219. The onvergenebehavior of the MPS to this eigenvalue is shown in Figure 2.4. The MPS does notget more than four digits and breaks down after N = 15. This shows that there is aproblem with the original MPS as formulated by Fox, Henrii and Moler. They wereable to get around this problem and alulate 8 digits by using symmetry propertiesof the eigenfuntions to redue the problem size. But as we will show now, suhtehniques are only able to improve the auray of the MPS in a few speial ases.On more omplex regions the method almost always fails.2.2 The failure of the original MPSThe MPS tries to �nd a value λ > 0 suh that there exists a linear ombinationof Fourier-Bessel basis funtions whih is small at the boundary olloation points.What happens now if AB(λ) is ill-onditioned for all λ > 0 ?Let AB(λ) ∈ R
n×p with n ≥ p (we now inlude the ase where there may be moreolloation points than basis funtions) and assume that the smallest singular value
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Figure 2.4: Failure of onvergene of the original MPS for the �rst eigenvalue of theL-shaped region.
σp(λ) of AB(λ) satis�es σp(λ) = O(ǫmach). Then there exists a vetor c ∈ R

p, ‖c‖2 = 1suh that ‖AB(λ)c‖2 = O(ǫmach). If λ is lose to an eigenvalue λk of (1.1), then
ũ(r, θ) =

N
∑

k=1

ckJαk(
√

λr) sin αkθmay be a good approximation of an eigenfuntion (in Chapter 5 we will disuss errorbounds for the MPS). However, if λ is not lose to an eigenvalue of (1.1), then ũ(r, θ)satis�es the eigenvalue equation −∆u = λu and is numerially zero on the boundaryolloation points. The only solution of (1.1), if λ is not an eigenvalue, is u(r, θ) = 0.Therefore, we an expet ũ(r, θ) ≈ 0 in Ω.The MPS annot distinguish between funtions that are numerially zero in Ω andtrue eigenfuntions, sine it only onsiders boundary olloation points. But if AB(λ)is ill-onditioned for every λ > 0, we an always �nd a linear ombination of basisfuntions that is lose to zero at the boundary olloation points, leading to spurioussolutions that are lose to zero on the whole of Ω if λ is not lose to an eigenvalue. Inthis setion we present numerial experiments that demonstrate this behaviour anddisuss the matter of when we an expet AB(λ) to be ill-onditioned for all λ > 0. Letus return to the example of the L-shaped region from Setion 2.1. The onvergenein Figure 2.4 breaks down after N = 15. Figure 2.5 shows the ondition number



CHAPTER 2. THE METHOD OF PARTICULAR SOLUTIONS 17

0 5 10 15 20
10

0

10
5

10
10

10
15

10
20

N

κ 2(A
B

(λ
))

λ=λ
1
/2

λ=λ
1

Figure 2.5: The ondition number of AB(λ) for λ = λ1 and the arbitrary value
λ = λ1/2. After N = 15 both matries beome numerially singular, making itimpossible for the MPS to detet the eigenvalue λ1.
κ2(AB(λ)) measured in the 2−norm for a growing number N of basis funtions. For λwe hose two di�erent parameters. The �rst is λ = λ1, where λ1 ≈ 9.6397238440219is the �rst eigenvalue on the L-shaped region. The seond is the arbitrary hoie
λ = λ1/2. The olumns of AB(λ) ∈ R

4N×4N (we have N olloation points on eahof the 4 sides not adjaent to the reentrant orner) are again saled to unit norm.Both urves grow exponenentially. After N = 14 the results beome erroneous dueto rounding errors. To detet an eigenvalue of (1.1) the MPS depends on the gapbetween those two urves, whih does not widen muh as N inreases and is in anyase omputed inorretly after N = 14.How an we improve the ondition of AB(λ)? In Figure 2.5 we already used diagonalsaling of the olumns of AB(λ) to improve its ondition number. This is ruialhere sine the saling of Fourier-Bessel funtions beomes exponentially smaller withgrowing order k, whih introdues severe ill-onditioning in AB(λ). Over all possiblehoies of olumnwise saling a nearly optimal strategy is to sale all olumns to unitnorm, sine for A ∈ R
m×n and rank(A) = n,

κ2(ADC) ≤ √
n min

D∈Dn

κ2(AD).Here, Dn ⊂ R
n×n denotes the set of nonsingular diagonal matries and DC :=



CHAPTER 2. THE METHOD OF PARTICULAR SOLUTIONS 18diag(‖A(:, k)‖2)
−1 is the diagonal matrix that sales all olumns of A to unit norm(see [38℄, p. 125 for a proof).Saling alone, although neessary, does not deliver satisfatory results, as Figure 2.5shows. We ould try using di�erent distributions of points on the boundary. Indeed,using points in a Chebyshev distribution on eah ar allows us to obtain 8 digits ofauray before the method breaks down. To make the MPS less dependent on thehoie of points it is advisable to use many more points on the boundary than thereare expansion terms, as proposed in [54℄. But this does not solve the fundamentalproblem of the MPS that it fails to exlude spurious solutions whih are numeriallyzero everywhere in the region. The following example demonstrates a situation wherethe MPS fails even to get a few digits of the �rst eigenvalue. Consider a quadrilateralwith four orner singularities de�ned by the points 0, 1, 1.5 + 1.5i, 1 + 1.5i. Theeigenfuntions have singularities at all four orners (singularities of eigenfuntions aredisussed in Chapter 6). Therefore, in order to get fast onvergene to the solution,Fourier-Bessel expansions at all orners are needed. The �rst eigenvalue of (1.1) onthis region is λ1 ≈ 24.73768313904717. Figure 2.6 shows the onvergene of thesolution for a growing number N of basis terms at eah orners. On eah side of theboundary 100 points were used. For N = 3 the method obtains the �rst three digits

24.7 orretly, but for larger N it fails ompletely. The reason is that the four Fourier-Bessel expansions only behave di�erently very lose to the singularities. Otherwisethey approximately span the same spae of funtions on Ω. This leads to the matrix
AB(λ) being heavily ill-onditioned independently of λ.Fox, Henrii and Moler were aware of the fat that their method might run intoproblems for more ompliated regions. In [25℄ they noted:In all fairness, it should be reported that results are not always as sat-isfatory as these examples indiate. . . . Other methods. . . are urrentlybeing investigated.In [21℄ Drisoll wrote about the problems in applying the MPS to a hallenging regionwith several orner singularities:
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Figure 2.6: The MPS fails ompletely in the ase of a quadrilateral with Fourier-Besselexpansions at all orners.As the number of terms in the trunated expansion is inreased, the matrixbeomes very nearly singular for all values of λ, and deteting the truesingularity numerially beomes impossible. In fat, we have been unableto produe more than two or three aurate digits for a few of the smallesteigenvalues with this method.In Chapter 3 we develop an approah to the MPS that solves these problems andallows highly aurate approximations to eigenvalues and eigenfuntions on planarregions. But before we want to disuss two methods developed by physiists, thePWDM of Heller and its generalization by Barnett. Both methods partially solve theproblems of the MPS by introduing a normalization of the trial funtions.2.3 The PWDM of HellerThe idea of Heller's PWDM (PlainWave Deomposition Method) is very similar to theoriginal MPS of Fox, Henrii and Moler. Two fats about this method are remarkable.The �rst is that it was developed ompletely independently of the literature in theNumerial Analysis ommunity about methods based on partiular solutions. The



CHAPTER 2. THE METHOD OF PARTICULAR SOLUTIONS 20seond is that it utilized a simple trik to partially solve the problem of spurioussolutions. Heller originally used this method to ompute sars in haoti billiards[34℄, where he used real plane waves as basis funtions. But the method an equallywell be applied to other sets of partiular solutions like Fourier-Bessel funtions orevanesent plane waves.The idea of the method is the following. Let us pik a basis of N partiular solutions.As in the MPS, we ould hoose N boundary points and obtain the system of equations
A(λ)c = 0.But as disussed in the last setion, this introdues spurious solutions in the searhspae whih destroy the onvergene. To avoid suh solutions that are numeriallyzero everywhere in the region, Heller piked one point in the interior of the regionand imposed the ondition that the trial funtions are 0 on N − 1 boundary pointsand equal to 1 at the interior point. This leads to the system of equations
A(λ)c = en,where eN is the Nth unit vetor [0, . . . , 0, 1]T ∈ R

N and the last row of A(λ) nowonsists of the partiular solutions evaluated at the interior point. To hek thequality of an approximate eigenfuntion, it is �rst normalized in the interior of theregion and then evaluated at many boundary points. Heller alls this boundary normthe �tension� of the trial funtion. If the tension is small, then hopefully the trialfuntion is a good approximation to an eigenfuntion of (1.1).Like the MPS, the method of Heller an also be formulated using a least-squaresapproah. Let p be the number of basis funtions and n the number of boundarypoints, with n ≥ p. Furthermore, let l(λ)T ∈ R
1,p be the row vetor of basis funtionsevaluated at the interior point. Then for a �xed eigenvalue estimate λ, Heller's methodan be formulated as

min
x∈R

p

l(λ)T x=1

‖A(λ)x‖2. (2.3)Let l(λ) = QR be the full QR deomposition of l(λ) and de�ne ã := A(λ)Q(:, 1)and Ã := A(λ)Q(:, 2:p). Sine l(λ) is a vetor we have R = [ξ, 0, . . . , 0]T ∈ R
p forone ξ ∈ R. Equation (2.3) an now be transformed into the standard least-squaresproblem

min
z∈Rp−1

∥

∥

∥

∥

Ãz +
ã

ξ

∥

∥

∥

∥

2

.



CHAPTER 2. THE METHOD OF PARTICULAR SOLUTIONS 21The solution x of (2.3) is obtained as x = 1
ξ
Q(:, 1) + Q(:, 2:p)z (see [30℄, Setion12.1.4).Alternatively, we ould attempt to solve the least-squares problem

min
x∈Rp

∥

∥

∥

∥

[

A(λ)
lT (λ)

]

x − en

∥

∥

∥

∥

2

. (2.4)This delivers a trial funtion that is small at the boundary points but lose to one atthe interior point, whih is often good enough to avoid spurious solutions. Approxi-mations of onstrained least squares problems by standard least squares problems aredisussed in [30, 78℄. In [78℄ several error bounds are also given.Heller's method is widely used in the quantum haos ommunity and related �elds.It is easily appliable and often delivers good approximations to eigenmodes. Thedrawbak of the method is the hoie of the interior point. If it is lose to a nodalline of the exat eigenfuntion then even good approximations to the eigenfuntionare saled up by the normalization at the interior point and are disarded as spurioussolutions. Hene, this method is only a partial solution to the stability problems ofthe MPS.2.4 Barnett's generalization of the PWDMThe PWDM of Heller an have problems if a nodal line is lose to the interior point.Barnett's generalization of the PWDM solves this problem [6℄. Let
A(λ) = span{u(1), . . . , u(N)}be the spae spanned by N partiular solutions u(1), . . . , u(N) satisfying −∆u(k) =

λu(k), k = 1, . . . , N whih are twie di�erentiable in Ω and ontinuous on Ω. For
u, v ∈ A(λ) de�ne the boundary inner produt1

〈u, v〉∂Ω :=

∫

∂Ω

u(s)v(s) ds.1If λ is an eigenvalue of (1.1), 〈·, ·〉∂Ω is not positive de�nite and therefore in the strit sense notan inner produt.



CHAPTER 2. THE METHOD OF PARTICULAR SOLUTIONS 22Furthermore, we need the standard L2-inner produt
〈u, v〉∂Ω :=

∫

Ω

u(x, y)v(x, y) dxdy.The orresponding norms are de�ned as ‖u‖∂Ω = 〈u, u〉1/2
∂Ω and ‖u‖Ω = 〈u, u〉1/2

Ω .For a funtion u ∈ A(λ) we an de�ne the tension
t(u) :=

‖u‖∂Ω

‖u‖Ω

.Furthermore, let us de�ne the minimal tension as
tm(λ) := min

u∈A(λ)
t(u). (2.5)If tm(λ) = 0, then λ is an eigenvalue of (1.1), sine then there exists a nonzero funtion

u ∈ A(λ) satisfying −∆u = λu and ‖u‖∂Ω = 0. To ompute tm(λ), Barnett proposedthe following method. Let u =
∑N

k=1 xku
(k). Then

t2m(λ) = min
u∈A(λ)

〈u, u〉∂Ω

〈u, u〉Ω
= min

x∈RN

xT F (λ)x

xT G(λ)x
,where F and G are de�ned by

Fij(λ) = 〈ui, uj〉∂Ω, Gij(λ) = 〈ui, uj〉Ω.Hene, we an represent t2m(λ) as the minimum of a Rayleigh quotient. The solutionis given as the smallest eigenvalue µ1(λ) of the eigenvalue problem
F (λ)x(λ) = µ(λ)G(λ)x(λ) (2.6)and we obtain tm(λ) = µ1(λ)1/2.This method is a true generalization of Heller's method sine it guarantees that ap-proximate eigenfuntions are normalized over the whole region Ω instead of beingnormalized at only one point. But the numerial implementation of Barnett's methodhas two drawbaks. The �rst is that almost linearly dependent basis sets lead to aommon numerial null spae of the matries F (λ) and G(λ). One strategy to preventthis is to projet the ommon null spae out of the eigenvalue problem, as desribedin [6℄. This issue is also further disussed in Setion 4.6.



CHAPTER 2. THE METHOD OF PARTICULAR SOLUTIONS 23The other problem is the following. Suppose for the omputed smallest eigenvalue
µ̃1(λ) that

µ̃1(λ) = µ1(λ) + f,where f = O(ǫmach) is a small perturbation in the order of mahine auray. Wethen obtain
t̃m(λ) =

√

µ1(λ) + f.Therefore, no matter how small µ1(λ) is, the minimum of the omputed value t̃m(λ)for the tension annot beome lower than √
f = O(

√
ǫmach), meaning that Barnett'smethod is limited to an auray of O(

√
ǫ). Sine asymptotially the funtion tm(λ)behaves like K|λ − λk| lose to an eigenvalue λk for a onstant K > 0 [7℄, we angenerally not expet to detet eigenvalues to more than 8 digits of auray if wework in IEEE double preision. For most appliations in physis this restrition to

8 digits of auray is usually not harmful. But in this thesis we want to develop amethod that is able to detet eigenvalues to an auray lose to mahine preisionif the basis of partiular solutions admits suh aurate approximations. In the nexthapter we will develop suh a method based on angles between subspaes and inSetion 3.5 we show that Barnett's method an be interpreted as a squared versionof our new approah.



Chapter 3
Subspae angles and the generalizedSVD (GSVD)
In the last hapter we disussed the failure of the MPS in the form put forwardby Fox, Henrii and Moler. The reason for the failure is that we do not have a well-onditioned problem sine the method does not ontain information about the interiorof the region. This problem was partially solved by Heller's PWDM and Barnett'sgeneralization of it. But Heller's method only partially solves the problem sine itheavily depends on the hoie of the interior point, and Barnett's approah annot�nd eigenvalues to a higher auray than the square root of mahine preision. Fur-thermore, the ill-onditioning of the basis poses stability problems in the formulationas a generalized eigenvalue problem.In order to reliably �nd eigenvalues and eigenfuntions of (1.1) we need1. A well-onditioned problem,2. A stable algorithm for solving it.The �rst of these goals an be ahieved by introduing several interior points. Toextrat approximate eigenfuntions using the information from boundary and interiorpoints we introdue an algorithm that an be formulated either as a problem of �ndingthe angle between ertain subspaes or as a generalized singular value problem. Thestability of this algorithm will be disussed in detail in Chapter 4.24



CHAPTER 3. SUBSPACE ANGLES AND THE GSVD 253.1 The Dirihlet eigenvalue problem and angles be-tween subspaesConsider the spae A(λ) of all solutions of −∆u = λu in Ω whih are ontinuous on
∂Ω, i.e.

A(λ) := {u ∈ C(Ω) ∩ C2(Ω) : −∆u = λu in Ω}.Let D0 ⊂ C(Ω) ∩ C2(Ω) be the spae of funtions in this ontinuity lass whih arezero on ∂Ω. If for a given λ > 0 the spaes A(λ) and D0 have a nontrivial intersetionthere exist nonzero funtions in A(λ) satisfying the eigenvalue equation and the zeroboundary onditions, whih are therefore eigenfuntions belonging to the eigenvalue
λ. The following lemma is immediately obtained.Lemma 3.1.1 The spaes A(λ) and D0 have a nontrivial intersetion if and only if
λ > 0 is an eigenvalue of (1.1).The prinipal angle between two subspaes is a useful tool to measure whether theyhave a nontrivial intersetion. Suppose that 〈·, ·〉 is a suitable inner produt withindued norm ‖ · ‖. Then the prinipal angle θ(λ) between A(λ) and D0 an bede�ned as

cos θ(λ) := sup
u∈A(λ), ‖u‖=1
v∈D0, ‖v‖=1

〈u, v〉. (3.1)What is the right inner produt to measure the prinipal angle between A(λ) and
D0? If the standard L2-inner produt 〈u, v〉 =

∫

Ω
uvdx is hosen, then θ(λ) = 0for all λ > 0 sine the eigenfuntions of (1.1) in Ω are in D0 and form a ompleteorthonormal set of L2(Ω). We need to inorporate the information on the boundaryof the region. One way to do this is by introduing a mixed inner produt of the form

〈u, v〉 :=

∫

Ω

uvdx +

∫

∂Ω

uvdx = 〈u, v〉Ω + 〈u, v〉∂Ω (3.2)The following theorem shows that this inner produt leads to a useful meaning of theangle between A(λ) and D0.Theorem 3.1.2 If θ(λ) is de�ned by the inner produt (3.2), then the value λ > 0 isan eigenvalue of (1.1) if and only if θ(λ) = 0.



CHAPTER 3. SUBSPACE ANGLES AND THE GSVD 26Proof If λ is an eigenvalue of (1.1), any eigenfuntion u assoiated with λ is anelement of D0 and of A(λ). It follows that θ(λ) = 0. Conversely, in Chapter 5 weshow
|λ − λk|

λk

≤ c tan θ(λ)for a onstant c that only depends on the region Ω, where
|λ − λk|

λk

= min
n

|λn − λ|
λn

.The minimum is taken over all eigenvalues λn of (1.1). If θ(λ) = 0 it follows that
λ = λk.3.2 Prinipal angles in �nite dimensional spaesBefore we turn the idea of using prinipal angles for the MPS into an algorithm we givean introdution to prinipal angles in �nite dimensional spaes and their alulation.The following de�nition is due to Björk and Golub [16℄.Prinipal angles between subspaes Let A and B be subspaes of R

m with q =dim(A) ≥ dim(B) = p. The prinipal angles θ1 ≤ · · · ≤ θp are reursively de�ned as
cos θk := 〈uk, vk〉 = max

u∈A, ‖u‖2=1
v∈B, ‖v‖2=1

〈u, v〉, u ⊥ u1, . . . , uk−1, v ⊥ v1, . . . , vk−1. (3.3)The vetors uk and vk are the prinipal vetors assoiated with the prinipal angles
θk.Let QA ∈ R

m×q and QB ∈ R
m×p be orthogonal bases of A and B. Björk and Golubshowed that the prinipal angles θk and the assoiated pairs of prinipal vetors ukand vk an be obtained from the singular value deomposition

QT
AQB = ŨΣṼ T , (3.4)where Ũ ∈ R

q×q and Ṽ ∈ R
p×p are orthogonal matries and Σ ∈ R

q×p is diagonalwith Σ = diag(cos θ1, . . . , cos θp). The vk are the olumns of the matrix QBṼ and the
uk are the �rst p olumns of QAŨ . The Björk-Golub algorithm for angles betweensubspaes therefore onsists of two steps:
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• Compute orthogonal bases QA and QB of A and B.
• Compute the singular values of QT

AQB to obtain the osines of the prinipalangles.If one is interested in very small angles it is neessary to work with the sines of theprinipal angles. Consider the ase in whih θ1 = O(
√

ǫmach ). Then cos θ1 ≈ 1− θ2
1

2
=

1 − O(ǫmach). Therefore, the osine of prinipal angles an only be determined upto the square root of mahine preision. Sines of prinipal angles do not have thisrestrition.The sines of the prinipal angles between the spaes A and B an be elegantly intro-dued using the CS deomposition.Theorem 3.2.1 (CS Deomposition) Let Q =

[

Q1

Q2

] be a matrix with orthonor-mal olumns, where Q1 ∈ R
m1×n, Q2 ∈ R

m2×n and m1 ≥ n. Then there exist orthog-onal matries U , W and V suh that
[

Q1

Q2

]

=

[

U 0
0 W

] [

S
C

]

V T .1The matries S and C are diagonal with entries
0 = s1 = · · · = sr < sr+1 ≤ · · · ≤ sr+j < sr+j+1 = · · · = sn = 1and
1 = c1 = · · · = cr > cr+1 ≥ · · · ≥ cr+j > cr+j+1 = · · · = cn = 0.Depending on Q, it is possible that r = 0 or r+ j = n. Furthermore, s2

k + c2
k = 1, k =

1, . . . , n.Proof A proof for the general ase involving a row and olumn partitioning of Q anbe found in [59℄, where the history and many appliations of the CS deompositionare also reviewed. Here, we only need the simple ase of a row partitioning. Theproof given here follows the one in [30℄.1Often the CS deomposition is written down in the form [

Q1

Q2

]

=

[

U 0
0 W

] [

C
S

]

V T . But for ourpurpose it is more suitable to use the notation given here.



CHAPTER 3. SUBSPACE ANGLES AND THE GSVD 28Let USV T be a singular value deomposition of Q1, where S ontains the singularvalues s1 ≤ · · · ≤ sn of Q1 in asending order. Sine Q is orthogonal, sk ≤ 1 for
k = 1, . . . , n. De�ne [K1 K2

]

= Q2V , where K1 ∈ R
m2×r+j and K2 ∈ R

m2×n−r−j.Then
[

U 0
0 Im2×m2

]T [
Q1

Q2

]

V =





S̃ 0
0 Im1−r−j×n−r−j

K1 K2



 ,where S̃ ≡ diag(s1, . . . , sr+j) ∈ R
r+j×r+j ontains the singular values of Q1 whih aresmaller than 1. Sine the olumns of the right-hand side matrix have unit norm andare mutually orthogonal, K2 = 0, and the matrix

K̃1 = K1diag(1/√1 − s2
1, . . . , 1/

√

1 − s2
r+j)has orthonormal olumns. De�ne W =

[

K̃1 K̃⊥
1

] with K̃⊥
1 hosen suh that W isorthogonal. Then W T Q2V = C, whih �nishes the proof.The deomposition Q2 = WCV T is just the singular value deomposition of Q2. Theremarkable property of the CS deomposition is that the singular value deomposi-tions of Q1 and Q2 both have the same right singular vetors, whih are the olumnsof the matrix V .With the help of the CS deomposition it is easy to formulate a notion of sines ofangles between two subspaes. The osines of the angles between the spaes A and

B are the singular values of QT
AQB. De�ne the matrix
Q =

[

(I − QAQT
A)QB

QAQT
AQB

]

.Sine Q has orthonormal olumns, the CS deomposition an be applied, leading to
[

(I − QAQT
A)QB

QAQT
AQB

]

=

[

U 0
0 W

] [

S
C

]

V T . (3.5)
WCV T is the singular value deomposition of QAQT

AQB. Sine premultiplying QT
AQBwith QA does not hange the singular values the diagonal elements of C are theosines of the prinipal angles between A and B. From Theorem 3.2.1 it follows that

s2
k + c2

k = 1, k = 1, . . . , n. Hene, the sk are the sines of the priniple angles and weobtain sk = sin θk. We do not need the full CS deomposition to ompute the sines ofthe prinipal angles sine they are just the singular values of (I − QAQT
A)QB, whihan be diretly omputed.



CHAPTER 3. SUBSPACE ANGLES AND THE GSVD 29Up to now we have assumed that q = dim(A) ≥ dim(B) = p. Consider now thease in whih q < p. Then there exist only q prinipal angles, whose osines are thesingular values of QT
BQA ∈ R

p×q. But the singular values of QT
AQB are idential tothose of QT

BQA. However, if we form the CS deomposition of [(I − QAQT
A)QB

QAQT
AQB

] then
cq+1 = · · · = cp = 0, and these values are by de�nition not prinipal angles between
A and B. But for the ease of notation we will drop the ondition q ≥ p from now onand de�ne θq+1, . . . , θp = π/2 whenever q < p while keeping in mind that these arenot true prinipal angles aording to De�nition 3.2.3.3 A subspae angle algorithm for the MPSWe now return to the question of how to implement a subspae angle algorithm for theMethod of Partiular Solutions. As with the MPS of Fox, Henrii and Moler, we wantto work on a set of disretization points. But instead of working only on boundarypoints we now add some interior points. Let z1, . . . , zN ∈ ∂Ω be the boundary olloa-tion points. In addition we hoose a number of interior points z̃1, . . . , z̃M ∈ Ω, whihin pratie we generally take to be random, though other hoies are also possible.Sine it is not possible in a pratial algorithm to work with the spae of all funtionsthat satisfy the eigenvalue equation −∆u = λu in Ω, the spae A(λ) now onsistsonly of the span of the basis of partiular solutions u(1), . . . , u(p) of −∆u = λu. Also,instead of working with the spaes A(λ) and D0 themselves, we work with theirrepresentations at the boundary and interior disretization points. Then the bases ofthese spaes an be written in matrix form. As in the original MPS of Fox, Henriiand Moler, the matrix AB(λ) denotes the basis funtions evaluated on the boundaryolloation points, while we additionally introdue the matrix AI(λ) of basis funtionsevaluated on the interior points. Hene, the disretized spae A(λ) is the span of theolumns of

A(λ) =

[

AB(λ)
AI(λ)

]

.Similarly, the olumns of the matrix
D0 =

[

0
IM×M

]

∈ R
(N+M)×Mprovide a basis of the spae of funtions that are zero at the boundary olloationpoints.
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[

QB(λ)
QI(λ)

]

R(λ) =

[

AB(λ)
AI(λ)

]be a QR deomposition of A(λ) and let
[

QB(λ)
QI(λ)

]

=

[

U(λ) 0
0 W (λ)

] [

S(λ)
C(λ)

]

V (λ)T . (3.6)be the CS deomposition of Q(λ). Then the prinipal angles φk(λ), k = 1, . . . , pbetween A(λ) and D0 are given by
sk(λ) = sin θk(λ), ck(λ) = cos θk(λ).Proof From Setion 3.2 it follows that the sines and osines of the prinipal anglesbetween A(λ) and D0 are obtained from the CS deomposition of
[

(I − D0D
T
0 )Q(λ)

D0D
T
0 Q(λ)

]

=









QB(λ)
0
0

QI(λ)









.Using (3.6) we �nd
[

(I − D0D
T
0 )Q(λ)

D0D
T
0 Q(λ)

]

=









U(λ) 0
0 I

0 I
W (λ) 0

















S(λ)
0

C(λ)
0









V (λ)T .Hene, S(λ) and C(λ) de�ne the sines and osines of the prinipal angles between
A(λ) and D0.How does this result relate to the angle θ(λ) between the original non-sampled spaes
A(λ) and D0? In the ase of the sampled spaes we have

cos θ1(λ) = max
x∈R

p

y∈R
M

〈A(λ)x,D0y〉under the ondition that ‖A(λ)x‖2 = ‖D0y‖2 = 1 for the angle θ1(λ) between thesampled spaes. Sine
〈A(λ)x,D0y〉 = 〈

[

AB(λ)
AI(λ)

]

x,

[

0
I

]

y〉 = 〈AB(λ)x, 0〉 + 〈AI(λ)x, y〉,



CHAPTER 3. SUBSPACE ANGLES AND THE GSVD 31this angle is a disrete analogue of the angle θ(λ) for the non sampled spaes in theinner produt (3.2). In both ases the boundary part of the inner produt is alwayszero for inner produts between elements of A(λ) and of D0. But nevertheless it isimportant sine the normalization of the elements of A(λ) depends on the boundaryand interior part of the inner produt, no matter whether we work with the sampledor non-sampled spaes.From (3.6) it follows that ‖QB(λ)v1(λ)‖2 = s1(λ) and ‖QI(λ)v1(λ)‖2 = c1(λ), where
v1(λ) is the �rst olumn of V (λ). Consider the ase s1(λ) ≪ 1. Then also
‖QB(λ)v1(λ)‖2 ≪ 1 and

‖QI(λ)v1(λ)‖2 = c1(λ) =
√

1 − s2
1(λ) ≈ 1.Therefore, if s1(λ) ≪ 1 there exists a funtion in A(λ) that is small on the boundarypoints and bounded away from 0 in the interior of Ω. This funtion is expeted to bea good approximation to an eigenfuntion of (1.1). Hene, the subspae angle methodautomatially exludes the possibility of numerially zero approximate eigenfuntions.The subspae angle method an be written down in four steps.

• Choose N boundary olloation points and M interior disretizationpoints.
• Repeat for every λ1. Form the matries AB(λ) and AI(λ).2. Compute the QR fatorization [QB(λ)

QI(λ)

]

R(λ) =

[

AB(λ)
AI(λ)

].3. Compute the smallest singular value s1(λ) of QB(λ).The hoie of points is done one and for all while the steps 1�3 are repeated for eahvalue of λ. The numerial stability of Step 2 and 3 will be further disussed in Chapter4. We want to �nish this setion by applying the subspae angle method to the L-shaped region. In addition to just olloation points on the boundary we now addrandom interior points as shown in Figure 3.1. Figure 3.2 shows a plot of the sine s1(λ)of the prinipal angle θ1(λ), whih we all the subspae angle urve. On eah boundaryside not adjaent to the reentrant orner 100 equally spaed points were hosen. Inthe interior of the region 50 points were randomly distributed. The approximation
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Figure 3.1: In addition to boundary olloation points the subspae angle methodutilizes interior points.
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Figure 3.2: The subspae angle urve on the L-shaped region. The �rst three minimashow the positions of the �rst three eigenvalues on this region.
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Figure 3.3: The same plot as in Figure 2.5 but now for the matrix QB(λ). There isa lear gap between the ondition numbers for the eigenvalue λ1 and the arbitraryvalue λ1/2 whih widens for a growing number N of basis funtions.basis onsists of 20 Fourier-Bessel terms of the form J 2k
3

(
√

λr) sin 2kθ
3

, k = 1, . . . , 20,with origin at the reentrant orner.In Figure 2.5 we ompared the ondition number of AB(λ) in the original MPS fora growing number of basis funtions in the two ases λ = λ1 and λ = λ1/2. Letus do the same for the matrix QB(λ). The result is shown in Figure 3.3. In thesubspae angle method there is a lear gap in the ondition numbers of QB(λ1) and
QB(λ1/2) that widens niely as the number N of basis terms grows, making it possibleto determine the eigenvalue λ1 to high auray.In Figure 3.4 we show the approximation error |λ − λ1| for a growing number N ofbasis funtions. We ompared the eigenvalue approximations with the value λ1 ≈
9.6397238440219, whih we believe to be orret to 14 digits. In Chapter 5 we willshow that this value is orret to at leat 13 rounded digits. The minimum of the sub-spae angle urve was in eah step determined with the Matlab funtion fminsearh.Why is it possible to determine the minimum to suh high auray using fminsearh?Figure 3.5 shows the subspae angle urve lose to the value λ1 for N = 50, 60 and 80basis funtions. By inreasing the number of basis funtions lose to λ1 the subspae
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Figure 3.4: The approximation error for the �rst eigenvalue dereases exponentiallyon the L-shaped region.angle urve more and more looks like
s1(λ) ≈ K|λ − λk|for a value K > 0. This asymptotially linear behavior makes it possible to determinethe eigenvalue to high auray. In Setion 3.5 we show that the subspae anglemethod is losely related to Barnett's method and that for the value tm(λ) de�nedin (2.5) we have tm(λ) ≈ tan θ1(λ). Barnett showed [7℄ that lose to an eigenvalue λk

t2m(λ) = C|λ − λk|2 + O(|λ − λk|4) for a onstant C > 0 if we approximate from thespae of all partiular solutions. Sine s1(λ) = sin θ1(λ) we an expet the subspaeangle urve to have a similar asymptoti behavior lose to an eigenvalue λk if N ishigh enough.3.4 The MPS and the generalized singular value de-ompositionThe original MPS of Fox, Henrii and Moler an be formulated as a singular valuedeomposition to obtain approximations for eigenvalues and eigenfuntions of (1.1).The approah of Barnett uses generalized eigenvalue problems, and in this hapter we
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Figure 3.5: The asymptoti behavior of the subspae angle urve lose to the eigen-value λ1. For a growing number N of basis funtions the urve seems to behavelinearly lose λ1.



CHAPTER 3. SUBSPACE ANGLES AND THE GSVD 36introdued an approah based on prinipal angles between ertain subspaes. We nowwant to show how this is onneted to the Generalized Singular Value Deomposition(GSVD) whih will lead us to a natural framework for all methods based on partiularsolutions disussed so far.The GSVD was introdued by Van Loan in [77℄. He introdued B-singular values andde�ned them as the elements of the set
µ(A,B) = {µ|µ ≥ 0, det(AT A − µ2BT B) = 0}.This de�nition also explains why the µ were subsequently alled generalized singularvalues. Ordinary singular values are just the solutions of the equation det(AT A −

µ2I) = 0, while now there is also a matrix B involved. In [58℄ Paige and Saunders in-trodued a slightly more general form of the GSVD and also gave a more onstrutiveproof, whih will be the basis of the results given here.Theorem 3.4.1 (Generalized Singular Value Deomposition) Let A ∈ R
m1×nwith m1 ≥ n and B ∈ R

m2×n. Assume that Y =

[

A
B

] has linearly independentolumns. There exist orthogonal matries U ∈ R
m1×m1 and W ∈ R

m2×m2 and anonsingular matrix X ∈ R
n×n suh that
A = USX−1, B = WCX−1, (3.7)where S and C are de�ned as in Theorem 3.2.1.Proof Let QR = Y be the QR deomposition of Y and partition Q in the same wayas Y is partitioned into A and B, i.e.

[

QA

QB

]

R =

[

A
B

]

. (3.8)Applying the CS deomposition to Q we obtain
[

A
B

]

=

[

U 0
0 W

] [

S
C

]

V T R.Sine Y has linearly independent olumns, the matrix R−1 exists. With X = R−1Vthe deomposition of A and B in (3.7) follows.



CHAPTER 3. SUBSPACE ANGLES AND THE GSVD 37The pairs (sk, ck), k = 1, . . . , n are alled generalized singular value pairs of the penil
{A,B}. The generalized singular values are de�ned as σk = sk/ck. If ck > 0 then
σk is �nite. Using the notation from Theorem 3.2.1 there are r + j �nite generalizedsingular values σ1 ≤ · · · ≤ σr+j and n − r − j in�nite generalized singular values
σr+j+1 = · · · = σn = ∞. The kth olumn xk of the matrix X is alled the rightgeneralized singular vetor for the generalized singular value pair (sk, ck).The main part of the proof is the CS deomposition. The GSVD is a simple onse-quene of this. Paige and Saunders proved the GSVD without the restritions that
m1 ≥ n and rank(Y ) = n. But for our purposes this generality is not neessary. Ifa stable way of omputing the CS deomposition is known then this an be diretlyused to ompute the GSVD sine the GSVD is just a QR deomposition plus a CS de-omposition. This proedure was disussed by Van Loan in [79℄. A di�erent approahwas taken by Paige in [57℄, who used an algorithm based on yli transformations of
A and B. This idea was re�ned by Bai and Demmel in [4℄, whih forms the basis forthe Lapak implementation of the GSVD.The GSVD has several interesting properties. By ombining the equations for A and
B in (3.7) we arrive at

c2
kA

T Axk = s2
kB

T Bxk, k = 1, . . . , n.Therefore, the squares of the �nite generalized singular values σ1, . . . , σr+j are the�nite generalized eigenvalues of the generalized eigenvalue problem
AT Ax = σ2BT Bx.The singular values σk, k = 1, . . . , min{m,n} of a matrix A ∈ R

m×n an be hara-terized as
σk = max

H⊂R
ndim(H)=k

min
x∈H\{0}

‖Ax‖2

‖x‖2

. (3.9)Let m ≥ n. By ordering the singular values in asending order (i.e. σ1 ≤ · · · ≤ σn)an equivalent minimax haraterization an be derived:
σk = min

H⊂R
ndim(H)=k

max
x∈H\{0}

‖Ax‖2

‖x‖2

. (3.10)For generalized singular values a similar haraterization is possible.



CHAPTER 3. SUBSPACE ANGLES AND THE GSVD 38Theorem 3.4.2 The generalized singular values σk, k = 1, . . . , r + j of {A,B} anbe haraterized as
σk = min

H⊂R
ndim(H)=k

max
x∈H\{0}

‖Ax‖2

‖Bx‖2

.Proof The singular values sk of the matrix QA from (3.8) an be haraterized as
sk = min

H⊂R
n

dim(H)=k

max
y∈H\{0}

‖QAy‖2

‖y‖2

.Sine σk = sk/
√

1 − s2
k we obtain

σk = min
H⊂R

n

dim(H)=k

max
y∈H

‖y‖2=1

‖QAy‖2
√

1 − ‖QAy‖2
2

.The matrix R is nonsingular. Therefore dim(H) = dim({x ∈ R
n|Rx ∈ H}). Sinealso

‖Ax‖2

‖Bx‖2

=
‖QAy‖2

‖QBy‖2

=
‖QAy‖2

√

1 − ‖QAy‖2
2for y = Rx and ‖y‖2 = 1 the result follows.Generalized singular values are losely related to prinipal angles between subspaes.Theorem 3.4.3 Let θ1 ≤ · · · ≤ θr+j < π/2 be the prinipal angles between thesubspaes A and B of R

n. Let PA be the orthogonal projetor onto A and P⊥
A itsorthogonal omplement. Let the matrix B be de�ned suh that its olumns form abasis of B. Then the �nite generalized singular values σk, k = 1, . . . , r + j of thepenil {P⊥

A B,PAB} are related to the prinipal angles θk by σk = tan θk.Proof The proof is a simple onsequene of the CS deomposition in (3.5). Let
B = QBR and multiply (3.5) by R to obtain

[

(I − QAQT
A)B

QAQT
AB

]

=

[

U 0
0 W

] [

S
C

]

V T R. (3.11)With PA = QAQT
A and P⊥

A = I−QAQT
A equation (3.11) is just the generalized singularvalue deomposition of the penil {P⊥
A B,PAB}. Sine the generalized singular valuepairs (sk, ck), k = 1, . . . , n are the sines and osines of the prinipal angles between Aand B and ck > 0 for k = 1, . . . , r + j, the result follows.



CHAPTER 3. SUBSPACE ANGLES AND THE GSVD 39An interesting orollary of this statement is a minimax haraterization for the tan-gents of prinipal angles between subspaes.Corollary 3.4.4 Let the notation be as in Theorem 3.4.3. Then θ1, . . . , θr+j an beharaterized as
tan θk = min

H⊂R
n

dim(H)=k

max
x∈H\{0}

‖P⊥
A Bx‖2

‖PABx‖2

, k = 1, . . . , r + j. (3.12)Proof The result follows diretly from Theorem 3.4.2 and 3.4.3.To onlude this setion we show how the generalized singular values of the penil
{A,B} an be expressed as angles between ertain subspaes.Corollary 3.4.5 Let A ∈ R

m1×n with m1 ≥ n and B ∈ R
m2×n. De�ne Y =

[

A
B

] andassume that rank(Y ) = n. Let Y be the spae spanned by the olumns of Y and de�ne
D0 ⊂ R

m1+m2 as the spae of vetors whih �rst m1 entries are zero. Let the �nitegeneralized singular values of the penil {A,B} be σ1, . . . , σr+j. Then the prinipalangles 0 ≤ θk < π/2 between Y and D0 are given as tan θk = σk.Proof Let PD0
be the projetor onto D0 and P⊥

D0
its orthogonal omplement. Thegeneralized singular value pairs of {P⊥

D0
Y, PD0

Y } are idential to those of {A,B}. Theproof therefore follows immediately from Theorem 3.4.3.A similar result is also proved in [87℄ by Zha.3.5 The GSVD as a uni�ed approah for the Methodof Partiular SolutionsWe are now ready to show how to apply the GSVD to the Method of PartiularSolutions. Let A(λ) := span{u(1), . . . , u(n)} be a given spae of partiular solutions



CHAPTER 3. SUBSPACE ANGLES AND THE GSVD 40satisfying −∆u = λu in Ω. As in the approah of Barnett we an attempt to minimizethe boundary tension
t(u) =

‖u‖∂Ω

‖u‖Ω

,over all u ∈ A(λ), where ‖u‖∂Ω, ‖u‖Ω and the orresponding inner produts arede�ned as in Setion 2.4. Every u ∈ A(λ) an be written as
u =

n
∑

k=1

xku
(k).We an rewrite this expression using a matrix-vetor produt form by de�ning asemi-in�nite matrix A(s)(λ) as2

A(s)(λ) =
[

u1(z), . . . , un(z)
]

, z ∈ Ω.(A Matlab toolbox that an operate with suh matries was reently developed byBattles [9℄). The olumns of this matrix are not vetors of funtions evaluated atdisrete points but the funtions themselves. Every element u ∈ A(λ) now has thesimple form u = A(s)(λ)x. By de�ning the two semi-in�nite matries
A

(s)
B (λ) = A(s)(λ), z ∈ ∂Ω,

A
(s)
I (λ) = A(s)(λ), z ∈ Ω,the tension t(u) an be reformulated as

t(x) =
‖A(s)

B (λ)x‖∂Ω

‖A(s)
I (λ)x‖Ω

. (3.13)We are interested in the minimum
tm(λ) = min

x∈Rn

‖A(s)
B (λ)x‖∂Ω

‖A(s)
I (λ)x‖Ω

.If the matries A
(s)
B (λ) and A

(s)
I (λ) were disrete, the solution would simply be givenby the smallest generalized singular value of the penil {A(s)

B (λ), A
(s)
I (λ)}. Sine thisis not the ase one way of omputing tm(λ) is to square t(x) and to solve the orre-sponding eigenvalue problem. In our semi-in�nite matrix notation this beomes

A
(s)
B (λ)T A

(s)
B (λ)x(λ) = µ(λ)A

(s)
I (λ)T A

(s)
I (λ)x(λ)2In this setion we use the index s to distinguish semi-in�nite matries from ordinary matries



CHAPTER 3. SUBSPACE ANGLES AND THE GSVD 41where the matries A
(s)
B (λ)T A

(s)
B (λ) and A

(s)
I (λ)T A

(s)
I (λ) are de�ned as

(A
(s)
B (λ)T A

(s)
B (λ))ij = 〈ui, uj〉∂Ω, (A

(s)
I (λ)T A

(s)
I (λ))ij = 〈ui, uj〉Ω.These are just the matries F (λ) and G(λ) from the generalized eigenvalue problem(2.6). But we want to avoid working with a squared formulation. So how an we workwith A

(s)
B (λ) and A

(s)
I (λ) diretly? We ould attempt to disretize these two matriesby evaluating the olumn funtions of A

(s)
B (λ) on a number of boundary olloationpoints and the olumn funtions of A

(s)
I (λ) on some interior points. This then leadsto the disrete problem

tm(λ) ≈ σ1(λ) = min
x∈Rn

‖AB(λ)x‖2

‖AI(λ)x‖2

,where σ1(λ) is the smallest generalized singular value of the disretized penil
{AB(λ), AI(λ)}3. From Corollary 3.4.5 it follows that σ1(λ) = tan θ1(λ), where θ1(λ)is the angle between the disretized spaes A(λ) and D0. Therefore, we have

tm(λ) ≈ tan θ1(λ).So when do we have F (λ) ≈ AB(λ)T AB(λ) and G(λ) ≈ AI(λ)T AI(λ) ? Every entryof F (λ) and G(λ) is an L2 inner produt, whih is evaluated by a quadrature rule.Using the trapezium rule and equidistributed points on ∂Ω we obtain
Fij(λ) ≈ h

N
∑

k=1

u(i)(zk)u
(j)(zk),where h is the distane between two points on ∂Ω. If the same evaluation points areused as disretization points for AB(λ) we �nd F ≈ hAB(λ)T AB(λ), where the error

F (λ) − hAB(λ)T AB(λ) is determined by the error of the quadrature rule. Similarly,we have G(λ) ≈ h̃2AI(λ)AI(λ) using a quadrature rule on a regular grid with grid size
h̃. By a saling argument we an assume h = h̃ = 1. Hene, the error tm(λ) − σ1(λ)depends on the underlying quadrature rule. We do not want to disuss this in greaterdetail here sine for pratial purposes it is not neessary to hoose the disretizationpoints suh that σ1(λ) is lose to tm(λ). This would lead to a very high number ofinterior points. Instead we just need enough interior points to guarantee that the3We reently learned that in unpublished work Eisenstat also onsidered using the GSVD for theMethod of Partiular Solutions. His starting point was the minimization of error bounds for theMPS.



CHAPTER 3. SUBSPACE ANGLES AND THE GSVD 42approximate eigenfuntions stay bounded away from zero. In most experiments thiswas ahieved by hoosing just a few dozen interior points.Let us now summarize the results from this hapter. To repair the MPS of Fox,Henrii and Moler it is neessary to additionally use interior points. Using boundaryand interior points we an formulate a subspae angle method that minimizes thesmallest prinipal angle θ1(λ) between A(λ) and D0, where these two spaes arerepresented on the boundary and interior disretization points. The subspae anglemethod omputes for eah λ the value s1 = sin θ1(λ). An equivalent formulation of thesubspae angle method an be derived as the generalized singular value deompositionof the penil {AB(λ), AI(λ)}. For the smallest generalized singular value σ1(λ) ofthis penil it follows from Corollary 3.4.5 that σ1(λ) = tan θ1(λ). Therefore, thesubspae angle method an be seen as a diret generalization of the original MPS bygoing over from omputing the smallest singular value of AB(λ) to omputing thesmallest generalized singular value of {AB(λ), AI(λ)}. Barnett's method solves thegeneralized eigenvalue problem F (λ)x(λ) = µ1(λ)G(λ)x(λ), whih an be interpretedas the square of the GSVD of {AB(λ), AI(λ)}. Squaring the GSVD problem leadsto a loss of auray as already disussed in Chapter 2. Further impliations of thesquared generalized eigenvalue formulation in omparison to the GSVD are disussedin Chapter 4. Heller's PWDM uses exatly one point in the interior but does not use aGSVD approah to solve the resulting problem. Using the GSVD we an inorporatean arbitrary number of interior points, thereby solving stability problems whih anresult from only having one interior point.At the beginning of this hapter we posed the two goals of formulating a well-onditioned problem and having a stable method to solve this problem. From the�rst example of the L-shaped region given in this hapter it seems that using interiorpoints together with the subspae angle method ahieves these goals. Indeed, in thenext hapter we show that the smallest subspae angle θ1(λ) is well-onditioned if λis lose to an eigenvalue λk of (1.1), allowing us to approximate eigenvalues of (1.1)to high auray.



Chapter 4
Numerial stability
In the last hapter we derived the subspae angle method and its equivalent formu-lation as a generalized singular value problem. The �rst results on the L-shapedregion looked promising. But we haven't yet disussed the e�et of ill-onditioningin the basis on the reliability of the method. It is well known that singular valuesare perfetly onditioned. The same is true for eigenvalues of symmetri matries.However, for generalized singular values the piture looks di�erent. Depending on thepenil {A,B}, the ondition number of generalized singular values an be arbitrarilybad. Sine the GSVD underlies the subspae angle method, this raises the questionhow reliable the subspae angle method is and if we an trust the results that weobtain with it. This setion starts with two examples that show how ill-onditioningin the approximation basis an introdue visible numerial errors in the omputedgeneralized singular values. Then we will disuss urrently known perturbation re-sults and ondition numbers for generalized singular value problems and apply themto the subspae angle method to obtain aurate bounds on the forward error of themethod. In the last setion of this hapter we ompare the ondition numbers inthe subspae angle method to those of the orresponding formulations as generalizedeigenvalue problem in Barnett's method. For all omputations in this hapter we usestandard Matlab funtions.

43
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Figure 4.1: The GWW-1 isospetral drum. The singular orners are marked by dots.4.1 Two examples for highly ill-onditioned prob-lemsOur �rst example is the �rst of the two famous Gordon-Webb-Wolpert (GWW)isospetral drums, shown in Figure 4.1. There are four singular orners around whihan eigenfuntion of (1.1) annot be analytially ontinued (more on analyti ontinu-ation in Chapter 6). Highly aurate eigenvalue approximations an only be ahievedif these singularities are re�eted in the approximation basis by using expansions withFourier-Bessel funtions around the singular orners.To obtain the �rst eigenvalue to 12 digits of auray, an expansion with 60 Fourier-Bessel basis funtions around eah of the 4 singular orners is neessary. The resultingeigenvalue approximation is λ1 ≈ 2.537943999801. The tangent of the smallest prini-pal angle omputed with the Matlab GSVD funtion for this shape is plotted in Figure4.2 (for GSVD omputations we use throughout this thesis the Matlab GSVD fun-tion, whih performs a QR followed by a CS deomposition). Before the urve bendsdown to the �rst eigenvalue, it is heavily osillating, but then it beomes smoother1Beautiful pitures of the �rst eigenmodes on the isospetral drums and omputations of theireigenvalues to 12 digits of auray were published by Drisoll in 1997 [21℄.
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Figure 4.2: The smallest generalized singular value σ1(λ) for the GWW-1 isospetraldrum. Away from the eigenvalue, the urve shows large osillations.lose to the eigenvalue. Figure 4.3 shows the ondition number of A(λ) =

[

AB(λ)
AI(λ)

]2for di�erent values of λ. For all these values of λ the basis is numerially singular.At the eigenvalue λ1 the ondition number is 1.2 × 1016. But still we are able toapproximate λ1 to an auray of 12 digits.An arti�ial but more striking example of the possible e�ets of ill-onditioning isgiven in Figure 4.4. This shows the urve of the smallest generalized singular valuefor the MPS on the unit square with 20 Fourier-Bessel basis terms around eah ofthe four orners. An expansion at a single orner would be su�ient to obtain the�rst eigenvalue λ1 = 2π2 up to an auray of mahine preision; the expansions atthe other orners are redundant. Due to the redundant information in the basis theurve shows large osillations. But these osillations seem to derease near λ1. Inthis hapter we show that even in the presene of suh osillations, highly aurateapproximations to eigenvalues of (1.1) are still possible.2Here and in all other examples we work with bases in whih every olumn is saled to unit normto avoid ill-onditioning e�ets aused by the di�erent saling of basis funtions.
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Figure 4.3: The ondition number of the Fourier-Bessel basis in the ase of the GWW-1 isospetral drum. The basis is numerially singular for all values of λ.
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Figure 4.4: On a unit square expansions at all four orners lead to large osillationsin the omputed generalized singular values.



CHAPTER 4. NUMERICAL STABILITY 474.2 Perturbation results for prinipal angles betweensubspaesThe subspae angle algorithm omputes the smallest prinipal angle between thespaes A(λ) and D0 represented by the matries A(λ) and D0. The spae D0 of fun-tions that are zero at the boundary points is exatly represented by the orthonormalolumns of D0. But the matrix A(λ) onsists of basis funtions evaluations and isusually highly ill-onditioned. Therefore, it is feasible to ask what hanges in theprinipal angles are aused by small hanges in A(λ).Let A ∈ R
m×n,m ≥ n be given and denote byR(A) the spae spanned by the olumnsof A. Let δA ∈ R

m×n be a small perturbation of A. The �rst question is how faraway is the spae R(A) from the spae R(A+δA) spanned by the olumns of A+δA.This question was answered by Wedin in 1983.Theorem 4.2.1 (Wedin, [86℄) Let θ1, . . . , θn be the prinipal angles between R(A)and R(A + δA). Then
sin θk ≤ ‖δA‖2‖A†‖2, k = 1, . . . , n.Proof Let PA be the projetor onto R(A) and PA+δA the projetor onto A + δA.Then (I − PA+δA)(A + δA) = 0 and therefore
(I − PA+δA)δA = −(I − PA+δA)A.We have PA = AA† and therefore

(I − PA+δA)δAA† = −(I − PA+δA)PA.The sines of the prinipal angles θk are the singular values of (I−PA+δA)PA. Therefore,
sin θk ≤ ‖(I − PA+δA)PA‖2 ≤ ‖δA‖2‖A†‖2.Hene, if the olumns of A form a highly ill-onditioned basis of R(A), the spae

R(A + δA) an �utter arbitrarily under small perturbations δA. Let us now ask howthe prinipal angles between the range of the olumn spaes of the matries A and
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B hange under small perturbations. From the last theorem we an expet that theperturbation bounds essentially depend on the ondition numbers of A and B. Butdepending on the diretion of the perturbations one an obtain signi�antly betterbounds. This was analyzed by Golub and Zha in 1994.Theorem 4.2.2 (Golub, Zha, [31℄) Let A and Ã, and B and B̃ have the samerank, i.e.

rank(A) = rank(Ã) = p rank(B) = rank(B̃) = qand assume p ≥ q. For any orthogonally invariant norm ‖ · ‖, let the onditionnumbers of A and B be de�ned as follows:
κ(A, ‖ · ‖) = ‖A‖‖A†‖2, κ(B, ‖ · ‖) = ‖B‖‖B†‖2.Let S be the matrix of sines of the prinipal angles and C be the matrix of osines of theprinipal angles between R(A) and R(B). Similarly let S̃ and C̃ be the orrespondingmatries for the prinipal angles between the perturbed spaes R(Ã) and R(B̃). Thenwe have

‖C − C̃‖2 ≤
√

2

{

κ(A, ‖ · ‖) cos θ1
‖A − Ã‖
‖A‖ + κ(B, ‖ · ‖) cos φ1

‖B − B̃‖
‖B‖

}and
‖S − S̃‖2 ≤

√
2

{

κ(A, ‖ · ‖) cos θ2
‖A − Ã‖
‖A‖ + κ(B, ‖ · ‖) cos φ2

‖B − B̃‖
‖B‖

}

,with
θ1 = θmin(C(A, Ã),R(B)), θ2 = θmin(C(A, Ã),R(B)⊥)

φ1 = θmin(R(Ã), C(B, B̃)), φ2 = θmin(R(Ã)⊥, C(B, B̃)),where C(A, Ã) is the orthogonal omplement of R(A) ∩ R(Ã) in R(A) + R(Ã), and
C(B, B̃) is the orthogonal omplement of R(B) ∩ R(B̃) in R(B) + R(B̃). For thespetral norm we an substitute the onstant √2 with 1.This result does not only depend on the size of the perturbation but also on itsdiretion. The problem with this error bound is that it treats all prinipal anglestogether. If the theorem delivers a perturbation bound for the prinipal angles of,say, 10−5, this is reasonable for the larger angles but atastrophi for very smallprinipal angles. We are espeially interested in very small angles. Therefore, weneed to treat them separately. Sine the subspae angle algorithm an be interpretedas a generalized singular value omputation, we an apply ondition numbers forgeneralized singular values to obtain error estimates.



CHAPTER 4. NUMERICAL STABILITY 494.3 Condition numbers for generalized singular valueproblemsIt is well known that the singular values of a matrix A are perfetly onditioned underperturbations in A. This follows from the fat that if σ is a singular value of A, then
±σ are eigenvalues of the symmetri matrix [ 0 A

AT 0

], and eigenvalues of symmetrimatries are perfetly onditioned (see [40℄ for a proof).For generalized singular value problems the situation is more ompliated. Conditionnumbers for these problems were de�ned and analyzed by Sun [71℄.Let A ∈ R
n×p and B ∈ R

m×p and de�ne Y =

[

A
B

]. Furthermore, let rank(Y ) = p.We de�ne a perturbed penil {Ã, B̃} as Ã = A + E and B̃ = B + F . If (s, c) isa generalized singular value pair of {A,B}, the orresponding perturbed generalizedsingular value pair of {Ã, B̃} is denoted by (s̃, c̃). Furthermore, let σ = s
c
and σ̃ = s̃

c̃be the orresponding generalized singular values. Then a ondition number c(σ) for
σ an be de�ned in the following way.Condition number for generalized singular values Let γA,γB and ξ be positiveparameters. Then the ondition number c(σ) of a generalized singular value σ of thepenil {Ã, B̃} is de�ned as

c(σ) = lim
δ→0

sup� ‖E‖2
γA

,
‖F‖2
γB

�T

∞

≤δ

|σ̃ − σ|
ξδ

.If γA = γB = ξ = 1 then c(σ) is an absolute ondition number. Relative onditionnumbers are obtained for the parameters γA = ‖A‖2,γB = ‖B‖2 and ξ = σ. Bysetting E = 0 or F = 0 one obtains the ondition numbers
cA(σ) = lim

δ→0
sup

‖E‖2
γA

≤δ,F=0

|σ̃ − σ|
ξδ

cB(σ) = lim
δ→0

sup
‖F‖2
γA

≤δ,E=0

|σ̃ − σ|
ξδ

.The forward error an be estimated as
|σ̃ − σ|

ξ
≤ c(σ)

∥

∥

∥

∥

∥

(‖E‖2

γA

,
‖F‖2

γB

)T
∥

∥

∥

∥

∥

∞

+ O





∥

∥

∥

∥

∥

(‖E‖2

γA

,
‖F‖2

γB

)T
∥

∥

∥

∥

∥

2

∞



 . (4.1)



CHAPTER 4. NUMERICAL STABILITY 50The following theorem expresses the ondition number c(σ) in omputable quantities.Theorem 4.3.1 (Sun, [71℄) Let x be the right generalized singular vetor assoiatedwith σ. Then the ondition number c(σ) an be expressed as
c(σ) =

‖x‖2(γB‖Ax‖2 + γA‖Bx‖2)

ξ‖Bx‖2
2

. (4.2)If we assume that γA = γB = ξ = 1 then we obtain for the resulting absolute onditionnumber the expression
c(σ) =

‖x‖2

‖Bx‖2

(1 + σ) =
‖x‖2

c
(1 + σ) (4.3)sine σ = s

c
= ‖Ax‖2

‖Bx‖2
and ‖Bx‖2 = c. Therefore, if the generalized singular value σ issmall, the ondition number c(σ) mainly depends on ‖x‖2. Let [QA

QB

]

R be the QRdeomposition of [A
B

] and let τ be the smallest singular value of R. Then a rudeupper bound on ‖x‖2 is given by τ−1 sine from Theorem 3.4.1 it follows that thereis a vetor v with ‖v‖2 = 1 suh that x = R−1v. We �nd ‖x‖2 ≤ τ−1. By using thestruture of the GSVD we an often give better bounds on ‖x‖2.Lemma 4.3.2 Let σ = s/c be a generalized singular value of the penil {A,B} andlet x be its orresponding right generalized singular vetor. Then
‖x‖2 ≤ min{ s

τA

,
c

τB

,
1

τ
}, (4.4)where τA and τB are the smallest singular values of A and B and τ is the smallestsingular value of Y =

[

A
B

].Proof The ase ‖x‖2 ≤ τ−1 was already disussed. From Theorem 3.4.1 it followsthat ‖Ax‖2 = s and ‖Bx‖2 = c. With x̂ := x/‖x‖2 we obtain ‖x‖2 = s
‖Ax̂‖2

and
‖x‖ = c

‖Bx̂‖2
. Sine ‖Ax̂‖2 ≥ τA and ‖Bx̂‖2 ≥ τB, the proof follows.From Lemma 4.3.2 it follows that if one of the matries A, B or Y is well-onditioned,then ‖x‖2 is small. Otherwise ‖x‖2 is only small if s ≪ 1 or c ≪ 1. The ase c ≪ 1 isnot interesting for us sine then s ≈ 1. But the subspae angle method aims to �nda λ for whih the sine s1(λ) of the smallest prinipal angle between A(λ) and D0 issmall.



CHAPTER 4. NUMERICAL STABILITY 514.4 Bakward stablility of the subspae angle methodTo apply the bound on the forward error in (4.1) we need to know the bakward errorof the subspae angle method. The algorithm onsists of two steps. First the QRdeomposition
[

AB(λ)
AI(λ)

]

=

[

QB(λ)
QI(λ)

]

R(λ)is omputed. Then in the seond step the smallest singular value s1(λ) of QB(λ) isomputed, whih is the sine of the wanted prinipal angle. A general stability analysisfor the Björk-Golub algorithm for omputing prinipal angles between subspaes isgiven by Drma£ in [22℄. Due to the speial struture of the subspae angle algorithmwe an give a simpli�ed analysis here.Matlab omputes the QR fatorization of a given matrix A using the Lapak QRfatorization, whih is based on Householder re�etions. An analysis of HouseholderQR algorithms an be found in [38℄. Let γ̃ := cku
1−cku

, where c is a small integeronstant and u is the unit round-o�. Then for the Householder QR algorithm thefollowing theorem holds, whih summarizes Theorem 19.4 of [38℄ and the disussionafterwards.Theorem 4.4.1 Let Q̂ ∈ R
m×n and R̂ ∈ R

n×n be the omputed QR fators of A ∈
R

m×n, (m ≥ n) obtained via the Householder QR algorithm. Then there exists amatrix Q ∈ R
m×n with orthonormal olumns suh that

A + ∆A = QR̂,where
‖∆A(:, j)‖2 ≤ γ̃mn‖A(:, j)‖2, j = 1 : n.For Q̂ it holds that

‖Q̂ − Q‖F ≤ √
nγ̃mn.We an now prove a mixed stability result of the subspae angle algorithm. Thefollowing theorem is essentially a simpli�ed version of Theorem 2.1 of [22℄, where thegeneral form of the Björk-Golub algorithm was onsidered. In the following theoremswe ignore the extra treatment of the possible O(ǫmach) error from the evaluation ofthe basis funtions in A(λ).



CHAPTER 4. NUMERICAL STABILITY 52Theorem 4.4.2 (Mixed stability of the subspae angle algorithm) Let s̃1(λ)be the omputed sine of the smallest prinipal angle from the subspae angle algorithmapplied to the matrix of sampled basis funtions A(λ) =

[

AB(λ)
AI(λ)

]

∈ R
(n+m)×p with

AB(λ) ∈ R
n×p and AI(λ) ∈ R

m×p. Then there exists a value s̄1(λ), whih is the exatsine omputed from the subspae angle method applied to the matrix Ā(λ) = A(λ) +

∆A(λ), suh that |s̃1(λ) − s̄1(λ)| ≤ q(n, p)ǫmach +
√

pγ̃(n+m)p and ‖∆A(:, j)(λ)‖2 ≤
γ̃(n+m)p‖A(:, j)(λ)‖2, where q(n, p) is a modestly growing funtion of n and p.Proof Let Q̂(λ) =

[

Q̂B(λ)

Q̂I(λ)

] and R̂(λ) be the omputed QR fators of A(λ) by theHouseholder QR algorithm. Then the omputed sine s̃1(λ) is the smallest singularvalue of Q̂B(λ)+∆Q̂B(λ), where ‖∆Q̂B(λ)‖2 ≤ q(n, p)ǫmach and q(n, p) is a modestlygrowing funtion of n and p (see [1℄ for details). Sine singular values are perfetlyonditioned we have |s̃1(λ) − ŝ1(λ)| ≤ q(n, p)ǫmach, where ŝ1(λ) is the exat smallestsingular value of Q̂B(λ). From Theorem 4.4.1 it follows that there exists a matrix
Q̄(λ) with orthonormal olumns suh that ‖Q̂(λ)− Q̄(λ)‖F ≤ √

pγ̃(n+m)p and A(λ) +

∆A(λ) = Q̄(λ)R̂(λ) with ‖∆A(:, j)(λ)‖2 ≤ γ̃(n+m)p‖A(:, j)(λ)‖2. Let s̄1(λ) be theexat smallest singular value of Q̄B(λ). Then
|s̃1(λ) − s̄1(λ)| ≤ |s̃1(λ) − ŝ1(λ)| + |ŝ1(λ) − s̄1(λ)|

≤ q(n, p)ǫmach +
√

pγ̃(n+m)psine
‖Q̂(λ) − Q̄(λ)‖2 ≤ ‖Q̂ − Q̃‖F ≤ √

pγ̃(n+m)p,and therefore |ŝ1(λ) − s̄1(λ)| ≤ √
pγ̃(n+m)p.Theorem 4.4.2 states that the subspae angle method has a bakward error omponentresulting from the QR fatorization, namely from A(λ) + ∆A(λ) = Q̄(λ)R̂(λ), where

Q̄(λ) is a matrix with orthonormal olumns and R̂ is the omputed upper triangularfator and a forward error omponent resulting from the subsequent singular valuedeomposition. However, this forward error omponent is in the order of mahinepreision sine singular values are perfetly onditioned. The important in�ueneis the error produed by working with A(λ) + ∆A(λ) instead of working with A(λ).Theorem 4.2.1 states thatR(A(λ)+∆A(λ)) an �utter almost arbitrarily under smallperturbations ∆A(λ) if A(λ) is ill-onditioned.



CHAPTER 4. NUMERICAL STABILITY 534.5 The forward error of the subspae angle methodIn the last setion we derived the bakward error of the subspae angle method. Byombining this with the ondition numbers derived in Theorem 4.3.1 we an nowderive bounds for the forward error of the omputed subspae angle. Although undersmall perturbations ∆A(λ) the spae R(A(λ)) an �utter arbitrarily, small prinipalangles only su�er from small absolute perturbations, whih will still allow us enoughauray for the subspae angle method to work and will also explain the behaviorin the Figures 4.2 and 4.4.Theorem 4.5.1 Let A(λ) =

[

AB(λ)
AI(λ)

] be the matrix of sampled basis funtions with
AB(λ) ∈ R

n×p and AI(λ) ∈ R
m×p. Let τB(λ) be the smallest singular value of AB(λ),

τI(λ) the smallest singular value of AI(λ) and τ(λ) the smallest singular value of
A(λ). Let s1(λ) be the exat sine of the smallest prinipal angle delivered by thesubspae angle method and let s̃1(λ) be the omputed value. Let c1(λ) =

√

1 − s1(λ)2be the orresponding osine. With
ν(λ) := min(

s1(λ)

τB(λ)
,
c1(λ)

τI(λ)
,

1

τ(λ)
)the forward error of the subspae angle method is bounded by

|s̃1(λ) − s1(λ)| ≤ ν(λ)(1 +
s1(λ)

c1(λ)
)

1

c1(λ)
γ̃(n+m)p

√
p‖A(λ)‖2

+ q(n, p)ǫmach +
√

pγ̃(n+m)p + O(p(γ̃(n+m)p‖A(λ)‖2)
2), (4.5)where q(n, p) is a modestly growing funtion of n and p.Before we give a proof let us have a loser look at this error bound. The importantpart of (4.5) is the �rst line. The seond line an safely be assumed to be O(ǫmach).Consider now the ase s1(λ) ≪ 1. Then c1(λ) ≈ 1 and (4.5) beomes

|s̃1(λ) − s1(λ)| / ν(λ)γ̃(n+m)p
√

p‖A(λ)‖2.If γ̃(n+m)p = O(ǫmach) and ‖A(λ)‖2 = O(1) the forward error is proportional to
ν(λ)ǫmach. But if AB(λ) and AI(λ) have a ommon numerial nullspae then τ(λ) ≈
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τB(λ) ≈ τI(λ) ≈ O(ǫmach)

3 and therefore ν(λ) ≈ s1(λ)O( 1
ǫmach

). We obtain
|s̃1(λ) − s1(λ)| / Ks1(λ) (4.6)for a modest onstant K > 0. K will usually be larger than 1. Therefore, we annotexpet s̃1(λ) to have any orret digits. But the absolute error |s̃1(λ) − s1(λ)| isproportional to s1(λ). Therefore, if say s1(λ) = 10−8, then also s̃1(λ) won't be muhlarger than 10−8. It is not exluded that s̃1(λ) might have a muh smaller magnitudethan s1(λ). But the resulting minima oming from osillations of s̃1(λ) are easilydistinguishable from true minima of s1(λ) as the Figures 4.2 and 4.4 show. This givesus enough information to determine the eigenvalues of (1.1) to high auray, sine weare only interested in the minima of the subspae angle urve and if the unperturbedsubspae angle urve beomes small, (4.6) guarantees that the omputed urve alsobeomes small. This re�ets very well the behavior observed in Figure 4.4. But theplot in Figure 4.2 looks muh better lose to the eigenvalue than predited by theerror bound. This is disussed after the following proof.Close to an eigenvalue the behavior in Figure 4.2 looks muh better than the preditederror bound. This is disussed after the following proof.Proof of Theorem 4.5.1 From Theorem 4.4.2 it follows that |s̃1(λ) − s̄1(λ)| ≤

q(n, p)ǫmach +
√

pγ̃(n+m)p, where s̄1(λ) is the exat value delivered from the subspaeangle method applied to the matrix A(λ)+∆A(λ) with ‖∆A(:, j)(λ)‖2 ≤ γ̃(n+m)p‖A(:

, j)(λ)‖2. Let ∆A(λ) be partitioned as A(λ), i.e. ∆A(λ) =

[

∆AB(λ)
∆AI(λ)

]. De�ne
θ̄1(λ) = arcsin s̄1(λ). From Corollary 3.4.5 it follows that the smallest generalizedsingular value σ̄1(λ) of the penil {AB(λ) + ∆AB(λ), AI(λ) + ∆AI(λ)} is the tangentof θ̄(λ), i.e. σ̄1(λ) = tan θ̄(λ). Using (4.1) we �nd by hoosing γA = γB = ξ = 1 that

|σ̄1(λ) − σ1(λ)| ≤ c(σ1(λ))‖∆A(λ)‖2 + O(‖∆A(λ)‖2),where σ1(λ) = s1(λ)/c1(λ) is the smallest generalized singular value of {AB(λ), AI(λ)}.A short alulation shows that from ‖∆A(:, j)(λ)‖2 ≤ γ̃(n+m)p‖A(:, j)(λ)‖2 it fol-lows that ‖∆A(λ)‖2 ≤ √
pγ̃(n+m)p‖A(λ)‖2. Also for θ, θ̄ ∈ [0, π/2) it holds that

| sin θ − sin θ̄| ≤ | tan θ − tan θ̄|. We obtain
|s̄1(λ) − s1(λ)| ≤ c(σ1(λ))γ̃(n+m)p

√
p‖A(λ)‖2 + O(p(γ̃(n+m)p‖A(λ)‖2)

2). (4.7)3This holds sine we assume all olumns of A(λ) to be saled to unit norm. Otherwise, theomputed smallest singular values of AB(λ) and AI(λ) an beome arbitrarily small if the olumnsare badly saled.



CHAPTER 4. NUMERICAL STABILITY 55The distane |s̃1(λ) − s̄(λ)| is given by Theorem 4.4.2 as
|s̃1(λ) − s̄1(λ)| ≤ q(n, p)ǫmach +

√
pγ̃(n+m)p. (4.8)From Theorem 4.3.1 and Lemma 4.3.2 the ondition number c(σ1(λ)) an be estimatedas

c(σ1(λ)) ≤ ν(λ)(1 +
s1(λ)

c1(λ)
)

1

c1(λ)
. (4.9)Combining (4.7), (4.8) and (4.9) �nishes the proof.How sharp is the estimate in Theorem 4.5.1 ? The ampli�ation fator of the bakwarderror mainly depends on the estimate of ‖x1(λ)‖2 from Lemma 4.3.2, where x1(λ) isthe right generalized singular vetor for the smallest generalized singular value σ1(λ).So let us have a look at the estimated value for ‖x(λ)‖2 from Lemma 4.3.2 andthe omputed value of ‖x(λ)‖2 from Matlab's GSVD funtion. Figure 4.5 shows theestimated value of ‖x1(λ)‖2 (dashed line) ompared to the omputed value of ‖x1(λ)‖2(solid line) around the eigenvalue λ1 of the GWW-1 isospetral drum. The loser λ isto λ1 the smaller beomes ‖x1(λ)‖2, whih is just the predited behavior by Lemma4.3.2. But what does it mean for the subspae angle method if ‖x1(λ)‖2 ≈ 1015 awayfrom λ1? Sine s1(λ) = ‖AB(λ)x1(λ)‖2 = O(1) away from λ1, the vetor x1(λ) mustlie lose to the nullspae of AB(λ) and is just saled up suh that s1(λ) = O(1). Bya similar argument the vetor x1(λ) also lies in the nullspae of AI(λ) away from λ1.Hene, the approximate eigenfuntion is meaningless away from λ1 and just governedby rounding errors. This is the reason for the osillations at the beginning of the urvein Figure 4.2. When λ approahes λ1 the vetor x1(λ) moves out of the nullspaeof AI(λ) but stays in the nullspae of AB(λ). For example, at λ = λ1 − 10−5 wehave ‖x1(λ)‖2 ≈ 109. Therefore, if x1(λ) is in the numerial nullspae of AB(λ) wean expet ‖AB(λ)x1(λ)‖2 ≈ 10−7 (sine then ‖AB(λ)x1(λ)‖2/‖x1(λ)‖2 ≈ 10−16) and

‖AI(λ)x1(λ)‖2/‖x1(λ)‖2 ≈ 10−9 (sine ‖AI(λ)x1(λ)‖2 ≈ 1). Indeed, we obtain thefollowing values: ‖AB(λ)x1(λ)‖2 ≈ 9.95 × 10−6, ‖AB(λ)x1(λ)‖2/‖x1(λ)‖2 ≈ 7.85 ×
10−15, ‖AI(λ)x1(λ)‖2/‖x1(λ)‖2 ≈ 7.89 × 10−10. These values di�er slightly from thepreditions sine the smallest singular values of AB(λ) and AI(λ) are not exatly
10−16 but in the magnitude of 10−15. But the qualitative behavior orresponds towhat we predited.Let us summarize these results. In the ill-onditioned ase the subspae angle methodalways seems to hoose a funtion that is assoiated with a right singular vetor x1
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1Figure 4.5: The three �gures show a omparison between the estimated value of

‖x(λ)‖ (dashed line) and the omputed value for ‖x(λ)‖2 (solid line) around the �rsteigenvalue λ1 of the isospetral drum. The loser we get to λ1 the smaller ‖x(λ)‖2 is.



CHAPTER 4. NUMERICAL STABILITY 57whih lives in the approximate nullspae of AB(λ). When λ approahes an eigenvalueof (1.1) the vetor x1 moves out of the nullspae of AI(λ) but stays in the nullspaeof AB(λ). Therefore, the dependene of the norm estimate in Lemma 4.3.2 on thesmallest singular value of AB(λ) re�ets this behavior very well.In Chapter 2 we explained that the original MPS of Fox, Henrii and Moler failsbeause it annot distinguish between true eigenfuntions and funtions that are zeroeverywhere on the region. In the ill-onditioned ase of the subspae angle method italso happens that far away from an eigenvalue the right generalized singular vetor
x1(λ) lives in the nullspae of A(λ). But the key di�erene to the MPS of Fox, Henriiand Moler is that suh approximate eigenfuntions are saled up by the high normof x1(λ) so that they are of unit norm at the boundary and interior points. Thissaling guarantees that away from an eigenvalue we annot obtain an approximateeigenfuntion that is lose to zero everywhere.Exept in extreme ases like the square region with expansions at all orners or atsimilar regions, where all Fourier-Bessel expansions approximately span the samespae (for example if the region is a small perturbation of the square), the e�et ofill-onditioning is muh less severe than predited from the purely algebrai results inTheorem 4.5.1. For example, in Figure 4.2 the osillations are only visible far awayfrom an eigenvalue. The reason is that the basis funtions in this example were hosento re�et the approximation problem, i.e. all basis funtions ontain useful informa-tion to obtain aurate approximations for the eigenvalues and eigenfuntions on theregion. Therefore, although the basis is highly ill-onditioned, it only has redundantinformation far away from an eigenvalue where the high number of basis funtions isuseless. Closer to an eigenvalue the struture of the problem leads to a muh betterbehavior than an be predited by purely looking at the ondition number. This isalso the reason why the osillations are so muh di�erent than for the square regionin Figure 4.4. Here, the basis was arti�ially hosen to always ontain redundantinformation by introduing expansions around all orners of the region. An expan-sion around only one orner already delivers enough information to approximate theeigenvalues on the square to high auray. Therefore, by arti�ially introduingredundant information we obtain high osillations around the subspae angle urvewhih stay bounded from above relative to the urve. This is exatly the behaviorpredited by Theorem 4.5.1. But for most appliations this extreme behavior won't



CHAPTER 4. NUMERICAL STABILITY 58our. One of the few examples where suh a behavior an be observed without artif-ially introduing redundant information is in the ase of perturbations of the squaresuh that we obtain a quadrilateral at whih the eigenfuntions have singularities atall four orners. Then approximations at all orners are neessary to obtain highlyaurate eigenvalue approximations but we an observe similar osillations as in Fig-ure 4.4 sine exept very lose to the orners all expansions approximately span thesame spae in the interior of the region. Then Theorem 4.5.1 tells us that although wehave these osillations, we an obtain approximations to the eigenvalues and eigen-funtions to high auray sine the osillations stay bounded from above relative tothe subspae angle urve. Hene, we are still able to spot the minima of the subspaeangle urve with high auray.4.6 The GSVD and generalized eigenvalue problemsIn Setion 3.5 we derived the onnetions between the subspae angle method andthe generalized eigenvalue approah of Barnett. Let us now have a loser look at theomparison of the numerial stability of both methods.A normwise perturbation bound for generalized eigenvalue problems is given in [26℄.There, the authors derive ondition numbers for the generalized eigenvalue problem
Ax = λBxunder normwise perturbation of A and B. Let the distane between the penils {A,B}and {Ã, B̃} be de�ned as

δ = min{ω > 0; ‖A − Ã‖2 ≤ ωα and ‖B − B̃‖2 ≤ ωβ},with α, β ≥ 0. Setting α = ‖A‖2 and β = ‖B‖2 leads to a relative normwise distane.Let λ be a semi-simple �nite eigenvalue of the penil {A,B}. Then the onditionnumber ceig(λ) assoiated with λ is
ceig(λ) =

(α + |λ|β)‖x‖2‖y‖2

|y∗Bx| , (4.10)where y is the left eigenvetor assoiated with λ. This ondition number is slightlydi�erent from the one given by Stewart and Sun in [65℄. They an treat in�nite



CHAPTER 4. NUMERICAL STABILITY 59eigenvalues by stating the eigenvalue problem as βAx = αBx. But this leads tothe use of more omplex metris sine now the e�et of perturbations on a two-dimensional parameter spae (α, β) has to be onsidered. This is done in [65℄ byusing the hordal metri
χ(〈α, β〉, 〈γ, δ〉) =

|αδ − βγ|
√

|α|2 + |β|2
√

|γ|2 + |δ|2
,whih leads to the ondition number

cchordal((α, β)) =
‖x‖2‖y‖2
√

|α|2 + |β|2
,where (α, β) is normalized suh that α = y∗Ax and β = y∗Bx. Here we are onlyinterested in small eigenvalues λ. Therefore, the use of the hordal ondition number isnot neessary and we use the ondition number ceig(λ) de�ned in (4.10). Furthermore,we will set α = β = 1 in (4.10).In Setion 3.5 we showed that Barnett's method an be interpreted as minimizing thesmallest eigenvalue µ1(λ) of

AB(λ)T AB(λ)x(λ) = µ(λ)AI(λ)T AI(λ)x(λ), (4.11)whih is equivalent to �nding the smallest generalized singular value σ1(λ) of thepenil {AB(λ), AI(λ)} sine µ1(λ) = σ2
1(λ). But the ondition numbers of the twoproblems di�er signi�antly. The ondition number of the smallest eigenvalue µ1(λ)of 4.11 is given as

ceig(µ(λ)) =
(1 + µ1(λ))‖x(λ)‖2

2

‖AI(λ)x(λ)‖2
2

.This is approximately the square of the ondition number
c(σ1(λ)) =

(1 + σ1(λ))‖x(λ)‖2

‖AI(λ)x(λ)‖2

.for the orresponding generalized singular value σ1(λ). Therefore, in terms of numer-ial stability it is always advisable to use the formulation as a GSVD problem insteadof a generalized eigenvalue problem. In Figure 4.6 we show the urve of µ1(λ) for theGWW-1 isospetral drum omputed by using the generalized eigenvalue formulation(4.11). Without rounding errors it should be equivalent to the square of the urve inFigure 4.2. But the urve in 4.6 seems to be ompletely garbled. Many of the valuesare negative, although the generalized eigenvalue problem only admits nonnegative
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Figure 4.6: The generalized eigenvalue urve for the GWW-1 isospetral drumeigenvalues. Some of the values returned by Matlab were even omplex. These areartefats of the ill-onditioning present in the eigenvalue formulation.In [6℄ Barnett overomes these ill-onditioning issues by projeting out the nullspaewhih auses this ill-onditioning. Using our notation this an be done in the followingway. Let
AI(λ) = U(λ)Σ(λ)V (λ)Tbe the singular value deomposition of AB(λ). Now de�ne a threshold ǫ̃ and let

σ1(λ) ≥ · · · ≥ σk(λ) > ǫ̃, k ≥ 1 be the singular values of AI(λ) that are larger than
ǫ̃. Partition V (λ) as V (λ) = [V1(λ) V2(λ)] with V1(λ) = V (:, 1:k) and V2(λ) = V (:

, k + 1:end). Then the regularized generalized eigenvalue problem is de�ned as
V1(λ)T AB(λ)T AB(λ)V1(λ)x̃(λ) = µ̃(λ)V T

1 AI(λ)T AI(λ)V1(λ)x̃(λ).A similar strategy was proposed and analyzed by Fix and Heiberger in [24℄. The right-hand side matrix now has the singular values σ2
1 ≥ · · · ≥ σ2

k > ǫ̃2. Therefore, to removeall numerially zero singular values of AI(λ)T AI(λ) we need to hose ǫ̃ >
√

ǫmach. In[6℄ Barnett uses a threshold of ǫ̃2 = 10−14, i.e. ǫ̃ = 10−7.We an apply the same strategy to the GSVD formulation. Then, instead of �ndingthe smallest generalized singular value σ1(λ) of the penil {AB(λ), AI(λ)} we �nd the



CHAPTER 4. NUMERICAL STABILITY 61smallest generalized singular value σ̃1(λ) of {AB(λ)V1(λ), AI(λ)V1(λ)}. However, thefollowing strategy to obtain a regularization matrix V1(λ) is more suitable. Let
[

AB(λ)
AI(λ)

]

=

[

QB(λ)
QI(λ)

]

R(λ)be the initial QR deomposition whih has to be formed in the subspae angle method.Now let
R(λ) = UR(λ)ΣR(λ)VR(λ)T (4.12)be the SVD of R(λ). The regularization matrix V1(λ) is de�ned as the �rst k olumnsof VR(λ) assoiated with those singular values of R(λ), whih are above the threshold

ǫ̃. The generalized singular values of {AB(λ)V1(λ), AI(λ)V1(λ)} are now obtainedfrom the CS deomposition of the penil {QB(λ)UR(:, 1:k), QI(λ)UR(:, 1:k)}. Thesmallest generalized singular value of {AB(λ), AI(λ)} is only modestly hanged withthis strategy if it is not too ill-onditioned. This is shown in the following theorem.Theorem 4.6.1 Let σ1 = s1/c1 be the smallest generalized singular value and x1 itsorresponding right generalized singular vetor of the penil {A,B} with A ∈ R
n×pand B ∈ R

m×p. Let the regularization matrix V1 ∈ R
p×k be obtained by the strategydesribed above and denote by σ̃j j = 1, . . . , k the generalized singular values of thepenil {AV1, BV1}. Thena) For all generalized singular values σ̃j of the penil {AV1, BV1},

σj ≤ σ̃jb) If ǫ̃‖x1‖2 < c1, then
σ1 ≤ σ̃1 ≤

s1 + ǫ̃‖x1‖2

c1 − ǫ̃‖x1‖2

.Proof Let V2 be the orthogonal omplement of V1, i.e. V = [V1 V2] is an orthog-onal matrix. Then ‖AV2y‖2 ≤ ǫ̃‖y‖2 and ‖BV2y‖2 ≤ ǫ̃‖y‖2 for all y ∈ R
p sine

‖
[

AV2

BV2

]

‖2 ≤ ǫ̃. Let x1 = V1y1 + V2y2. We have
‖AV1y1‖2 − ‖Ax1‖2 ≤ ‖AV1y1 − Ax1‖2 = ‖AV2y2‖2 ≤ ǫ̃‖y2‖2and
‖Bx1‖2 − ‖BV1y1‖2 ≤ ‖Bx1 − BV1y1‖2 = ‖BV2y2‖2 ≤ ǫ̃‖y2‖2
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‖AV1y1‖2

‖BV1y1‖2

≤ ‖Ax1‖2 + ǫ̃‖y2‖2

‖Bx1‖2 − ǫ̃‖y2‖2

.if ‖Bx1‖2− ǫ̃‖y2‖2 > 0. But this holds sine ‖Bx1‖2 = c1, ‖y2‖2 ≤ ‖x1‖2 and therefore
‖Bx1‖2 − ǫ̃‖y2‖2 = c1 − ǫ̃‖y2‖2 ≥ c1 − ǫ̃‖x1‖2 > 0.Together with ‖Ax1‖2 = s1 we �nd

‖AV1y1‖2

‖BV1y1‖2

≤ s1 + ǫ̃‖x1‖2

c1 − ǫ̃‖x1‖2

.From the minimax haraterization in Theorem 3.4.2 it follows that
σ̃1 ≤

s1 + ǫ̃‖x1‖2

c1 − ǫ̃‖x1‖2

.The fat that σj ≤ σ̃j j = 1, . . . , k follows immediately from Theorem 3.4.2 sinerestriting the penil {A,B} to {AV1, BV1} orresponds to minimizing only over asubset of all possible spaes of dimension j in Theorem 3.4.2.A similar result for the regularization of the ill-onditioned eigenvalue problem wasproved in [24℄. If σ1(λk) ≪ 1 at an eigenvalue λk of (1.1) we obtain for the perturbedgeneralized singular value σ̃1(λk):
σ̃1(λk) /

σ1(λk) + ǫ̃‖x1(λk)‖2

1 − ǫ̃‖x1(λk)‖2

= σ1(λk) + (1 + σ1(λk))ǫ̃‖x1(λk)‖2 + O((ǫ̃‖x(λk)‖2)
2),sine s1(λk) ≈ σ(λk) and c1(λk) ≈ 1. The magni�ation fator (1+σ1(λk))‖x(λk)‖2 isessentially the ondition number c(σ1(λk)). This an be expeted sine we ask for thehange of a singular value under a small perturbation in the penil {AB(λk), AI(λk)}.In Figure 4.7 we plot the urves for the sine of the smallest generalized singuar value

σ1(λ) and for the smallest generalized eigenvalue µ1(λ) on the GWW-1 isospetraldrum in the regularized ase. For both plots we use the same regularization matrix
V1 obtained from the QR deomposition of [AB(λ)

AI(λ)

] followed by the SVD of the Rfator with a threshold of ǫ̃ = 10−14. The osillations at the beginning of the subspaeangle urve now fully disappear and the generalized eigenvalue urve, although stillgarbled, now shows a muh better behavior than the non-pivoted urve in Figure4.6. The reason for the better behavior of the generalized singular value urve is
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Figure 4.7: The pivoted generalized singular value and generalized eigenvalue urveon the GWW-1 isospetral drum.



CHAPTER 4. NUMERICAL STABILITY 64that due to the pivoting also the ondition number of AB(λ)V1(λ) is now in the orderof magnitude of 1014 for all λ > 0 instead of 1016 in the non-pivoted ase. Thisgives enough auray to remove the osillations of the subspae angle urve awayfrom the �rst eigenvalue λ1 of (1.1) on this region (ompare to Figure 4.2). Also thegeneralized eigenvalue urve improves. But the threshold ǫ̃ is too small to remove thewhole ommon numerial nullspae of AI(λ)T AI(λ) and AB(λ)T AB(λ). To ahievethis we would need that ǫ̃ > 10−8. In this example there is hardly any penalty dueto the pivoting. The value σ1(λ) at the eigenvalue λ1 grows from 1.7 × 10−11 to
2.1 × 10−11. The reason is that ‖x(λ1)‖2 ≈ 4.9 × 103, and therefore the error boundin Theorem 4.6.1 is approximately ǫ̃‖x(λ1)‖2 ≈ 4.9 × 10−11.



Chapter 5
A posteriori auray bounds
In this hapter we want to answer the following question. Given the subspae angle
θ(λ) between the spaes A(λ) and D0 how an we bound the relative distane of λto the next eigenvalue of (1.1). To answer this question we annot work in spaessampled at boundary and interior points. Therefore, by A(λ) we always denote thespae onsisting of all partiular solutions in C2(Ω) ∩ C(Ω) satisfying (1.1a) but notneessarily (1.1b), and by D0 we denote the spae of all funtions in C2(Ω) ∩ C(Ω)whih are zero on ∂Ω.Error bounds for the MPS were derived by Fox, Henrii and Moler in 1967 [25℄ andthese results were simpli�ed and extended by Moler and Payne in 1968 [55℄. Anexellent overview of error bounds for ellipti eigenvalue problems was written byStill in 1988 [66℄. The bounds by Moler and Payne are inluded as speial ases inthat paper. In this hapter we �rst review the bounds by Moler and Payne and extendthem to the subspae angle method. Then we apply these bounds to obtain a highlyaurate inlusion for the �rst eigenvalue of the L-shaped region omputed with thesubspae angle method. In this thesis we are mostly onerned with the eigenvalueproblem (1.1), but most of the bounds given in this hapter an be extended to thefollowing more general setting. Let H be a separable Hilbert spae with inner produt
〈·, ·〉 and indued norm ‖·‖. Let T be an operator with domain D(T ), suh that D(T )is dense in H. Furthermore, let T by symmetri, i.e.

〈u, Tv〉 = 〈Tu, v〉, u, v ∈ D(T )65



CHAPTER 5. A POSTERIORI ACCURACY BOUNDS 66and let T have a pure point spetrum {λi} and orresponding orthonormal eigenve-tors ui, whih are omplete in H. By T̂ we denote an extension of T to a domain
D(T̂ ) suh that T̂ u = Tu for all u ∈ D(T ) and D(T ) ⊂ D(T̂ ) ⊂ H.For the eigenvalue problem (1.1) the Hilbert spae H is the spae of square integrablefuntions L2(Ω) with inner produt

〈u, v〉Ω =

∫

Ω

u(x, y)v(x, y)dxdy.For the operator T we have T = −∆ and
D(−∆) = {u ∈ C(Ω) ∩ C2(Ω) : u|∂Ω = 0},whih is just the spae D0 used in previous hapters. The extension D(T̂ ) in this aseis the spae C(Ω) ∩ C2(Ω)5.1 Auray bounds and the subspae angle methodThe �rst error bound for the MPS of whih we are aware was proved by Fox, Henriiand Moler1 [25℄.Theorem 5.1.1 (Fox, Henrii, Moler [25℄) Let λ and u be an approximate eigen-value and eigenfuntion of (1.1) normalized to ‖u‖Ω = 1 whih satisfy the eigenvalueequation (1.1a) but not neessarily the zero boundary onditions (1.1b). Let

ǫ = max
x∈∂Ω

|u(x)|and assume ǫ < 1. Then there exists an eigenvalue λk of (1.1) satisfying
|λk − λ|

λ
≤

√
2ǫ + ǫ2

1 − ǫ2
. (5.1)The advantage of this theorem is that all information needed for the upper bound in(5.1) an be obtained from omputed data. This enabled Fox, Henrii and Moler togive upper and lower bounds for the omputed eigenvalues.1They proved the error bound not only for the eigenvalue problem (1.1) but also for eigenvaluesof slightly more general ellipti operators.



CHAPTER 5. A POSTERIORI ACCURACY BOUNDS 67We do not give the original proof of this theorem here but instead present a proof byMoler and Payne for a very similar bound.Theorem 5.1.2 (Moler, Payne [55℄) Let T be a symmetri operator with domain
D(T ) and extension D(T̂ ) as de�ned above. Let λ be an approximate eigenvalueand u ∈ D(T̂ ) the orresponding approximate eigenvetor of T satisfying T̂ u = λu.Assume there exists w ∈ D(T̂ ) with

T̂w = 0 (5.2)and
u − w ∈ D(T ). (5.3)Let

ǫ =
‖w‖
‖u‖ ,and assume ǫ < 1. Then there exists an eigenvalue λk of T satisfying

|λ|
1 + ǫ

≤ |λk| ≤
|λ|

1 − ǫ
.Proof Let

an = 〈u, un〉, bn = 〈w, un〉,where un is the normalized eigenfuntion assoiated with the eigenvalue λn. We have
〈u − w, Tun〉 = 〈T (u − w), un〉 = 〈T̂ u, un〉 − 〈T̂w, un〉.and therefore

λn(an − bn) = λanor equivalently
λn − λ

λn

an = bn.Choose λk suh that
|λk − λ|
|λk|

= min
n

|λn − λ|
|λn|

.For this k it holds that
|λk − λ|
|λk|

|an| ≤ |bn|for all n. We obtain
|λk − λ|2
|λk|2

∞
∑

n=1

a2
n ≤

∞
∑

n=1

b2
n.



CHAPTER 5. A POSTERIORI ACCURACY BOUNDS 68Sine
ǫ2 =

∑∞
n=1 b2

n
∑∞

n=1 a2
nthe proof follows.To evaluate the error bound in Theorem 5.1.2 the norm of w has to be determined.In the ase T = −∆ this means that a boundary value problem has to be solved. Butsine the boundary values of w are known ‖w‖Ω an be easily estimated. From themaximum priniple for harmoni funtions it follows that

‖w‖Ω ≤ |Ω|max
x∈Ω

|w(x)| = |Ω|max
x∈∂Ω

|w(x)| = |Ω|max
x∈∂Ω

|u(x)|,where |Ω| =
∫

Ω
1dxdy is the area of Ω. We obtain

|λk − λ|
λk

≤ |Ω|maxx∈∂Ω |u(x)|
‖u‖Ω

. (5.4)Another possibility is to bound ‖w‖Ω using eigenvalues of a Steklo� eigenvalue prob-lem [66, 43℄, whih is de�ned as
∆2u = 0 in Ω

u = ∆u − q
∂u

∂n
= 0 on ∂Ω. (5.5)It an be shown (see for example [42℄) that the smallest eigenvalue q1 of (5.5) isharaterized by

q1 = min
∆h=0 in Ω

∫

∂Ω
h2ds

∫

Ω
h2dx

.It follows that
‖h‖Ω ≤ q

− 1

2

1 ‖h‖∂Ωfor all funtions h satisfying ∆h = 0 in Ω. This immediately leads to the followingbound of ǫ in Theorem 5.1.2 if T = −∆:
|λk − λ|

λk

≤ ǫ ≤ q
− 1

2

1

‖u‖∂Ω

‖u‖Ω

(5.6)As a orollary we obtain a bound on the relative error in terms of the prinipal angle
θ(λ) between A(λ) and D0.



CHAPTER 5. A POSTERIORI ACCURACY BOUNDS 69Corollary 5.1.3 For the angle θ(λ) between the spaes A(λ) and D0 it holds that
|λk − λ|

λk

≤ q
−1/2
1 tan θ(λ).Proof Denote by |‖u‖| =

√

‖u‖2
Ω + ‖u‖2

∂Ω the mixed norm indued by the innerprodut 〈·, ·〉 de�ned in (3.2). For every u ∈ A(λ) we have
sup
v∈D0

|‖v‖|=1

〈u, v〉 = ‖u‖Ω, (5.7)sine from 〈u, v〉 =
∫

Ω
u(x, y)v(x, y)dxdy for every v ∈ D0 and the Cauhy-Shwarzinequality it follows that 〈u, v〉 ≤ ‖u‖Ω for every v ∈ D0 with |‖v‖| = 1. Equality in(5.7) follows from the fat that u an be expanded in Ω in terms of the eigenfuntions

uk ∈ D0 of (1.1). Combining (3.1) and (5.7), we get
cos θ(λ) = sup

u∈A(λ)

|‖u‖|=1

‖u‖Ω. (5.8)It follows that
tan θ(λ) = inf

u∈A(λ)

|‖u‖|=1

√

1 − ‖u‖2
Ω

‖u‖Ω

= inf
u∈A(λ)

‖u‖∂Ω

‖u‖Ω

. (5.9)Sine for every u ∈ A(λ) (5.6) holds it follows from (5.9) that
|λk − λ∗|

λk

≤ q
− 1

2

1 tan θ(λ).Hene, the subspae angle is a measure for the optimal error bound whih is possibleby approximating from A(λ), while Theorem 5.1.2 only uses one element u ∈ A(λ) toobtain a bound on the relative eigenvalue error. In appliations A(λ) is not the spaeof all partiular solutions but the span of a �nite number of partiular solutions.Then Corollary 5.1.3 is still valid. But usually at an eigenvalue λk we will have
tan θ(λk) > 0, i.e., the bound on the relative error an be larger than zero at aneigenvalue. Similar bounds for the eigenvetors are also possible. Moler and Payneestablished the following theorem.



CHAPTER 5. A POSTERIORI ACCURACY BOUNDS 70Theorem 5.1.4 (Moler, Payne [55℄) Using the hypotheses and notation of Theo-rem 5.1.2, assume in addition that ‖u‖Ω = 1. Let
α = min

λn 6=λk

|λn − λ|
|λn|

,and let uk be the normalized projetion of u onto the eigenspae of λk. Then
‖u − uk‖Ω ≤ ǫ

α
(1 +

ǫ2

α2
)

1

2 .If we hoose for ǫ the tangent of θ(λ) we obtain the following orollary.Corollary 5.1.5 We use the notation of Corollary 5.1.3 and Theorem 5.1.4. Thenfor every δ > 0 and ǫ̃ = q
− 1

2

1 tan θ(λ) there exists a funtion u ∈ A(λ), ‖u‖Ω = 1 suhthat
‖u − uk‖Ω ≤ ǫ̃

α
(1 +

ǫ̃2

α2
)

1

2 + δ.Proof The proof follows by hoosing a funtion u ∈ A(λ) that omes su�ientlylose to the in�mum in (5.9).Further results for the ase in whih the approximate eigenfuntion u satis�es neither
T̂ u = λu nor u ∈ D(T ) are given in [43℄ and [66℄. We �nish this setion with avery interesting result by Still [66℄. The idea is the following. If an approximateeigenfuntion ũ satis�es the zero boundary onditions (1.1b) but not neessarily theeigenvalue equation (1.1a) the Rayleigh quotient

ρ(ũ) :=
〈ũ,−∆ũ〉Ω
〈ũ, ũ〉Ωis a quadratially good approximation to an eigenvalue in the sense that if the distaneof ũ to a normalized eigenvetor uk is O(ǫ), then the distane of ρ(ũ) to λk is O(ǫ2).Unfortunately, the funtions u ∈ A(λ) do not neessarily satisfy the zero boundaryonditions. But if we de�ne w as in Theorem 5.1.2 as the harmoni funtion with thesame boundary data as u ∈ A(λ), we an apply the Rayleigh quotient to u − w andobtain

ρ(u − w) =
〈u − w,−∆(u − w)〉Ω

〈u − w, u − w〉Ω
= λ

(

1 +
〈w, u − w〉Ω

〈u − w, u − w〉Ω

)

.



CHAPTER 5. A POSTERIORI ACCURACY BOUNDS 71From the properties of the Rayleigh quotient we an hope that
λ

(

1 +
〈w, u − w〉Ω

〈u − w, u − w〉Ω

)is a quadratially good approximation to an eigenvalue. This is made preise inthe following theorem by Still, whih also inludes the ase that the approximateeigenfuntion u does not neessarily satisfy −∆u = λu.Theorem 5.1.6 (Still [66℄) Given u ∈ D(T̂ )\D(T ), ‖u‖ = 1, λ ∈ R, de�ne thefuntion r by
r = T̂ u − λu.Let d+(ρ) and d−(ρ) be de�ned as

d+(ρ) = min
λν>λk

|λν − ρ|, d−(ρ) = min
λν<λk

|λν − ρ|,for a given eigenvalue λk of T .a) For a solution w ∈ D(T̂ ) of̂
Tw = 0, u − w ∈ D(T ),let

v1 := u − w, ǫ1 :=
‖λw + r‖Ω

‖u − w‖Ω

.Then with the Rayleigh quotient ρ1 = ρ(v1) given by
ρ1 = λ +

〈λw + r, v1〉
〈v1, v1〉

,the inequality
− (2ǫ1)

2

d+(ρ1)
≤ λk − ρ1 ≤

(2ǫ1)
2

d−(ρ1)holds for some eigenvalue λk of T .b) For a solution R ∈ D(T̂ ) of
T̂R = T̂ u − λu, u − R ∈ D(T )let
v2 := u − R, ǫ2 := |λ| ‖R‖

‖u − R‖ .



CHAPTER 5. A POSTERIORI ACCURACY BOUNDS 72Then with ρ2 = ρ(v2) given by
ρ2 = λ +

〈λR, v2〉
〈v2, v2〉

,the inequality
− (2ǫ2)

2

d+(ρ2)
≤ λk − ρ2 ≤

(2ǫ2)
2

d−(ρ2)is valid.Sine for the MPS it holds that T̂ u = λu and therefore r = 0 part b) of Theorem5.1.6 gives no more information than part a). In pratie, the orretion term
〈λw + r, v1〉

〈v1, v1〉usually annot be easily omputed. But nevertheless, the result is interesting, sineit shows that with a small orretion to λ a quadrati auray is possible.5.2 Verifying 13 digits of the �rst eigenvalue on theL-shaped regionIn this setion we use the bound by Moler and Payne to verify the �rst eigenvalueof the L-shaped region to 13 rounded digits of auray and ompare it to approxi-mate bounds obtained from the omputed subspae angle. The starting point is thesubspae angle method. We disretize the boundary of the L-shaped region with 500Chebyshev distributed points on eah side not adjaent to the reentrant orner. In ad-dition 50 interior points are randomly hosen. Using a Chebyshev distribution on theboundary has the e�et that near the orners of the region the absolute value of theapproximate eigenfuntion stays smaller than with equally distributed points. Theeigenfuntion is approximated with a basis of N = 80 Fourier-Bessel terms around thereentrant orner. The matrix A(λ) of partiular solutions evaluated at boundary andinterior points is normalized suh that ‖A(λ)(:, k)‖2 = 1 for k = 1, . . . , N . The sub-spae angle method performs a QR fatorization of A(λ) and omputes the smallestsingular value of the �rst part QB(λ) of Q(λ) orresponding to the boundary points.We denote the orresponding singular vetor of QB by v. As eigenvalue estimate



CHAPTER 5. A POSTERIORI ACCURACY BOUNDS 73we use the value λ = 9.6397238440219 whih was obtained from the omputationunderlying Figure 3.4.The resulting approximate eigenfuntion evaluated at all points is given as u = Q(λ)v.But we need the oe�ient vetor of u in the original basis A(λ). Therefore, we haveto solve
A(λ)c = Q(λ)v.Sine A(λ) = Q(λ)R(λ) this is equivalent to the system of equations R(λ)c = v. Dueto ill-onditioning the error between the omputed vetor c̃ and the true vetor c mightbe large. Nevertheless, the residual ‖R(λ)c̃− v‖2 will be small. The reason is that byignoring that the omputed Q is not exatly orthogonal the vetor c̃ is the exat rightgeneralized singular vetor of a small perturbation of the penil {AB(λ), AI(λ)}. ByLemma 4.3.2 and the disussion after Theorem 4.5.1 we an then expet ‖c̃‖2 = O(1)if λ is lose to an eigenvalue of (1.1). Sine

‖R(λ)c̃ − v‖2 = ‖∆Rc̃‖2 ≤ ‖∆R‖2‖c̃‖2,where ∆R is the bakward error of solving R(λ)c = v it follows that ‖R(λ)c̃ − v‖2 issmall.Indeed, in our ase we have
‖R(λ)c̃ − v‖2 ≈ 1.11 × 10−16and

‖A(λ)c̃ − Q(λ)v‖2 ≈ 2.19 × 10−15.Therefore, the oe�ient vetor c̃ de�nes an approximate eigenfuntion that is smallat the boundary points (‖AB(λ)c̃‖2 ≈ 2.48 × 10−14) and large at the interior points(‖AI(λ)c̃‖2 ≈ 1). To apply the error bound from (5.4) we need to estimate theexpressions maxx∈∂Ω |u(x)| and ‖u‖Ω, where u is now the approximate eigenfuntionde�ned by the oe�ient vetor c̃. The L2-norm ‖u‖Ω an easily be estimated witha trik already used in [25℄. Let G be the irular setor around the reentrant orner
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2
π that �ts into the L-shaped region. Then

‖u‖2
Ω ≥ ‖u‖2

G

=

∫

G

(u(x, y)2)d(x, y)

=
N
∑

k,j=1

ĉkĉj

∫ 1

0

J 2

3
k(
√

λr)J 2

3
j(
√

λr)rdr

∫ 3

2
π

0

sin
2

3
kθ sin

2

3
jθdθ

=
3

4
π

N
∑

j=1

ĉ2
j

∫ 1

0

J 2

3
k(
√

λr)2rdr, (5.10)where ĉk is the kth oe�ient of u in the non-saled Fourier-Bessel basis (for the atualomputations we use a saled basis). The last integral has an analyti expression interms of Fourier-Bessel funtions. But for onveniene we just evaluate it to highauray using the Matlab quadl funtion. In addition we use only the integral ofthe lowest order Bessel term in the above sum. We �nd
‖u‖Ω ≥ |ĉ1|

√

3

4
π

∫ 1

0

J 2

3
k(
√

λr)2rdr. (5.11)Figure 5.1 shows |u(x)| on the boundary olloation points. The plot is saled withthe area of the L-Shaped region and the lower bound for ‖u‖Ω from (5.11). Hene,the maximum of the urve is an upper bound for the error in (5.4).The omputed urve shows osillations around the true funtion values due to round-ing error e�ets. Sine these osillations also lead to values that are larger than thetrue values we still obtain a good upper bound. With the upper bound of the saled
|u(x)| of 1.5 × 10−14 we obtain the inlusion from (5.4) that

9.639723844021754 ≤ λ1 ≤ 9.639723844022043for the true �rst eigenvalue λ1 of the L-shaped region. This gives 13 rounded digitsorretly. Indeed, from Figure 3.4 we believe that the true value is 9.6397238440219to 14 digits of auray.How does this bound ompare to the subspae angle estimate in Theorem 5.1.3 ?We know neither the onstant q1 nor the exat subspae angle θ(λ). However, if weassume that tan θ(λ) ≈ σ1(λ), where σ1(λ) is the smallest generalized singular valueof the penil {AB(λ), AI(λ)} we an use (5.1.3) for an approximate estimate if q1 isnot too small. In our ase we obtain σ1(λ) ≈ 2.48 × 10−14 leading to a similar error



CHAPTER 5. A POSTERIORI ACCURACY BOUNDS 75

0 500 1000 1500 2000
0

0.5

1

1.5
x 10

−14

sc
al

ed
 |u

(x
)|

Figure 5.1: Numerially omputed values of |u(x)| on the boundary olloation pointsafter saling by the square root of the area and the estimated value of ‖u‖Ω. Roundingerrors lead to osillations around the true funtion values.
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Figure 5.2: The same plot as in Figure 5.1 but now for the value λ = 9.6397238,whih is the �rst 8 digits of the �rst eigenvalue of the L-shaped region.



CHAPTER 5. A POSTERIORI ACCURACY BOUNDS 76estimate as in (5.4). If we use the approximate eigenvalue λ = 9.6397238, whih isorret to 8 digits we obtain σ1(λ) ≈ 2.8× 10−8. Indeed, the plot in Figure 5.2 showsthat the relative error is at most 1.5× 10−8. This demonstrates that usually it is notneessary to apply the error bound in (5.4) to obtain a good error estimate. A goodrule of thumb is that the relative error of the eigenvalue approximation is smallerthan or equal to the omputed smallest generalized singular value σ1(λ).



Chapter 6
Convergene rates via omplexapproximation theory
While the previous hapters were onerned with the stable omputation of eigenval-ues and the derivation of auray bounds we will now disuss what the approxima-tion properties of the basis are. In the 1940's Vekua disovered lose relationshipsbetween solutions of ellipti partial di�erential equations and holomorphi funtionsin the omplex plane [80℄. This work was one of the motivations for the Method ofPartiular Solutions by Fox, Henrii and Moler. A very good survey of this theorywas written by Henrii in 1957 [36℄ and we will review some of the results of his paperto give a short introdution to Vekua's theory. Closely related is the question of ana-lyti ontinuation of solutions of ellipti PDE's. Classial papers on this subjet werewritten in the 1950's by Garabedian [28℄ and Lewy [48℄ and we review Garabedian'sresults in the speial ase of the eigenvalue problem (1.1). We will then show how toonnet Vekua's results with lassial results from omplex approximation to obtainonvergene estimates for the Method of Partiular Solutions. Using analyti ontin-uation and onformal mappings we derive bounds for the exponential onvergene ofthe MPS on regions with at most one orner singularity. For regions with multipleorner singularities we review algebrai onvergene rates whih go bak to Eisenstatin 1974 [23℄ and were later improved by Still in the 1980's [67, 69℄. Based on theseresults we show how to obtain inreasing algebrai onvergene rates for regions withmultiple singularities.

77



CHAPTER 6. CONVERGENCE RATES 786.1 An introdution to Vekua's theoryIn this setion we will losely follow Henrii's beautiful presentation of Vekua's theoryin [36℄. Before we start let us brie�y review what is meant by a real analyti funtionand by a omplex analyti (holomorphi) funtion and how these two are related1.Let u be a real funtion of the two variables x and y in a region Ω. Throughoutthis hapter we assume that Ω is bounded and simply onneted. Furthermore, theboundary ∂Ω is assumed to be a pieewise analyti Jordan urve. The funtion u isalled real analyti at a point (x0, y0) ∈ Ω if in a neighborhood of this point it an berepresented as a Taylor series of the form
u(x, y) =

∑

n,m≥0

cn,m(x − x0)
n(y − y0)

m,where
cnm =

1

n!m!

∂n+mu(x0, y0)

∂xn∂ym
.A omplex funtion φ of the omplex variable z = x + iy is holomorphi at z0 if it isomplex di�erentiable at z0. This is equivalent to having a Taylor series expansion ofthe form

φ(z) =
∞
∑

k=0

ck(z − z0)
k.in a neighborhood of z0. The oe�ients ck are given as

ck =
1

k!

d

dz
φ(z0).If φ depends on several omplex variables z1, . . . , zn ∈ C

n it is alled holomorphi ifit is holomorphi in eah of its omplex variables. This is equivalent to the propertythat φ has a onvergent Taylor series in the N omplex variables z1, . . . , zn (see forexample Chapter 2 of [72℄).Let u be real analyti at a point (x0, y0). Then u an be extended to a holomorphifuntion in two omplex variables by allowing x and y to take omplex values in a smallneighborhood S ⊂ C
2 around (x0, y0). This follows from the absolute onvergene ofthe Taylor series of u [49℄. We an write the holomorphi ontinuation in the following1Often the term analyti is used for holomorphi funtions. To distinguish between real analytiand omplex analyti funtions we will always use the term holomorphi instead of omplex analyti.



CHAPTER 6. CONVERGENCE RATES 79way. Let z = x + iy and z∗ = x − iy. We have z = z∗ if and only if x and y are real.De�ne
U(z, z∗) = u

(

z + z∗

2
,
z − z∗

2i

)

.It follows that U(z, z) = u(x, y). If we let z and z∗ vary independently around
z0 = x0 + iy0 and z0, there exists a neighborhood S(z0) ⊂ C of z0 suh that U isholomorphi in the region [S(z0), S

∗(z0)] ⊂ C
2, where S∗(z0) = {z : z ∈ S(z0)} isthe omplex onjugate region of S(z0). For an arbitrary real analyti funtion thisholomorphi ontinuation is only possible in a small neighborhood S(z0) around z0.Vekua's theory asserts that for solutions of ertain ellipti PDEs this ontinuationis not only possible in the small but in the large, i.e. if u is analyti in Ω then U isholomorphi in [Ω, Ω∗]. To state the results of Vekua Henrii de�nes three lasses offuntions:I This lass ontains all funtions whih are twie ontinuously di�erentiable in

Ω.II This lass ontains all funtions f whih are real analyti in Ω.III This lass onsists of all funtions u of Class II whih possess a holomorphiextension U into the region [Ω, Ω∗] ∈ C
2. Hene, for every point z0 ∈ Ω thereexists a neighborhood S(z0) suh that Ω ⊂ S(z0) and U is holomorphi in

[S(z0), S
∗(z0)].A simple example given by Henrii is the lass of harmoni funtions. Let u beharmoni in Ω. Then u is real analyti, i.e. in Class II and it is well known that thereexists a funtion φ holomorphi in Ω suh that

u(x, y) = Re{φ(z)}, z ∈ Ω.De�ne the funtion φ̄(z) := φ(z), whih is holomorphi for z ∈ Ω∗. Now let
U(z, z∗) =

1

2
[φ(z) + φ(z∗)].Then U is holomorphi in [Ω, Ω∗] and it holds that

U(z, z) =
1

2
[φ(z) + φ(z)] = u(x, y).



CHAPTER 6. CONVERGENCE RATES 80Therefore, U is the unique holomorphi extension of u into [Ω, Ω∗]. Let now the linearellipti partial di�erential equation Lu be de�ned as
Lu(x, y) = ∆u(x, y) + a(x, y)

∂u

∂x
(x, y) + b(x, y)

∂u

∂y
(x, y) + c(x, y)u(x, y) = 0. (6.1)The following theorem is a lassial result of the theory of ellipti PDEs [29℄.Theorem 6.1.1 If the oe�ient funtions a, b, c are in Class II then every solution

u of Lu = 0 in Class I is also in Class II.Vekua proved the following even stronger result.Theorem 6.1.2 (Vekua) If the oe�ient funtions a, b, c are in Class III, thenevery solution u of Lu = 0 in Class I is also in Class III.For Theorem 6.1.2 it is essential that Ω is simply onneted. Consider the followingexample. The harmoni funtion u(x, y) = log(x2 + y2) is harmoni in every annulus
A surrounding the origin, but the holomorphi extension U(z, z∗) = log z + log z∗ isnot holomorphi in [A,A∗].If L = ∆ then any holomorphi funtion φ(z) de�nes a solution of Lu = 0 via
u(x, y) = Re{φ(z)}. Vekua showed that this is just a speial ase of a more gen-eral relationship between holomorphi funtions and solutions of ellipti PDEs withoe�ient funtions belonging to Class III. De�ne

A(z, z∗) =
1

4

{

a

(

z + z∗

2
,
z − z∗

2i

)

+ ib

(

z + z∗

2
,
z − z∗

2i

)}

,

B(z, z∗) =
1

4

{

a

(

z + z∗

2
,
z − z∗

2i

)

− ib

(

z + z∗

2
,
z − z∗

2i

)}

,

C(z, z∗) =
1

4
c

(

z + z∗

2
,
z − z∗

2i

)

.Let φ be any holomorphi funtion in Ω and �x z0 ∈ Ω. De�ne the integral operator
I[φ; z0](z, z

∗) =
1

2

{

G(z, z0, z, z
∗)φ(z) +

∫ z

z0

φ(t)H(t, z0, z, z
∗)dt+

G(z0, z
∗, z, z∗)φ̄(z∗) +

∫ z∗

z0

φ̄(t∗)H∗(z0, t
∗, z, z∗)dt∗

} (6.2)
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H(t, t∗, z, z∗) = B(t, t∗)G(t, t∗, z, z∗) − ∂G

∂t
(t, t∗, z, z∗),

H∗(t, t∗z, z∗) = A(t, t∗)G(t, t∗, z, z∗) − ∂G

∂t∗
(t, t∗, z, z∗).For z∗ = z these equations simplify to

I[φ; z0](z, z) = Re{G(z, z0, z, z)φ(z) +

∫ z

z0

φ(t)H(t, z0, z, z̄)dt

}

:= Re{V [φ; z0](z, z)}.The funtion G(t, t∗, z, z∗) is the omplex Riemann funtion for L. We will not go intofurther detail about its de�nition here. A detailed desription is given in [36℄. Forsome equations this funtion is expliitly known. If L = ∆, then G(t, t∗, z, z∗) = 1,and for the Helmholtz operator L = ∆ + λ it is given as
G(t, t∗, z, z∗) = J0(

√
λ
√

(z − t)(z∗ − t∗)).We an now establish a 1−1 relationship between holomorphi funtions and solutionsof ellipti PDEs with oe�ient funtions in Class III.Theorem 6.1.3 (Vekua) Fix z0 ∈ Ω. Then there exists a unique funtion φ holo-morphi in Ω with φ(z0) real suh that
u(x, y) = Re{V[φ; z0]}(z, z), z = x + iy ∈ Ω

U(z, z∗) = I[φ; z0](z, z
∗), (z, z∗) ∈ [Ω, Ω∗].Moreover,

φ(z) = 2U(z, z0) − U(z0, z0)G(z0, z0, z, z0). (6.3)An equivalent integral representation, whih does not depend on the omplex Rie-mann funtion but an be approximated diretly from the oe�ients of the elliptiequation, was developed by Bergman [11℄. In [64℄ Shryer uses it to onstrut parti-ular solutions for ellipti PDEs with polynomial oe�ient funtions.From now on we will say that φ is assoiated with u or u is assoiated with φ if
u = Re{V [φ; z0]}. Let us apply this theorem to two examples. First let L = ∆. Then
V redues to the identity operator and we obtain

u(x, y) = Re{φ(z)}.



CHAPTER 6. CONVERGENCE RATES 82Furthermore, from (6.2) we �nd
U(z, z∗) = I[φ; z0](z, z

∗) =
1

2

{

φ(z) + φ̄(z∗)
}

.These are just the results we derived earlier for L = ∆. Now let L = ∆ + λ and let
Ω be the wedge with interior angle π/α (see Figure 2.1). An eigenfuntion of thisregion is given as

u(r, θ) = Jαk(
√

λr) sin αkθ, k ∈ N, λ > 0.We want to derive the holomorphi funtion φ assoiated with u. Let z = reiθ. Then
u(r, θ) = Jαk(

√
λ
√

zz)





(
√

z

z

)αk

−
(

√

z

z

)αk


 /(2i).From Theorem 6.1.2 it follows that the unique analyti ontinuation of u(x, y) intothe region [Ω, Ω∗] ⊂ C
2 is given by

U(z, z∗) = Jαk(
√

λ
√

zz∗)





(
√

z

z∗

)αk

−
(

√

z∗

z

)αk


 /(2i) (6.4)sine U(z, z∗) is holomorphi in [Ω, Ω∗] and u(x, y) = U(z, z). Bessel funtions anbe expressed by power series as
Jν(x) = xν

∞
∑

n=0

an(−x2

4
)nfor ertain parameters an.2 Therefore, (6.4) beomes

U(z, z∗) =
1

2i

(

zαk − (z∗)αk
)
√

λ
αk

∞
∑

n=0

an(−1

4
)n(λzz∗)n. (6.5)From Theorem 6.1.3 it follows that

φ(z) = 2U(z, z0) − U(z0, z0)G(z0, z0, z, z0).By a ontinuity argument we an �x z0 = 0 and obtain together with (6.5)
φ(z) =

1

i

√
λ

αk
a0z

αk.For u(x, y) = Jαk(
√

λr) cos αkθ we obtain similarly φ(z) =
√

λ
αk

a0z
αk.Let us summarize these results.2The an are de�ned by the reurrene relation a0 = 1

2νΓ(ν+1) , an = an−1/(n(n + ν)).



CHAPTER 6. CONVERGENCE RATES 83Lemma 6.1.4 Let Ω be a wedge with interior angle π/α and let L = ∆ + λ. Then
− 1

a0

√
λ

αk
Jαk(

√
λr) sin αkθ = Re{V[izαk, 0]}(z, z),

1

a0

√
λ

αk
Jαk(

√
λr) cos αkθ = Re{V[zαk, 0]}(z, z).The funtions de�ned by Re{V [izαk, 0]} and Re{V [zαk, 0]}(z, z) are sometimes alledgeneralized harmoni polynomials (see for example [52℄) sine for L = ∆ they lead tothe harmoni polynomials rαk sin αkθ and rαk cos αkθ.To establish rates of onvergene for the Method of Partiular Solutions the smooth-ness of the holomorphi funtion φ assoiated with a solution u of Lu = 0 is important.This was analyzed by Eisenstat in [23℄. He showed that u and its assoiated funtion

φ have the same smoothness behavior on the boundary. To state his theorem we needthe following de�nition.Let f be de�ned on a losed subset S of the omplex plane. Then f is Hölderontinuous with exponent 0 < γ ≤ 1 if there exists K > 0 suh that
|f(z1) − f(z2)| ≤ K|z1 − z2|γ , for all z1, z2 ∈ S.De�ne Cp,γ(Ω) as the spae of funtions that are p times ontinuously di�erentiablein Ω and whose pth derivative is Hölder ontinuous with exponent γ in Ω. Eisenstatproved the following extension of Theorem 6.1.3.Theorem 6.1.5 (Eisenstat [23℄) Let Ω have no interior or exterior usps, i.e. forthe angle π/αq at eah orner q it holds that 0 < π/αq < 2π. Fix z0 ∈ Ω.1. Let Φ ∈ Cp,γ(Ω) be holomorphi in Ω and de�ne

u(x, y) := Re{V [Φ(z), z0]}(z, z), z = x + iy ∈ Ω.Then u ∈ Cp,γ(Ω) and satis�es Lu = 0 in Ω.2. If u ∈ Cp,γ(Ω) satis�es Lu = 0 in Ω, then there exists a unique holomorphifuntion Φ ∈ Cp,γ(Ω) with Φ(z0) real suh that
u(x, y) = Re{V [Φ(z), z0]}(z, z), z = x + iy ∈ Ω

U(z, z∗) = I[φ; z0](z, z
∗), [z, z∗] ∈ [Ω, Ω∗]. (6.6)



CHAPTER 6. CONVERGENCE RATES 84Moreover, Φ(z) = 2U(z, z0) − U(z0, z0)G(z0, z0, z, z0).6.2 Analyti ontinuation of eigenfuntions via re-�etionAn important appliation of Vekua's theory are re�etion priniples for solutions ofellipti PDE's. Let the boundary ∂Ω ontain a segment σ of the y�axis. Courant andHilbert [61℄ desribed how to analytially ontinue solutions of the eigenvalue problem(1.1) aross σ. The analyti ontinuation is simply given as ũ(x, y) = −u(−x, y) for
(x, y) in the mirror region Ω′ de�ned by re�eting Ω at the y-axis. In 1954 Garabedian[28℄ established re�etion priniples for the equation

Lu(x, y) = ∆u(x, y) + c(x, y)u(x, y) = 0with zero boundary onditions on an arbitrary analyti ar. This was generalizedto ellipti PDEs of the form (6.1) and more general boundary onditions by Lewy[48℄. In the book by Garabedian [29℄ the extension of these results to some nonlinearellipti PDEs is desribed. Here, we just disuss the ase L = ∆ + λ and use thetehnique desribed in [28℄. Let σ be an analyti segment of the boundary whih isparameterized in the form w = R(w) for w ∈ σ, where R is a holomorphi funtionin a neighborhood of σ. For example, if σ is a part of the x�axis then w = w on
σ and therefore R(w) := w. If σ is a irle with radius r then ww = r2 on σ and
R(w) := r2/w. This example shows that in general R is not an entire funtion.Assume that z0 ∈ σ. Then the funtion u(x, y) = U(z, z) an be expressed byTheorem 6.1.3 as

U(z, z) = Re{G(z, z0, z, z)φ(z) −
∫ z

z0

φ(t)
∂G

∂t
(t, z0, z, z)dt

}

.By partial integration and using (6.3) this equation beomes
U(z, z) = U(z0, z0)G(z0, z0, z, z) + 2Re{∫ z

z0

∂U

∂t
(t, z0)G(t, z0, z, z)dt

}

, (6.7)sine U(z0, z0)G(z0, z0, z, z) is real and G(z, z0, z, z) = G(z0, z0, z, z0) = 1 for L =

∆+λ. If u(x, y) satis�es zero Dirihlet boundary onditions on σ we have U(z0, z0) = 0and therefore
U(z, z) = 2Re{∫ z

z0

∂U

∂t
(t, z0)G(t, z0, z, z)dt

}

. (6.8)
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T (z) =

∫ z

z0

∂U

∂t
(t, z0)G(t, z0, z, R(z))dt. (6.9)From (6.8) it follows that

0 = U(z, z) = 2Re{T (z)} = T (z) + T (z)for z ∈ σ sine u(x, y) = U(z, z) satis�es the zero boundary onditions there and
z = R(z) on σ. T is holomorphi in Ω lose to σ and has zero real part on σ.Therefore, we an re�et it aross σ as

T̃ (z) = −T (R(z)) (6.10)for z in the re�etion of Ω lose to σ. On σ we have
T̃ (z) = −T (R(z)) = T (z).Hene, T̃ de�nes a holomorphi ontinuation of T if R(z) maps omplex numberslose to σ on the other side of the boundary line σ. But this is always the ase as anbe seen by linearizing R(z) lose to z0. To obtain the re�eted funtion ũ(x, y) thefollowing two steps are neessary. From (6.9) it follows that

T (R(z)) +

∫ z

z0

∂U

∂t
(t, z0)G(t, z0, z, R(z))dt = 0 (6.11)is a Volterra integral equation3 de�ning the holomorphi ontinuation of U(z, z0) out-side Ω. From (6.7) the analyti ontinuation of u(x, y) aross σ an then be obtained.Computing the analyti ontinuation of an eigenfuntion u is ompliated sine itinvolves the appliation of Vekua operators and the solution of an integral equation.But usually we are only interested in the existene of the analyti ontinuation intoa ertain region and this only depends on ∂Ω. Consider for example solutions of theeigenvalue problem (1.1) on the unit disk. Then R(w) := 1/w and we an analytiallyontinue any eigenfuntion to the whole of the omplex plane.Another simple onsequene of re�etion priniples for eigenfuntions is the analytiontinuation in the neighborhood of ertain orners of regions. Let u be an eigenfun-tion in a wedge with interior angle π/k, k ∈ N. Then by ontinued re�etion u anbe analytially ontinued to an eigenfuntion in a wedge with interior angle π. One3A Volterra integral equation has the form w(z) −

∫ z

z0

K(z, t)w(t)dt = f(z). If f is holomorphiin Ω and the kernel K(z, t) is holomorphi in [Ω,Ω] ⊂ C
2 the solution w(z) is holomorphi in Ω [36℄.After partial integration (6.11) is of this form in the region of analytiity of T̃ .
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Γ

1

Γ
2

Ω

Figure 6.1: A region de�ned by the intersetion of two irles�nal re�etion then yields the analyti ontinuation of u in a whole neighborhood ofthe orner. Hene, any eigenfuntion an be analytially ontinued around a ornerthat loally onsists of two straight lines meeting at an interior angle π/k, where k isan integer. If k is not an integer this is generally not possible. Around a orner withinterior angle π/α any eigenfuntion u of (1.1) an be expanded into the series,
u(r, θ) =

∞
∑

k=1

ckJαk(
√

λr) sin αkθ. (6.12)whih is absolutely onvergent to u in a neighborhood of the orner [67℄. Asymptot-ially, we obtain
u(r, θ) = γrα sin αθ + o(rα), (6.13)for a onstant γ depending on the normalization of u. This was proved by Lehmannin 1957 [47℄ for more general ellipti PDEs. Therefore, if α is not an integer u an ingeneral not be analytially ontinued around the orner. If the orner does not onsistof two straight lines then apart from some speial ases u annot be analytiallyontinued around the orner either. As an example onsider the region Ω de�ned bythe intersetion of two irles Γ1 and Γ2 with radius 1 suh that the angles at the twoorners are π/2. Figure 6.1 shows this region.



CHAPTER 6. CONVERGENCE RATES 87Theorem 6.2.1 No eigenfuntion on the region Ω of Figure 6.1 an be analytiallyontinued aross the two orners of ∂Ω.Proof Assume that there is an eigenfuntion u of (1.1) on Ω that an be analytiallyontinued around the two orners of Ω. Then we an re�et u aross the upperboundary segment of Ω to obtain a funtion that is analyti inside the disk de�nedby Γ1 and also in a neighborhood of Γ1. By analyti ontinuation of the lower zeroboundary line we obtain u|Γ1
= 0. Therefore, the analyti ontinuation of u de�nesan eigenfuntion of (1.1) on the disk enlosed by Γ1. A nodal line of this eigenfuntionis the upper boundary segment of Ω. But nodal lines of eigenfuntions on a disk anonly be onentri lines around the enter of the dis or straight lines emerging fromthe enter of the dis, a ontradition.Let us summarize our results in the following de�nition and theorem.De�nition A orner onsisting of two straight lines meeting at an interior angle π/k,where k ∈ N, is alled regular. Otherwise, it is alled singular.Theorem 6.2.2 If a orner is regular any eigenfuntion an be analytially ontinuedinto a neighborhood of it.In the following we will use the analyti ontinuation results from this setion toestablish exponential onvergene of the MPS on ertain regions.6.3 Convergene estimate for regions with no singu-lar ornersIn this setion we establish onvergene estimates of the subspae angle method forregions without singular orners4. Before we review some results of omplex approx-imation let us �rst establish the onnetion between the subspae angle method and4Exponential onvergene of the MPS on regions whose boundary is an analyti Jordan urvewas also theoretially established by Still in [67℄ but without giving exat asymptoti exponentialonvergene rates.



CHAPTER 6. CONVERGENCE RATES 88omplex approximation. For a set S ⊂ C de�ne the supremum norm ‖φ‖∞,S as
‖φ‖∞,S := sup

z∈S
|φ(z)|.Sine we assume that Ω is bounded the Vekua operator Re{V [φ; z0]} is bounded in

‖ · ‖∞,Ω by
‖Re{V [φ; z0]}‖∞,Ω ≤ ‖G‖∞,Ω‖φ‖∞,Ω +

∫ z

z0

‖H‖∞,Ω‖φ‖∞,Ωd|t| ≤ KV ‖Φ‖∞,Ω(see [23℄).For the equation −∆ + λu = 0 the onstant KV depends in addition to the region Ωalso on the parameter λ. Let us denote by VA the spae of all holomorphi funtions
φ assoiated with funtions u ∈ A(λ) for a �xed z0 ∈ Ω.Lemma 6.3.1 Let (λk, uk) be an eigenpair of (1.1). Fix z0 ∈ Ω and let φk be theholomorphi funtion assoiated with uk. Let u ∈ A(λk) and denote by φ ∈ VA itsassoiated holomorphi funtion. Denote by θ(λk) the prinipal angle between A(λk)and D0. Then

tan θ(λk)‖u‖Ω ≤ C‖φ − φk‖∞,Ωfor a onstant C > 0 that depends only on λk and Ω.Proof We have
‖u‖∂Ω = ‖u − uk‖∂Ω ≤ C1‖u − uk‖∞,∂Ω = C1‖u − uk‖∞,Ω ≤ C1KV ‖φ − φk‖∞,Ωfor a onstant C1 > 0 that depends on Ω. Therefore, with C = C1KV

‖u‖∂Ω ≤ C‖φ − φk‖∞,Ω. (6.14)Sine
tan θ(λk) = inf

u∈A(λ)

‖u‖∂Ω

‖u‖Ωwe obtain
‖u‖Ω tan θ(λk) ≤ ‖u‖∂Ω.Together with (6.14) the result follows.
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|‖u‖Ω − ‖uk‖Ω| ≤ ‖u − uk‖Ω ≤ C‖φ − φk‖∞,Ω̄for a onstant C > 0 depending on Ω and λk the fator ‖u‖Ω is lose to 1 if φ is a goodapproximation of φk and ‖uk‖Ω = 1. Hene, the fator ‖u‖Ω has little in�uene. Theimportant onsequene of this lemma is that tan θ(λk) an be bounded by the errorof approximating φk with funtions φ ∈ VA, giving a link between subspae anglesand omplex approximation. In a similar form this Lemma was already proved in [23℄but without using the notion of subspae angles.After establishing the link between the subspae angle method and the approxima-tion of holomorphi funtions let us review some results of omplex approximationtheory whih we will need to establish onvergene rates. Let the error EN,K(φ) ofapproximating a holomorphi funtion φ in a ompat set K ⊂ C with polynomialsof maximal degree N be de�ned as

EN,K(φ) = min
p∈ΠN

max
z∈K

|φ(z) − p(z)|,where ΠN is the spae of polynomials of maximal degree N . The �rst question iswhether it is possible at all that EN,K(φ) → 0 for N → ∞, i.e. if the funtion φ anbe arbitrarily well approximated on K by polynomials. If C\K is onneted and φ isholomorphi on K this was shown by Runge in 1885. His result is often referred toas the beginning of omplex approximation theory (see [27, 53℄ for an overview of thehistory). The original theorem of Runge annot be applied if φ is not holomorphion ∂K. A more general result was proved by Mergelyan in 1951 [53℄. He showedthat EN,K(φ) → 0 if C\K is onneted and φ is holomorphi in the interior of K andontinuous on ∂K. This is a great improvement on Runge's theorem sine φ needsnot be holomorphi on ∂K any longer. The result inludes several previous results asspeial ases (for example, the Weierstrass approximation theorem for approximationon an interval [a, b]).The next question is the speed of onvergene of EN,K(φ), i.e. how fast does EN,K(φ)go to zero? For simpliity we assume that K is a simply onneted ompat setbounded by a pieewise analyti Jordan urve. Let C = ∂K. Then the equipotentialurves Cρ are de�ned in the following way.Equipotential urves Let w = Φ(z) be the onformal map of the exterior of K tothe exterior of the unit dis {w ∈ C : |w| > 1} normalized in the standard way at
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Figure 6.2: The de�nition of equipotential urvesin�nity5. The equipotential urve Cρ of radius ρ > 1 is de�ned as Cρ = {z ∈ C :

|Φ(z)| = ρ} (see Figure 6.2).Furthermore, by the onformal distane of a point z to a region Ω we denote the value
ρ suh that z ∈ Cρ.For ρ > 1 the urve Cρ is always an analyti Jordan urve [84℄. The term equipotentialurve omes from potential theory. The funtion gK(z) = log |Φ(z)| is the Green'sfuntion for K, whih is up to an additional onstant the equilibrium potential of K(see [62℄ for a beautiful introdution). With this de�nition we an now give the �rststatement of the rate of onvergene of EN,K(φ).Theorem 6.3.2 Suppose ρ > 1 is the largest number suh that φ is analyti inside
Cρ. Then

EN,K(φ) = O(R−N)holds for every R < ρ, but for no R > ρ.Proof The lassial referene for a proof of this theorem and its impliations is Walsh[84℄. A more aessible proof is given in [27℄.We are now ready to prove exponential onvergene rates for the subspae anglemethod on regions without singular orners.5Φ(z) is of the form Φ(z) = cz + c0 + c1

z + . . . with c > 0.



CHAPTER 6. CONVERGENCE RATES 91Theorem 6.3.3 Suppose (λk, uk) is an eigenpair of (1.1) on Ω with boundary C =

∂Ω. Let ‖uk‖Ω = 1 and assume that there exists R > 1 suh that uk is analyti insideand on CR. Fix z0 ∈ Ω and let
AN(λk) :=

{

N
∑

j=0

Jj(
√

λkr)(aj sin jθ + bj cos jθ) : aj, bj ∈ R

}be the spae of Fourier-Bessel funtions of maximum order N expanded around z0.Then
tan θN(λk) = O(R−N)as N → ∞, where θN(λk) is the subspae angle between AN(λk) and D0.Proof Although the hypothesis is di�erent, the proof is very similar to the proof ofTheorem 8.3 in [23℄. From Lemma 6.1.4 it follows with α = 1 that VA = ΠN . Let φkbe the holomorphi funtion assoiated with uk. Then from Theorem 6.3.2 it followsthat

min
pN∈ΠN

‖pN − φk‖∞,Ω = O(R−N). (6.15)as N → ∞. Let p̃N be the best approximation of φk from ΠN . Together with Lemma6.3.1 we �nd
‖Re{V [p̃N ; z0]}‖Ω tan θN(λk) = O(R−N).We an estimate ‖Re{V [p̃N ; z0]}‖Ω as

‖Re{V [p̃N ; z0]}‖Ω ≥ ‖uk‖ − ‖uk − Re{V [p̃N ; z0]}‖Ω

≥ 1 − C‖uk − Re{V [p̃N ; z0]}‖∞,Ω

≥ 1 − CKV ‖p̃N − φk‖∞,Ω

= 1 − O(R−N)for a onstant C > 0 that depends on Ω. Therefore, ‖Re{V [p̃N ; z0]}‖Ω approahes 1and it follows that
tan θN(λk) = O(R−N).To �nd the maximal onvergene rate we need to know how far aross Ω an eigen-funtion uk of (1.1) an be analytially ontinued. The singularity zs of the analytiontinuation of uk with the smallest onformal distane to the region then gives the
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Figure 6.3: The irular L region and some of its equipotential urves. The dots aresingularities of the analyti ontinuation of an eigenfuntion of the region.
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Figure 6.4: Any eigenfuntion on the irular L region an be re�eted to �ll thewhole omplex plane exept for an in�nite number of disks of radius 1 positioned ona regular grid. .



CHAPTER 6. CONVERGENCE RATES 93onvergene rate of the subspae angle method. Let us demonstrate this with an ex-ample. Figure 6.3 shows a region Ω, whih is similar to the L-shaped region but with aquarter irle of radius 1 instead of the reentrant orner. The �gure also shows someof the equipotential lines Cρ omputed with Drisoll's Shwarz-Christo�el Toolbox[20℄. The two dots mark singularities of the analyti ontinuation of an eigenfuntion.Their positions are obtained in the following way. We an re�et any eigenfuntion uaross eah of the straight lines of Ω. The resulting eigenfuntion lives in the regionshown in Figure 6.4. We an further re�et it to over the whole omplex plane apartfrom an in�nite number of disks of radius 1 ordered on a regular grid. But how faran we re�et an eigenfuntion into the disk? Consider for example the two upperdisks in Figure 6.4. Let us take a point z0 lying on the straight line between thesedisks. We an re�et it aross the right irle and obtain a point z1 lying on the sameline but inside the upper right disk. The position of z1 is obtained from the equation
(z0 − (2 + 2i))(z1 − (2 + 2i)) = 1.Now we an re�et z1 again in the upper left irle to obtain a point z2 in that disk.Then we an re�et again in the right irle and so on. The two limit points of thisiteration are not the enters of the disks, but are determined by the ondition thatthe re�etion of the left limit point in the right disk is exatly the left limit pointand vie versa. Due to the symmetry of the region their distanes to the enters ofthe two disks must be equal. This leads to the two limit points zL = −

√
3 + 2i inthe left disk and to zR =

√
3 + 2i in the right disk. We annot analytially ontinue

u further into the two disks on the line x + 2i, x ∈ R. Therefore, the points zL and
zR are singularities of the analyti ontinuation of u. By symmetry we obtain manymore singularities suh as the point zR′ = 2+ i

√
3. The points zR and zR′ are plottedin Figure 6.3. There might be other singularities with a smaller onformal distaneto Ω. But if suh singularities exist their onformal distane will not be signi�antlysmaller than that of zR and zR′ sine the upper line in Figure 6.4 is the shortestonnetion between two disks and therefore leads to the smallest penetration into thetwo disks by re�etion. For example, if we re�et between the lower left irle and theupper right irle we obtain two singularities whose onformal distane to the regionis larger than that of zR. With the Shwarz-Christo�el toolbox we obtain the value

ρ ≈ 1.476 for the onformal distane of zR to Ω. Approximating with Fourier-Besselsine and osine funtions we obtain from Theorem 6.3.3
tan θN(λk) = O(1.476−N)
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Figure 6.5: The theoretial onvergene rate for N → ∞ (dashed) and the measuredonvergene (solid) on the L irle region. The measured onvergene �ts well withthe predited rate.for an eigenvalue λk of (1.1) on the irular L region, assuming zR is the singularitywith the smallest onformal distane6. In Figure 6.5 we ompare the omputed valueof tan θN(λ1) with the estimated maximal onvergene rate. For λ1 we used theapproximation λ1 ≈ 7.02025391131. The onvergene stops at N = 70 sine λ1 isonly known to about 12 digits of auray. The measured onvergene urve �rstseems to move away from the estimated straight line. But then the slope of themeasured onvergene slowly approahes the estimated value again and we obtain agood math between the estimated slope and the measured slope. We always have tokeep in mind that the estimated onvergene rate is an asymptoti rate for N → ∞.The transient behavior of the measured urve an di�er from this.Another interesting example is the half annulus with radii r1 = 1 and r2 = 2 as shownin Figure 6.6, where also some equipotential urves are plotted. The losest singularityis at 0 leading to a theoretial onvergene rate of O(1.16−N). By inreasing r2 weould make the asymptoti rate of onvergene arbitrarily lose to 1. The reasonfor this slow onvergene is that the approximation basis is not a very good one.All eigenvalues on the half annulus are also eigenvalues on the full annulus. But6In a strit sense, we an only say that tan θN (λk) = O(R−N ) for R < 1.476 if 1.476 is the exatmaximum radius of analytiity. But sine 1.476 is just a numerially estimated value we will omitthis and just say that the rate is O(1.476−N ).
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Figure 6.6: A half annulus region and its mapping funtion. The dot marks thelosest singularity of an eigenfuntion of the region.the orresponding eigenfuntions are given as linear ombinations of Fourier-Besselfuntions of the �rst and of the seond kind by
um,n =

[

Ym(km,n)Jm

(

km,nr

a

)

− Jm(km,n)Ym

(

km,nr

a

)]

[A cos mθ + B sin mθ] ,where km,n is the nth root of
Ym(k)Jm

(

kb

a

)

− Jm(k)Ym

(

kb

a

)

= 0and Ym is the mth Bessel funtion of the seond kind [44℄. Therefore, although byapproximating with Fourier-Bessel sine and osine funtions inside the half annulus weare guaranteed exponential onvergene, it is not a good basis sine the eigenfuntionsalso involve Bessel funtions of the seond kind, whih have a singularity at 0. Theonvergene urve for tan θN(λ1) on this region is shown in Figure 6.7. It agrees verywell with the predited value of O(1.16−N).
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Figure 6.7: Convergene of the subspae angle method on the half annulus region(solid). The dashed line shows the theoretial asymptoti rate of onvergene.6.4 Exponential onvergene on regions with one sin-gular ornerOnly in the ase in whih ∂Ω has no singular orner an we apply Theorem 6.3.3 toobtain an exponential onvergene estimate. Let us now extend this result to the asein whih ∂Ω has exatly one singular orner whose adjaent ars are straight lines.In suh a ase any eigenfuntion on Ω an be analytially ontinued aross Ω exeptlose to the singular orner. This is for example the ase for the L-shaped region. Weneed the following lemma.Lemma 6.4.1 Let 0 be a orner of ∂Ω with interior angle π/α, whih is formed bytwo straight ars from whih the right one is part of the real axis as shown in Figure
2.1. Let u be an eigenfuntion of (1.1) on Ω. Then the unique holomorphi funtion φassoiated with u by the Vekua operator suh that u = Re{V [φ; 0]} is purely imaginaryon the ars adjaent to 0 and has the absolutely onvergent expansion

φ(z) =
∞
∑

k=1

ic̃kz
αk, c̃k ∈ R, z ∈ {z : |z| < R} ∩ Ωfor some R > 0.



CHAPTER 6. CONVERGENCE RATES 97Proof There exists R > 0 suh that
u(r, θ) =

∞
∑

j=1

cjJαj(
√

λkr) sin αjθ (6.16)is an absolutely onvergent series for r < R and 0 ≤ θ ≤ π/α. Together with Lemma6.1.4 it follows that there exists real oe�ients
c̃j = − cj

√
λk

αj

2αjΓ(αj + 1)
,suh that for |z| < R we have

φ(z) =
∞
∑

j=0

ic̃jz
αj. (6.17)The absolute onvergene of this series follows from the fat that

|z|ν
2νΓ(ν + 1)

(1 − ǫ) ≤ |Jν(z)| ≤ |z|ν
2νΓ(ν + 1)

, |z| ≤ τfor every ǫ > 0 and ν > ν0(τ, ǫ) su�iently large (see for example [67℄). Hene, theterms in (6.17) an be bounded by the terms in (6.16).From (6.17) it follows that φ is purely imaginary on {z : |z| < R} ∩ ∂Ω. By analytiontinuation along the ars φ is also purely imaginary on the whole of both ars.Using this lemma we an show that the singularity an be removed by a onformalmap of the region.Lemma 6.4.2 In the notation of Lemma 6.4.1, de�ne the region Ωα as
Ωα = {zα : z ∈ Ω}.Then the funtion φ̃(w) := φ(z) for w = zα is analyti on Ωα.This lemma states that by the transformation w = zα we obtain a funtion that isanalyti on the whole of Ωα and therefore in partiular at w = z = 0. Hene, by thetransformation w = zα we have removed the singularity of φ at 0.



CHAPTER 6. CONVERGENCE RATES 98Proof From Lemma 6.4.1 it follows that
φ(z) =

∞
∑

j=0

ic̃jz
αj (6.18)in {z : |z| < R} ∩ Ω. Now let w = zα. Then

φ̃(w) =
∞
∑

j=0

ic̃jw
j.This is a power series in w. Its absolute onvergene for |w| < Rα follows from theabsolute onvergene of (6.18). Hene, φ̃ possesses a power series expansion around

w = 0 and is therefore holomorphi in a neighborhood of 0. Sine by assumption φ̃possesses no other singularities on Ωα it is holomorphi there.Let us now use these lemmas to determine the rate of onvergene of the MPS in aregion with one singular orner. Assume that Ω satis�es the hypotheses of Lemma6.4.1 and let (λk, uk) be an eigenpair of (1.1) on Ω with ‖uk‖Ω = 1. Denote by φkthe holomorphi funtion assoiated with uk for z0 = 0 and let φ̃k be the onformaltransplant of φk to the region Ωα. Hene, φ̃k(w) = φk(z) for w = zα. From Lemma6.4.2 it follows that φ̃k is holomorphi on Ωα. Therefore, there exists R > 1 suh that
min

pN∈ΠN

‖φ̃k − pN‖∞,Ωα = O(R−N).This estimate holds for all R < ρ, where ρ is the onformal distane of the losestsingularity of φ̃k to the region Ωα (see Theorem 6.3.2). Let
p̃N(w) =

N
∑

j=0

ckw
j, cj ∈ Cbe the best approximating polynomial in ΠN of φ̃k. Then

p̃N(z) =
N
∑

k=0

ckz
αkand

‖φk − p̃N‖∞,Ω = O(R−N)in the z�domain. The Vekua transform u = Re{V [p̃N ; 0]} of p̃N in the z�domain hasthe form
u(r, θ) =

N
∑

j=0

Jαj(
√

λkr)(aj sin αjθ + bj cos αjθ)



CHAPTER 6. CONVERGENCE RATES 99for real oe�ients aj and bj depending on the oe�ients cj of p̃N . Now de�ne
AN(λ) := {

N
∑

j=0

Jαj(
√

λkr)(ak sin αjθ + bj cos αjθ) : aj, bj ∈ R}.We obtain as in the proof of Theorem 6.3.3
tan θN(λk) = O(R−N)for the angle between AN(λk) and D0. Let us summarize this result as a theorem.Theorem 6.4.3 Let Ω be a region with one singular orner with interior angle π/αas de�ned in Lemma 6.4.1 and let (λk, uk) be an eigenpair of (1.1) on this region. Let

φk be the holomorphi funtion assoiated with uk and de�ne φ̃k by φ̃k(w) = φk(z) for
w = zα. Let

AN(λ) := {
N
∑

j=0

Jαj(
√

λkr)(aj sin αjθ + bj cos αjθ) : aj, bj ∈ R}.Then there exists R > 1 suh that for the angle θN(λk) between AN(λk) and D0 itholds that
tan θN(λk) = O(R−N).This estimate holds for all R < ρ where ρ is the smallest onformal distane of asingularity of φ̃ to the region Ωα.Hene, by adapting the spae of partiular solutions to the singularity we obtainexponential onvergene for regions with one orner singularity. For the L-shapedregion this was also investigated by Still in [67℄. But he did not use onformal mappingtehniques to ompute the exat asymptoti rate of onvergene but rather gavebounds on the onvergene rate by diretly estimating the Fourier-Bessel series.Let us use this result to determine the rate of onvergene if Ω is the L-shaped region.By re�etion we an determine all singularities around Ω and remove the singularityat the reentrant orner with the map w = z2/3. This is shown in Figure 6.8, where

Ω2/3 and some equipotential urves are plotted7. The dots mark singularities ofthe analyti ontinuation of eigenfuntions on Ω under the map to the w�domain.
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Figure 6.8: Equipotential urves of the L-shaped region after aneling out the reen-trant orner at z = 0. The dots mark singularities of the analyti ontinuation of aneigenfuntion u.Computing the minimum onformal distane to Ω2/3 of the singularities leads to
ρ ≈ 1.54. A omparison between the measured onvergene and this estimated rateis shown in Figure 6.9. The estimated rate �ts well with the measured rate. Againthe measured onvergene is not fully idential to the estimated behavior for N → ∞sine we only observe the urve up to N = 60. But for large N the measured slopewill eventually approah the estimated rate.The onvergene plot in Figure 6.9 was omputed using Fourier-Bessel sine and osinefuntions of the form

J 2

3
j(
√

λ1r) sin
2

3
jθand

J 2

3
j(
√

λ1r) cos
2

3
jθsine this orresponds to polynomial approximation on the region Ω2/3. But theFourier-Bessel osine funtions do not satisfy the zero boundary onditions on the7To ompute the equipotential urves and the onformal distane of the singularities we usedDrisoll's Shwarz-Christo�el Toolbox after disretizing Ω2/3 to obtain a polygonal region. Theomputations an also be done on a sliker way without this disretization, but we will not go intothat here.
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Figure 6.9: Measured onvergene (solid) of tan θN(λ1) ompared to the estimatedonvergene rate (dashed) for the L-shaped region using Fourier-Bessel sine and osineexpansions.ars adjaent to the reentrant orner and it seems natural to only use Fourier-Besselsine funtions. How does the onvergene rate hange in this ase?Approximating only with Fourier-Bessel sine funtions orresponds to approximating
φ̃(w) with polynomials that have purely imaginary oe�ients. The best approxi-mating polynomial in this lass an be determined with the following Lemma.Lemma 6.4.4 Let Ω be the L-shaped region and denote by Ω̃2/3 the re�etion of Ω2/3at the real line as shown in Figure 6.10. Let φ be a funtion holomorphi in Ω2/3 withno singularites in Ω̃2/3 whih is purely imaginary on the part of ∂Ω2/3 intersetingwith the real line. Denote by p̃N the best approximating polynomial of degree N forthe funtion

φ̃(z) =

{

φ(z); z ∈ Ω2/3

−φ(z); z ∈ Ω2/3in Ω̃2/3. Then p̃N has purely imaginary oe�ients and is the best approximatingpolynomial for φ in Ω2/3 from the spae of polynomials of maximum degree N withpurely imaginary oe�ients.Proof Let φ̃(z) be the re�etion of φ̃(z) on the real axis. Then the best approximating
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Figure 6.10: The region from Figure 6.8 but now doubled in size by an additionalre�etion. The dots are again singularities of the analyti ontinuation of an eigen-funtion uk. .polynomial for this re�etion is p̃N(z). But it an be easily seen that φ̃(z) = −φ̃(z).Therefore, p̃N(z) = −pN(z). With
p̃N(z) =

N
∑

j=0

ckz
jfor ertain oe�ients cj ∈ C we �nd

0 = p̃N(z) + p̃N(z) =
N
∑

j=0

(cj + cj)z
k =

N
∑

j=0

2Re{cj}zjand therefore Re{cj} = 0 for j = 1, . . . , N . Now let p̂N be the best approximatingpolynomial for φ in Ω2/3 from the spae of polynomials of maximum degree N withpurely imaginary oe�ients. Sine the best approximating polynomial p̃N for φ̃ on
Ω̃2/3 also has purely imaginary oe�ients and φ̃ is symmetri around the real axis itfollows that p̂N = p̃N .For the MPS on the L-shaped region with Fourier-Bessel funtions this result meansthat the rate of onvergene is determined by a onformal map of the region shownin Figure 6.10. We obtain an asymptoti onvergene rate of O(1.44−N). Figure 6.11
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Figure 6.11: Measured and estimated onvergene of the MPS on the L-shaped regionusing only Fourier-Bessel sine funtions.shows the measured and the estimated onvergene behavior on the L-shaped region ifonly Fourier-Bessel sine funtions are used. It is interesting to note that the observedtransient rate of onvergene from Figure 6.11 seems to be about O(1.51−N), whih ismuh loser to the asymptoti rate of onvergene for the ase that Fourier-Bessel sineand osine funtions are used. This shows that the e�et of omitting Fourier-Besselosine funtions from the basis is low and only beomes signi�ant for N → ∞. Itis also notieable that the urve in Figure 6.11 bends up slightly as in the beginningit seems to onverge faster than in later steps. Eventually it will settle at a rate of
O(1.44−N) for N → ∞.6.5 Convergene on regions with multiple singulari-tiesLet us now apply the subspae angle method to the eigenvalue problem (1.1) on aregion Ω with more than one singular orner. For regions with one orner singularitywe were able show exponential onvergene by aneling out the singularity with aonformal map if the orner is bounded by the intersetion of two straight ars. Sothe �rst question is if we an just use the same strategy for regions with multiple
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Figure 6.12: A region with two singular orners at z1 and z4.singularities. We will demonstrate all results in this setion at the example regionshown in Figure 6.12. The four points of the quadrilateral are z1 = 0, z2 = .3 +

1/ tan(3π
8

), z3 = 0.3 + 1/ tan(3π
8

) + 1i, z4 = 1/ tan(3π
8

) + 1i. The orrespondinginterior angles π/αk, k = 1, . . . , 4 are de�ned by α1 = 8
3
, α2 = 2, α3 = 2, α4 = 8

5
.Hene, the orners at z1 and z4 are singular. Let uk be an eigenfuntion of (1.1) onthe region Ω shown in Figure 6.12 and φk its assoiated holomorphi funtion around

z1, i.e. uk = Re{V [φk; z1]}. Then from Lemma 6.4.1 it follows that
φk(z) =

∞
∑

j=1

icjz
α1j, cj ∈ Rlose to z1. But lose to z4 we annot expet φk to have this form. Close to thatorner the eigenfuntion an be expressed as a onvergent series of the form

u(r, θ) =
∞
∑

j=1

ajJα4j(
√

λkr) sin α4jθ (6.19)with origin of the polar oordinates at z4. Together with (6.5) it follows that asymp-totially
φk(z) ∼

∑

j,l≥0

cj,l(z − z4)
j+lα4 , cj,l ∈ C (6.20)as z → z4. Generally, this needs not be a onvergent series. One an show that if αis irrational φk has an asymptoti expansion lose to a orner π/α in the terms zj+αl
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j, l ∈ N. If α = p/q is rational with (p, q) relatively prime the asymptoti expansionan also have terms of the form (zp log z)mzj+αl, j, l,m ∈ N [85℄. Let us now assumewe introdue the onformal map w = (z − z4)

α4 to straighten out the orner at z4.Then from (6.20) it follows that
φk(w) ∼

∑

j,l≥0

cj,lw
j

α4
+llose to w = 0. But this asymptoti series still has singular terms, whih are nowof the form wj/α4+l. Hene, although we have straightened out the orner at z4 wehaven't aneled out the orresponding singularity of φk. It follows that we analways only anel out one singularity of φk, namely the singularity zs suh that

uk = Re{V [φk; zs]}. Due to the behavior of φk at the other singularities it is notpossible to anel them out with the strategy used in the previous setion. But as wewill see later, by a suitable hoie of basis funtions we an redue the order of theorner singularities and still obtain fast onvergene.Algebrai onvergene estimates for the MPS were �rst analyzed by Eisenstat in 1974[23℄. This was further developed by Still [66, 67, 69℄ in the 1980's. In 1999 Melenk [52℄published algebrai onvergene results for approximation in Sobolev spaes. Here,we will mostly use the estimates in the form given by Still.Let Ω have orners at z1, . . . , zn. Denote by ω1 = π/α1, . . . , ωn = π/αn the or-responding interior angles. Let ω̄ be the largest interior angle and de�ne µ :=

min{1, 2 − ω̄/π}. If Ω has a reentrant orner then µ < 1 and µπ is the exteriorangle at the reentrant orner. Furthermore, we assume that Ω has no interior orexterior usps, i.e. 0 < ωk < 2π for k = 1, . . . , n. Let z0 ∈ Ω and de�ne
AN(λk) :=

{

N
∑

j=0

Jj(
√

λkr)(aj sin jθ + bj cos jθ) : aj, bj ∈ R

}

,where the polar oordinates are around z0. Still proved the following theorem, whihwe present for the speial ase of the eigenvalue problem (1.1).Theorem 6.5.1 (Still [69℄) Let (λk, uk) be an eigenpair of (1.1). Let p ∈ N, 0 <

γ ≤ 1, be de�ned by p + γ = π
ω̄
. Then u ∈ Cp,γ(Ω) and for any ǫ > 0 there exists aonstant c(ǫ) suh that

min
uN∈AN (λ)

‖uk − uN‖∞,Ω ≤ c(ǫ)

Nµ(p+γ)−ǫ
.
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Figure 6.13: The plot shows the onvergene behavior on a region with two singularorners (solid line). The dashed line is the theoretial rate from Theorem 6.5.1.This result was also proved by Eisenstat in a more general setting in [23℄. Sine eigen-funtions are analyti around nonsingular orners we only need to onsider singularorners for Theorem 6.5.1.Figure 6.13 shows the onvergene of the subspae angle method using the approx-imation spae A(λ1) as de�ned above. For λ1 we use the approximation λ1 ≈
48.4161682676614, whih is believed to be orret to all given digits. The dashedline in Figure 6.13 shows the onvergene bound from Theorem 6.5.1. The ornerat z4 is the singular orner with the largest interior angle. From Theorem 6.5.1 theonvergene estimate

tan θN(λ1) ≤
c(ǫ)

N
8

5
−ǫfor all ǫ > 0 follows. The observed onvergene in Figure 6.13 is even faster thanpredited by algebrai onvergene estimates in the supremum norm. Indeed, Melenkshowed that bounding the approximation error in L2 an lead to improved algebraionvergene rates [52℄.8 Therefore, although the error in the supremum norm is anupper bound for the tangent of the subspae angle, more suitable funtion spaesettings might give sharper bounds in this ase. All algebrai onvergene estimates8For the approximation of funtions that are holomorphi in the neighborhood of the region asdesribed by Theorem 6.3.2 the asymptoti exponential rates are the same in the supremum and L2norm.



CHAPTER 6. CONVERGENCE RATES 107depend on the smoothness of the eigenfuntions at the singular orners. If we animprove the smoothness at the orners, faster onvergene rates are possible. Thispossibility was investigated by Eisenstat [23℄. Consider the orner z4. As alreadystated in (6.19), lose to z4 uk has the series representation
uk(r, θ) =

∞
∑

j=1

ajJα4j(
√

λkr) sin α4jθ.By aneling out lower order terms of this series we an improve the smoothness of ukat z4. If we enrih the approximation spae by linear ombinations of Jα4j(
√

λkr) sin α4jθ,
j = 1, . . . , n the problem of approximating uk an be interpreted as the problem ofapproximating

ũk(r, θ) := uk(r, θ) −
n
∑

j=1

ajJα4j(
√

λkr) sin α4jθ =
∞
∑

j=n+1

ajJα4j(
√

λkr) sin α4jθlose to z4, whih has a muh weaker singularity at z4 than the funtion uk. If wedo the same at z1 we an make the funtion ũk as smooth at the orners as we wish.It annot beome analyti lose to the orners sine no matter how many singularterms we use the remaining terms in the series expansions around z1 and z4 will staysingular. But still we an obtain high algebrai onvergene rates. This is shown inFigure 6.14, where we ompare the onvergene of the subspae angle method if theapproximation spae is enlarged by the �rst two singular Fourier-Bessel terms aroundthe singularities at z1 and z4 to the ase of approximating just with Fourier-Besselterms in the interior of Ω as done in Figure 6.13.Just by adding four singular terms we drastially inrease the rate of onvergene whilethe additional omputational e�ort is negligible sine the number of basis funtionsonly grows from 201 to 205 at the step N = 100. We an even improve the rateof onvergene more by hoosing in eah step the same number of terms at the twosingularities as in the interior of the region. Figure 6.15 shows a double-logarithmiand a semi-logarithmi plot of the resulting onvergene urve. It dereases fasterthan linearly in the double-logarithmi plot indiating super-algebrai onvergene,but dereases slower than linearly in the semi-logarithmi plot, whih indiates arate slower than exponential onvergene. We ahieve an auray lose to mahinepreision after N = 26, whih orresponds to 105 basis terms (26 Fourier-Bessel sineterms around eah of the singular orners, 52 Fourier-Bessel sine and osine termsin the interior and 1 Bessel term of order zero in the interior). In the ase of using
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Figure 6.14: Comparison of the subspae angle method on Ω by only using Fourier-Bessel terms in the interior of the region and by adding two singular terms aroundeah of the two singular orners z1 and z4.only Fourier-Bessel terms in the interior of the region shown in Figure 6.13 we needed
201 terms to bring the subspae angle down to just about 10−4. This shows howessential it is to apture the orner singularities orretly. We an even redue thenumber of basis funtions more. From Theorem 6.5.1 it follows that lose to z1 therate of onvergene is O(N− 8

3 ), while lose to z4 it is O(N− 8

5 ). Hene, lose to z1 theonvergene is about twie as fast as lose to z4. Therefore, it makes sense to hoosetwie as many singular terms around z4 as around z1 to make up for this di�erenein the onvergene rate. This rule of thumb was pointed out by Desloux and Tolley[18℄. As a result we obtain the onvergene urve shown in Figure 6.16. At about
N = 14 the subspae angle is already lose to mahine preision. This orresponds to
28 Fourier-Bessel terms around z4, 14 Fourier-Bessel terms around z1 and 29 Fourier-Bessel terms in the interior of the region, i.e. overall 71 terms, whih saves 34 basisterms ompared to the ase that we approximate with the same number of termsaround both singularities as shown in Figure 6.15.Let us summarize the results of this hapter. For regions with zero or one singularorner we proved exponential onvergene (Theorem 6.3.3 and 6.4.3). Moreover, byonformal mapping tehniques we were able to determine the asymptoti exponentialrate of onvergene. For regions with multiple singularities the situation is di�erent.
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Figure 6.15: Convergene of the subspae angle method if in eah step the number ofterms at eah singularity is also N . The upper plot shows the onvergene behavioron a double-logarithmi sale while the lower plot uses a semi-logarithmi sale. Theonvergene appears to be faster than algebrai but slower than exponential.
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Figure 6.16: The rate of onvergene if twie as many singular terms are used around
z4 as z1.Algebrai onvergene rates for this ase were previously analyzed by Eisenstat andStill and in the setting of Sobolev spaes by Melenk. By a suitable adjustment of theapproximation spaes high algebrai onvergene rates an be ahieved. We demon-strated numerially that this an be further improved by approximating not only withan inreasing number of Fourier-Bessel terms in the interior of the region but alsowith an inreasing number of Fourier-Bessel terms at the singularities. The numer-ial onvergene then seems better than algebrai but not yet exponential. This isplausible, sine we inrease the smoothness of the funtion we wish to approximate ineah step by adding more singular terms. Therefore, the rate of algebrai onvergenegrows with inreasing N . But sine the singularities do not fully disappear we annotexpet exponential onvergene. Nevertheless, the onvergene an be made very fasteven in the ase of regions with multiple singular orners. The only restrition is thatif a singular orner is not formed by two straight lines but by arbitrary analyti urveslogarithmi terms an appear in the expansion of φk lose to that orner. Just byusing Fourier-Bessel funtions we annot apture those logarithmi terms and theyan lead to a slow down of onvergene.



CHAPTER 6. CONVERGENCE RATES 1116.6 A note on the onvergene of eigenvaluesWe onlude this hapter with a note on the rate of onvergene of an eigenvalueapproximation λ to an eigenvalue λk of (1.1) in a region Ω. From Chapter 5 we knowthat
|λ − λk|

λk

≤ c tan θ(λ)for a onstant c > 0 that depends on Ω. Therefore, if λ is the minimum of thesubspae angle urve, then
|λ − λk|

λk

≤ c tan θ(λ) ≤ c tan θ(λk)and for a growing number of basis funtions λ onverges at least as fast as tan θ(λk).But an the rate of onvergene be faster than that of tan θ(λk)? If ũ is an approximateeigenfuntion from D0 instead of A(λ) then a good eigenvalue estimate is given bythe Rayleigh quotient
ρ(ũ) =

〈ũ,−∆ũ〉Ω
〈ũ, ũ〉Ω

.If the distane of ũ to an eigenvetor uk is O(ǫ), then the distane of ρ(ũ) to λk is
O(ǫ2) leading to a squared onvergene behavior for the eigenvalue approximations.The question is if suh a �squared onvergene" behavior also exists for the Methodof Partiular Solutions. The Rayleigh quotient does not give us any new informationwhen we approximate from A(λ) sine if −∆u = λu, then ρ(u) = λ. However,there are several examples where we numerially observe faster onvergene for theeigenvalue approximation than for the orresponding subspae angle. Figure 6.17shows the onvergene of the minimum of tan θN(λ) for a growing number N ofbasis funtions on the L-shaped region. The dotted urve shows the distane of theorresponding values λ to the �rst eigenvalue λ1. Until about N = 17 the eigenvalueapproximation λ onverges faster than tan θN(λ). This hanges when tan θN(λ) ≈
10−8 at N = 17. Then both urves seem to derease with the same rate. Anotherstriking example is given in Figure 6.18. It shows the onvergene of the smallestsubspae angle on the half annulus region from Figure 6.6. While the subspae angleonverges smoothly the orresponding eigenvalue approximations �rst onverge with afaster rate but then start osillating and stagnate. We annot yet explain the speedupof the eigenvalue onvergene in these two examples. But the onlusion is that if weare only interested in a ertain auray of an eigenvalue approximation then often weneed fewer basis terms than predited from our onvergene theory for the subspae
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Figure 6.17: Comparison of the eigenvalue and subspae angle onvergene on theL-shaped region

0 10 20 30 40 50 60 70 80
10

−8

10
−6

10
−4

10
−2

10
0

10
2

tan θ
min

(λ)

|λ
1
−λ|

Figure 6.18: Comparison of the eigenvalue and subspae angle onvergene on thehalf annulus region.



CHAPTER 6. CONVERGENCE RATES 113angle. Therefore, it is useful to look not only at the value of the subspae angle whenobserving the onvergene of the subspae angle method for growing N but also tohek the number of stable digits in the orresponding eigenvalue approximations,whih in some ases an be signi�antly higher than predited by the value of thesubspae angle.



Chapter 7
A domain deomposition methodbased on the GSVD
The Method of Partiular Solutions is a global approximation method in the sensethat the basis funtions in A(λ) live in the whole region Ω. With the right tools fromlinear algebra this idea an be turned into a stable and rapidly onverging method,as we have seen in the previous hapters. We an prove exponential onvergene forregions with zero or one orner singularity and also obtain arbitrarily fast algebrairates for regions with more than one orner singularity.An alternative to global approximation methods are domain deomposition methodsthat use partiular solutions in eah subdomain. This idea was introdued by De-sloux and Tolley in 1983 [18℄. Their method onverges exponentially in arbitrarypolygonal regions and also overomes the ill-onditioning of the basis funtions. In itsoriginal form, the auray of their method was limited to the square root of mahinepreision. Also, domain deomposition methods are more ompliated to implementthan global approximation methods. The problem of the limited auray was solvedby Drisoll in 1997 [21℄, who omputed the �rst 25 eigenmodes of the two isospe-tral drums to 12 digits of auray with this method. Instead of minimizing thesmallest eigenvalue of a ertain parameter-dependent eigenvalue problem Drisoll'simprovement omputes zeros of the derivative of an eigenvalue.In this hapter we present a modi�ation of the method of Desloux and Tolley basedon the minimization of a generalized singular value. This approah provides another114



CHAPTER 7. DOMAIN DECOMPOSITION GSVD 115solution of the square root of mahine preision problem and has the additional ad-vantages that it avoids omputing L2�inner produts and evaluating derivatives ofpossibly ill-onditioned eigenvalues. Like that of Desloux and Tolley, our method iseasily adapted to planar regions other than polygons.Desloux and Tolley used Taylor series estimates to show the exponential onvergeneof their method. This has the disadvantage that it only works if an eigenfuntionan be expanded into a onvergent Taylor series on eah subdomain. Also, Taylorseries estimates only give optimal onvergene rates on irles. We overome theseproblems by using Vekua's theory and analyti ontinuation to establish exponentialonvergene rates. These estimates are asymptotially optimal and an be applied toa larger lass of regions than Taylor series estimates.7.1 The method of Desloux and Tolley and its re-formulation as a GSVD problemLet Ω be a polygonal region. Assume that Ω is partitioned into subregions Ω1, . . . , Ωpsuh that Ωj ∩ Ωl = ∅ for j 6= l and ∂Ωj ∩ ∂Ω either ontains no orner or onsistsof two straight ars meeting at a orner of ∂Ω. An example of suh a deompositionis given in Figure 7.1 for the region desribed in Setion 6.5. The internal boundary
∂Ωj ∩ ∂Ωl between two subdomains Ωj and Ωl is denoted by Γjl. If Γjl onsists ofonly a �nite number of points (as is for example the ase for Γ13 in Figure 7.1) weset Γjl := ∅. The number of nonempty internal boundary segments Γjl is denoted by
n. In Figure 7.1 we have n = 4. Let π/αj be the interior angle of the orner of ∂Ωinterseting with ∂Ωj. If ∂Ωj has no suh orner we de�ne a orner on ∂Ω∩∂Ωj withinterior angle π. Therefore, we an assume from now on that every boundary segment
∂Ωj ontains a orner of ∂Ω. Let zj be the position of this orner in ∂Ωj. Aroundeah orner zj we an approximate an eigenfuntion uk of (1.1) with a Fourier-Besselseries of the form

fj,Nj
(r, θ) =

Nj
∑

i=1

a
(j)
i fj,Nj ,i, (7.1)with

fj,Nj ,i(r, θ) = Jαji(
√

λr) sin αjiθ,
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Figure 7.1: A domain deomposition for the method of Desloux and Tolley.where the origin of the polar oordinates is zj. Outside Ωj we de�ne fj,Nj ,i(r, θ) := 0,
i = 1, . . . , Nj to restrit the support of fj,Nj

to Ωj. On the boundary segments of Ωadjaent to zk this expansion automatially satis�es the zero boundary onditions.But we need to satisfy ompatibility onditions on the internal boundary segements
Γjl between Ωj and Ωl. Let Γjl be a nonempty boundary segment. Then we need tosatisfy

fj,Nj
(x, y) = fl,Nl

(x, y), ∇fj,Nj
(x, y) = ∇fl,Nl

(x, y)for (x, y) ∈ Γjl
1. Let a = (a1

1, . . . , a
(1)
N1

, . . . , a
(p)
1 , . . . , a

(p)
Np

) be the vetor of all oe�ientsfrom the Fourier-Bessel expansions (7.1) with length N := N1 + · · · + Np. Eah suhvetor an be assigned a unique basis funtion from the spae
ÃN(λ) :=

{

f ∈ C2

(

p
⋃

j=1

Ωj

)

: f |Ωj
= fj,Nj

}

,1It would be su�ient to demand that ∂
∂nj

fj,Nj
(x, y) + ∂

∂nj
fj,Nj

(x, y) = 0 for (x, y) ∈ Γjl, where
∂

∂nj
is the outward normal derivative on Ωj . But sine the e�ort of omputing the normal derivativeis essentially the same as that of omputing the full derivative we will work with the full derivativeas Desloux and Tolley did.



CHAPTER 7. DOMAIN DECOMPOSITION GSVD 117of all partiular solutions of the method of Desloux and Tolley (on the internalboundary lines Γjl we let f unde�ned). We de�ne the two quadrati forms
I(λ, a) =

∑

j<l

∫

Γjl

|fj,Nj
− fl,Nl

|2 + |∇fj,Nj
−∇fl,Nl

|2ds

K(λ, a) =

p
∑

j=1

∫

Ωj

|fj,Nj
|2d(x, y),where the dependene on λ omes from the Fourier-Bessel expansions fj,Nj

on λ. Bothquadrati forms an be written as I(λ, a) = aT I(λ)a and K(λ, a) = aT K(λ)a, where
I(λ) ∈ R

N×N is symmetri positive semi-de�nite and K(λ) ∈ R
N×N is symmetripositive de�nite. Therefore, the minimum of I(λ, a)/K(λ, a) over all a ∈ R

N is thesmallest eigenvalue µ1(λ) of the generalized eigenvalue problem
I(λ)x(λ) = µ(λ)K(λ)x(λ). (7.2)Desloux and Tolley did not use the formulation as a generalized eigenvalue problem.By only evaluating K(λ, a) in a setor ontained in eah subdomain one an use thesame trik as in (5.10) and obtain a diagonal right-hand side matrix K(λ) whosediagonal elements are expliitly known. Therefore, it is easy to redue (7.2) to thestandard eigenvalue problem K−1/2IK−1/2y(λ) = µ1(λ)y(λ). While the formulationas a generalized eigenvalue problem has the disadvantage that the two matries I(λ)and K(λ) an have a ommon numerial null-spae aused by linear dependenies ofthe basis funtions on eah subdomain, this problem is avoided in the formulation asa standard eigenvalue problem.As in the method of Barnett, the problem with (7.2) is that a squaring is involved,whih leads to a loss of auray. This e�et was analyzed by Drisoll in [21℄. Fol-lowing an idea of Vavasis he repaired the method of Desloux and Tolley by �ndingthe zero of the derivative µ′

1(λ) instead of minimizing the loally quadrati funtion
µ1(λ). By di�erentiating (7.2) with respet to λ and multiplying on the left by x(λ)one obtains

µ′(λ) =
x(λ)(I ′(λ) − µ(λ)K ′(λ))x(λ)

x(λ)T K(λ)x(λ)
.Sine µ′(λ) behaves linearly around a zero of µ(λ), the auray of solving µ′(λ) = 0is omparable to the auray to whih the values µ′(λ) an be determined. With thismodi�ed algorithm Drisoll omputed the �rst 25 eigenvalues of the GWW-isospetraldrums to 12 digits of auray. The disadvantage of this approah is that in addition



CHAPTER 7. DOMAIN DECOMPOSITION GSVD 118to the value µ(λ) we have to ompute its derivative µ′(λ). Furthermore, we are stillworking with eigenvalue formulations, whih an be ill-onditioned.We have found that a solution of this problem problem is to reformulate (7.2) as ageneralized singular value problem. We need the semi-norm
‖f‖Γ :=

(

∑

j<l

∫

Γj,l

|fj,Nj
(s) − fl,Nl

(s)|2 + |∇fj,Nj
(s) −∇fl,Nl

(s)|2ds

) 1

2and the norm
‖f‖Ω̃ :=

(

p
∑

j=1

∫

Ωj

|fj,Nj
(x, y)|2dxdy

) 1

2

=

(

p
∑

j=1

‖fj,Nj
‖2

Ωj

) 1

2for f ∈ ÃN(λ). These are just the square roots of the quadrati forms I and K. Thesemi-norm ‖ · ‖Γ is well de�ned sine although f is not de�ned on Γjl the restrition
fj,Nj

of f to the subdomain Ωj is de�ned on Γjl. Now let
σ(λ) := min

u∈Ã(λ)\{0}

‖u‖Γ

‖u‖Ω̃

. (7.3)As in Setion 3.5 we an disretize Ω and Γjl to turn (7.3) into a generalized singularvalue problem. Only the matries will be slightly more ompliated beause of thestruture of the norms used here. We disretize eah Γjl by points z
(jl)
k ∈ Γjl, k =

1, . . . ,Mjl and eah subdomain Ωj by points z̃
(j)
t ∈ Ωj, t = 1, . . . , Lj. Therefore, wehave M =

∑

j<l Mjl disretrization points on the interior boundaries between thesubdomains and L =
∑p

j=1 Lj disretization points in the union of all subdomains.We now de�ne the matrix A1(λ) ∈ R
3M,N as

A1(λ) =

[

F (λ)
∇F (λ)

]

,where eah row of F (λ) is assoiated with one internal boundary olloation point zjl
kon Γjl and de�ned as

[f1,N1,1(z
jl
k ), . . . , f1,N1,N1

(zjl
k ), . . . , fj,Nj ,1(z

jl
k ), . . . , fj,Nj ,Nj

(zjl
k ),

. . . ,−fl,Nl,1(z
jl
k ), . . . ,−fl,Nl,Nl

(zjl
k ), . . . ]Sine we restrited the support of a Fourier-Bessel basis funtion fl,Nl,k to Ωl allelements of the row whih are not assoiated with basis funtions in Ωj or Ωl arezero. The matrix ∇F is de�ned as

∇F =

[

∂F
∂x
∂F
∂y

]

.



CHAPTER 7. DOMAIN DECOMPOSITION GSVD 119Hene, eah boundary olloation point zjl
k is assigned to two rows in ∇F . One rowonsists of the partial derivatives in the x-diretion of the basis funtions evaluatedat zjl

k and the other row onsists of the orresponding derivatives in the y-diretionevaluated at zjl
k , where the derivatives belonging to basis funtions in Ωl are as in thede�nition of F multiplied by −1. Again, we set all elements in the rows assoiatedwith zjl

k that do not belong to basis funtions in Ωj or Ωl to zero. Furthermore, wede�ne a matrix A2(λ) as
A2(λ) =







G1 . . .
Gp






,where the ith olumn of Gj is the basis funtion fj,Nj ,i evaluated at the points z̃

(j)
t ∈

Ωj, t = 1, . . . , Lj. The de�nition of σ(λ) in (7.3) now beomes
σ̂(λ) = min

x∈RN\{0}

‖A1(λ)x‖2

‖A2(λ)x‖2and σ̂(λ) is just the smallest generalized singular value of the penil {A1(λ), A2(λ)}.As an example, let us do this for the region Ω shown in Figure 7.1 with the deompo-sition into four subdomains given there. Figure 7.2 shows the value σ̂(λ) for variousvalues of λ. In eah subdomain we used 10 Fourier-Bessel basis funtions. All non-empty interior boundary lines Γjl were disretized with 50 equally spaed points andeah subdomain Ωi was disretized with 20 random interior points. The urve hastwo minima pointing to the �rst two eigenvalues.In this example we used a division into four subdomains. But Ω only has two sin-gular orners at z1 and z4. Therefore, we ould attempt to only divide Ω into twosubdomains suh that eah of the subdomains has one singular orner. For example,let Ω be subdivided by the straight line formed by Γ23 and Γ14. Then we need toadditionally impose the ondition that the norm of the approximate eigenfuntionsis be minimized on the line from z2 to z3. But this is easily aomplished similarlyto the subspae angle method by disretizing the boundary line from z2 to z3 witholloation points and inluding in the matrix A1(λ) two bloks whih onsist of thebasis funtions around z1 and z4 evaluated at these additional boundary olloationpoints. Figure 7.3 shows the value σ̂(λ1) for a growing number N of Fourier-Besselbasis funtions in eah subdomain, where λ1 ≈ 48.4161682676614 is the �rst eigen-value of (1.1) on Ω. In the ase of two subdomains we have an auray lose to
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Figure 7.2: The domain deomposition GSVD method on a quadrilateral with 2singular orners.
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CHAPTER 7. DOMAIN DECOMPOSITION GSVD 121mahine preision after N = 40 steps, while in the ase of four subdomains we havean auray of only 10−5 at N = 40. The reason for this slow onvergene in the aseof four subdomains is that the singularity of the eigenfuntion at z4 is very lose Ω3slowing down the onvergene there. Hene, in the ase of four subdomains not onlydo we need more basis funtions but the onvergene rate is slower.A striking feature of both urves is that in ontrast to global approximations whoseonvergene on this region was disussed in Setion 6.5, we seem to observe exponen-tial onvergene. In the next setion we prove that the domain deomposition methodindeed onverges exponentially and ompute the asymptoti rate for the solid urvein Figure 7.3.7.2 Exponential onvergene of the domain deom-position methodBased on Taylor series estimates Desloux and Tolley proved exponential onvergeneof their domain deomposition method. However, their estimates have two (related)disadvantages. First, we need to guarantee that the subdomains are hosen suh thatthe eigenfuntion has a onvergent Taylor series on eah subdomain. Seond, Taylorseries estimates only deliver the true asymptoti onvergene on irles. For otherregions Taylor polynomials are not optimal and therefore do not deliver good boundsfor the asymptoti onvergene rate. The results in this setion are illustrated forthe region Ω from Figure 7.1 using a subdivision into two subdomains with internalboundary Γ := Γ12 ∪Γ14. Let us denote by Ω̂1 the subdomain below Γ and by Ω̂2 thesubdomain above Γ. Sine with only two subdomains we also have to minimize theerror of the approximate eigenfuntions on the right boundary segment from z2 to z3,we introdue a slightly di�erent quadrati form Ĩ(λ, a) de�ned as
Ĩ(λ, a) =

∑

j<l

∫

Γjl

|fj,Nj
(s) − fl,Nl

(s)|2 + |∇fj,Nj
(s) −∇fl,Nl

(s)|2ds

+

p
∑

j=1

∫

∂Ω∩∂Ωj

|fj,Nj
(s)|2ds.If the domain deomposition of Desloux and Tolley is used, the last sum of Ĩ(λ, a)is always zero and we have Ĩ(λ, a) = I(λ, a). Therefore, this slightly more general



CHAPTER 7. DOMAIN DECOMPOSITION GSVD 122approah inludes the original method of Desloux and Tolley as a speial ase. Foreah λ the method omputes in the non-sampled ase
σ(λ) = min

a∈RN{0}

Ĩ1/2(λ, a)

K1/2(λ, a)
.Let (λk, uk) be an eigenpair of (1.1) on Ω. We an estimate Ĩ(λ, a) as

Ĩ(λk, a) =
∑

j<l

∫

Γjl

|fj,Nj
(s) − fl,Nl

(s)|2 + |∇fj,Nj
(s) −∇fl,Nl

(s)|2ds

+

p
∑

j=1

∫

∂Ω∩∂Ωj

|fj,Nj
(s)|2ds

≤ C1

∑

j<l

[

‖fj,Nj
− uk‖2

∞,Γjl
+ ‖uk − fl,Nl

‖2
∞,Γjl

+ ‖∇fj,Nj
−∇uk‖2

∞,Γjl

+ ‖∇uk −∇fl,Nl
‖2
∞,Γjl

]

+ C2

p
∑

j=1

‖fj,Nj
− uk‖2

∞,∂Ω∩∂Ωj

≤ C1

∑

j<l

‖∇fj,Nj
−∇uk‖2

∞,Γjl
+ ‖∇fl,Nl

−∇uk‖2
∞,Γjl

+ C3

p
∑

j=1

‖uk − fj,Nj
‖2
∞,Ωj

, (7.4)where C1, C2, C3 > 0 are onstants whih depend on Ω. Hene, we need to estimatethe rate of onvergene of the funtions fj,Nj
to uk restrited to Ωj and the rate ofonvergene of the derivatives of fj,Nj

to the derivatives of uk on the internal boundarylines Γjl. Take for example the subdomain Ω̂1 from the region in Figure 7.2. The onlysingularity of uk in Ω̂1 is at z1 = 0. Let φk be the holomorphi funtion assoiatedwith uk suh that uk = Re{V [φk; z1]}. From Lemma 6.4.1 it follows that
φk(z) =

∞
∑

k=1

ickz
8k
3 , ck ∈ Rlose to z1, and using Lemma 6.4.2, we know that the funtion φ̃k(w) := φk(z) for

w = zα is holomorphi in a neighborhood around z1. Therefore, φ̃k is holomorphi on
Ω̂

8/3
1 . We an now proeed exatly as in the example of the L-shaped region in Setion6.4. The two losest singularities to Ω̂1 in the onformal sense are z4 and the point

z′1 = 2
tan 3

8
π

+ 0.6. The singularity at z′1 is obtained by re�etion of the eigenfuntion
uk at the boundary line onneting z2 and z3. Sine we only use Fourier-Bessel sinefuntions we have to re�et the region Ω̂

8/3
1 aross the real line before omputing the



CHAPTER 7. DOMAIN DECOMPOSITION GSVD 123mapping to the exterior of the unit disk. The onformal distanes of z
8/3
4 and z

′8/3
1to this re�eted region are then approximately given as 2.82 and 5.34. Therefore, weobtain

min
u∈ÃN (λk)

‖uk − u‖∞,Ω̂1

= O(2.82−N1),if N1 is the number of Fourier-Bessel basis terms in Ω̂1. Similarly, for approximatingwith Fourier-Bessel funtions around z4 in the region Ω̂2 we obtain
min

u∈ÃN (λk)
‖uk − u‖∞,Ω̂2

= O(1.86−N2),where the onformally losest singularity is z′4 = 1
tan 8

3
π
+0.6, whih is the image of thesingularity at z4 under re�etion of uk at the boundary line from z2 to z3. Combiningthese results we obtain

min
u∈ÃN (λ1)

‖uk − u‖∞,Ω = O(1.86−N)if N := N1 = N2. On arbitrary polygonal regions we obtain similarly the followingresult.Lemma 7.2.1 There exist numbers Rj > 1, j = 1, . . . , p and funtions uN ∈ A(λk)suh that for their restritions uN |Ωj
= fj,Nj

to Ωj it holds that
‖fj,Nj

− uk‖∞,Ωj
= O(R

−Nj

j )as Nj → ∞.Proof The proof proeeds exatly as in the example given above. It is only essentialthat uk has at most one orner singularity in eah subdomain Ωj, whih is guaranteedby the domain deomposition.It is now left to estimate the onvergene of the derivatives of the Fourier-Bessel basisfuntions to ∇uk on the internal boundary line Γ. We need the following tehniallemma.Lemma 7.2.2 Let {f (N)} be a sequene of real analyti funtions de�ned in the in-terval I := [a, b] and having a holomorphi ontinuation to the region Ω ⊂ C. If
‖f (N)‖∞,I = O(R−N) for N → ∞ then ‖f ′(N)‖∞,I = O((R − δ)−N) for every δ > 0.



CHAPTER 7. DOMAIN DECOMPOSITION GSVD 124Proof Fix δ > 0. Then there exists a neighborhood S of I in Ω suh that ‖f (N)‖∞,S =

O((R − δ)−N) for N → ∞.2 Now hoose ǫ > 0 suh that Kǫ := {z : |z − x0| = ǫ, z ∈
C} ⊂ S for all x0 ∈ I. Then

f ′(N)(x0) =
1

2πi

∫

Kǫ

f (N)(ξ)

(ξ − x0)2
dξfor x0 ∈ I. It follows that

|f ′(N)(x0)| ≤
1

ǫ
‖f (N)‖∞,S = O((R − δ)−N)and therefore

‖f ′(N)‖∞,I = O((R − δ)−N) (7.5)for every δ > 0.We are now able to estimate the expression ‖∇fj,Nj
− ∇uj‖∞,Γjl

. By Lemma 7.2.1there exists a sequene a(N) ∈ R
N and assoiated basis funtions fj,Nj

, j = 1, . . . , p,
N =

∑p
j=1 Nj suh that

‖fj,Nj
− uk‖∞,Γj,l

= O(R
−Nj

j )for all j = 1, . . . , p. Now �x δ1 > 0. Then there exists a region D suh that Γjl ⊂ Dand
‖fj,Nj

− uk‖∞,D = O((Rj − δ1)
−Nj).Let (x0, y0) ∈ Γjl and de�ne ûNj

(x) := fj,Nj
(x, y0) − uk(x, y0) in a small interval

I := [x0 − ǫ, x0 + ǫ] for an ǫ > 0 suh that I × y0 ∈ D. From Theorem 6.1.2 itfollows that ûNj
an be ontinued to a holomorphi funtion in a neighborhood of Iindependent of Nj. We an now use Lemma 7.2.2 and �nd that for every δ2 > 0

‖û′
Nj
‖∞,I = O((Rj − δ1 − δ2)

−Nj),whih implies that
∣

∣

∣

∣

∂

∂x
fj,Nj

(x0, y0) −
∂

∂x
uk(x0, y0)

∣

∣

∣

∣

= O((Rj − δ)−Nj)for δ = δ1 + δ2. Similarly, we obtain
∣

∣

∣

∣

∂

∂y
fj,Nj

(x0, y0) −
∂

∂y
uk(x0, y0)

∣

∣

∣

∣

= O((Rj − δ)−Nj).2In the ase of polynomial approximation this is alled overonvergene, the e�et that approxi-mations to analyti funtions in a region Ω also onverge in a neighborhood of Ω if the funtion isanalyti there (see [84℄, �4.6�4.7).



CHAPTER 7. DOMAIN DECOMPOSITION GSVD 125Sine (x0, y0) was hosen arbitrarily on Γjl we �nd
‖∇fj,Nj

−∇uk‖∞,Γjl
= O((R − δ)−Nj)for every δ > 0. Combining this result with (7.4) yields

Ĩ(λk, a
(N)) =

p
∑

j=1

O((Rj − δ)−2Nj) (7.6)for every δ > 0 and Nj → ∞. Rj is the exponential rate of onvergene of ap-proximating uk on the subdomain Ωj. If N1 = · · · = Np =: Ñ and R̃ = minj Rj,then
Ĩ(λk, a

(pÑ)) = O((R̃ − δ)−2Ñ).Let us now estimate K(λk, a
(N)). Assume that ‖uk‖Ω = 1. Then

K(λk, a
(N)) =

p
∑

j=1

‖fj,Nj
‖2

Ωj

≥
p
∑

j=1

[

‖uk‖Ωj
− ‖fj,Nj

− uk‖Ωj

]2

≥
p
∑

j=1

[

‖uk‖Ωj
− C‖fj,Nj

− uk‖∞,Ωj

]2

≥
p
∑

j=1

[

‖uk‖Ωj
− O(R

−Nj

j )
]2

→
p
∑

j=1

‖uk‖2
Ωj

= 1 (7.7)for a onstant C > 0 whih depends on Ω. Combining all results we obtain thefollowing theorem whih establishes exponential onvergene rates for the domaindeomposition method.Theorem 7.2.3 Let (λk, uk) be an eigenpair of (1.1) with ‖uk‖Ω = 1. Then
min
a∈RN

Ĩ(λk, a)

K(λk, a)
=

p
∑

j=1

O((Rj − δ)−2Nj)for every δ > 0 and Nj → ∞, j = 1, . . . , p. The numbers Rj are the exponentialonvergene rates from Lemma 7.2.1 for approximating uk on Ωj with funtions in
ÃN(λk).



CHAPTER 7. DOMAIN DECOMPOSITION GSVD 126Proof Let 0 < ǫ < 1. From (7.7) it follows that there exists N0 suh thatK(λ, a(N)) ≥
1 − ǫ for Nj > N0, j = 1, . . . , p. Together with (7.6) we �nd

min
a∈RN

Ĩ(λk, a)

K(λk, a)
≤ Ĩ(λk, a

(N))

K(λk, a(N))
≤ 1

1 − ǫ
Ĩ(λk, a

(N)) =

p
∑

j=1

O((Rj − δ)−2Nj).for Nj → ∞, j = 1, . . . , p.For our example domain Ω of Figure 7.1 we omputed the rates of onvergene R1and R2 on the two subdomains Ω̂1 and Ω̂2 in this setion. They were R1 ≈ 2.82 and
R2 ≈ 1.86. If we use the same number N of Fourier-Bessel basis funtions on bothsubdomains it follows from Theorem 7.2.3 that

σ(λ) = min
a∈R2N

Ĩ1/2(λk, a)

K1/2(λk, a)
= O((1.86)−N).Figure 7.4 shows the measured onvergene of

σ̂(λ) ≈ σ(λ)for a growing number of basis funtions. This time we did not use the �xed value
λ = λ1 but the minimum of the urve of σ̂(λ). The dotted line is the onvergenebehavior of the position λ of the minimum of the urve to the �rst eigenvalue λ1 andthe dashed line is the estimated rate 1.86−N . In this plot we used the same number Nof basis funtions on Ω̂1 and Ω̂2. But the rate of onvergene on Ω̂1 is approximately
2.82−N and on Ω̂1 it is 1.86−N . To balane these di�erent onvergene rates we anuse di�erent numbers of basis funtions on the two subdomains as in Setion 6.5. Wewant to ahieve 2.82−N1 = 1.86−N2 whih results in N2

N1
= log 2.82

log 1.86
≈ 1.67. Therefore,it is more suitable to use 3N basis funtions on Ω̂2 and 2N basis funtions on Ω̂1.The resulting onvergene urve is plotted in Figure 7.5. The urve for σ̂(λ) reahesits minimum in Figure 7.5 at N = 13, whih orresponds to 65 Fourier-Bessel basisfuntions, while the minimum in Figure 7.4 is reahed at N = 38 orresponding to

76 basis funtions.Let us ompare the onvergene rates omputed in this hapter with the onvergeneestimates of Desloux and Tolley. The radius ρ1 of Ω̂1 is
ρ1 = max

z∈Ω̂1

|z − z1| ≈ 0.87,
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CHAPTER 7. DOMAIN DECOMPOSITION GSVD 128while the losest singularity is z4 with |z4| ≈ 1.08. Using Taylor series estimates asDesloux and Tolley did we �nd ( |z4|
ρ1

)8/3 ≈ 1.78 for the exponential rate of onvergeneon Ω̂1, while we omputed an exponential rate of R1 ≈ 2.82 on this subdomain.Similarly, Taylor series estimates deliver an exponential rate of 1.05 ompared to ouromputed value of 1.86 on Ω̂2. Hene, by just using Taylor series estimates we obtaina onvergene estimate that does not have anything to do with the true onvergenebehavior, while our value omes lose to the slope of the observed urve in Figure 7.4and is asymptotially orret for N → ∞.When is it preferable to use a domain deomposition method and when should we useglobal approximations as in the subspae angle method? The obvious advantage of amethod based on global approximations is its lower programming e�ort. Furthermore,using a bad domain deomposition an onsiderably slow down the onvergene, asshown in Figure 7.3. But �nding an optimal domain deomposition is a nontrivialtask, if possible at all. In Setion 6.5 we needed at least 71 basis funtions to ob-tain a smallest generalized singular value lose to mahine preision. In the domaindeomposition method presented here this was ahieved by using 65 basis funtions(the ase N = 13 in Figure 7.5). However, in the domain deomposition method wealso have to ompute derivatives of the basis funtions, resulting in an overall higheromputational e�ort. The theoretial advantage of domain deomposition methods isthat they onverge exponentially on polygonal regions. But as shown in the examplepresented here, this does not neessarily mean that the omputational e�ort is lowerto obtain an auray lose to mahine preision.The piture looks di�erent for multiply onneted regions. Consider the region Ωshown in Figure 7.6. This region has four singular orners with interior angles 3π
2
.Fourier-Bessel funtions to apture these singularities are of the form J 2π

3
k(
√

λr) sin 2π
3

kθ,resulting in branh lines that always interset the region. Therefore, we annot useglobal basis funtions that are adapted to the singularities. However, by using adomain deomposition, we an divide Ω into four simply onneted subdomains, onwhih it is possible to use basis funtions that are adapted to the singularities, mak-ing aurate eigenvalue omputations possible. In Chapter 8 we ompute some of theeigenvalues and eigenfuntions of the region in Figure 7.6 using the domain deom-position GSVD method.Another appliation where domain deomposition methods are of advantage is if
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Figure 7.6: A multiply onneted region with four singular orners.we have several subdomains whih are only weakly linked and we have additionalinformation about the eigenfuntions in eah subdomain. Then this approah an beused to quikly �nd good approximations for eigenfuntions in the whole region.



Chapter 8
Examples of omputed eigenvaluesand eigenfuntions
In this hapter we present aurate omputations of eigenvetors and eigenfuntionsof several di�erent regions. Most of the examples are omputed with the subspaeangle method as desribed in Chapter 3. If we use a di�erent approah like the domaindeomposition GSVD we state it in the orresponding setion. For eah eigenfuntionwe print all digits that we believe to be orret. The plotted eigenfuntions arenormalized suh that their maximum absolute value is one and we always plot blaklevel urves whih go from −0.9 to 0.9 in steps of 0.2. Further examples inludingunbounded regions an be found in [75℄. Setion 8.5 was also published in [14℄.8.1 The L-shaped regionThe L-shaped region was the entral example in the paper by Fox, Henrii and Molerin 1967. At the end of the 1970's Moler used it to demonstrate the power of his newomputer numerial system MATLAB. Also, every numerial analyst will have seenthe MATLAB logo, whih is a variant of the �rst eigenfuntion of the L-shaped region.After using this famous region in all hapters of the thesis we �nally want to showsome of its eigenfuntions omputed with the subspae angle method. In Figure 8.1we show six eigenfuntions of the L-shaped region. The 3rd and the 104th eigenvalueare speial. They are also eigenvalues of the unit square and have the exat values130
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λ3 = 2π2 and λ104 = 50π2. The 104th eigenvalue is espeially interesting as it is atriple degeneray, i.e. λ103 = λ104 = λ105. This omes from the fat that

50 = 52 + 52 = 12 + 72 = 72 + 12and therefore there exist three linearly independent eigenfuntions sin(5πx) sin(5πy),
sin(πx) sin(7πx), and sin(7πx) sin(πy). The numbers of the eigenvalues are obtainedby ounting the minima of the subspae angle urve. To ount multiple eigenvaluesorretly we also need the higher subspae angles from De�niton 3.2. The idea is thatif we have a double eigenvalue the smallest and the seond smallest subspae anglewill go to zero sine we have a two-dimensional eigenspae and therefore also a two-dimensional intersetion between A(λ) and D0. In Figure 8.2 some higher subspaeangle urves around the value λ = 50π2 are plotted. At the triple degeneray theurves for the smallest three subspae angles go to zero.8.2 The irular L regionLet us now have a look at a slight variation of the L-shaped region. Instead ofthe reentrant orner we have a quarter irle of radius one. The asymptoti rate ofonvergene of the MPS on this region was omputed in Setion 6.3. Figure 8.3 showssome of the eigenvalues and eigenfuntions of this region. As far as we are aware ofthere are no degenerate eigenvalues any longer on this region.8.3 Symmetri and unsymmetri dumbbellsIn this setion we ompare the eigenvalues and eigenfuntions of two dumbbell shapesshown in Figure 8.4. The left dumbbell onsists of two squares of side length π whihare oupled by a bridge of length and width π

4
. In the unsymmetri dumbbell theside length of the right square is redued from π to 0.9π. Let us �rst disuss thesymmetri dumbbell. Without the onneting bridge the region would onsist of twosquares, eah with eigenvalues

i2 + j2, i, j = 1, 2, . . . .
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Figure 8.1: Some eigenfuntions of the L-shaped region.
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2, 2, 5, 5, 5, 5, 8, 8, 10, 10, 10, 10, . . . .By introduing the onnetion between the squares we obtain a simply onnetedregion with lower eigenvalues and with broken degeneraies. But we an expet thatthe �rst eigenvalues of the onneted region will be lose to the �rst eigenvalues ofthe two unonneted squares. Some of the eigenfuntions of the symmetri dumbbellare plotted in Figure 8.5.If we break the symmetry the eigenfuntions will hange dramatially. Assume thatthe bridge between the squares at the unsymmetri dumbbell does not exist. Thenthe eigenvalues of the left square are di�erent from the eigenvalues of the right square.Hene, an eigenfuntion of the region onsisting of both squares is always zero on oneof the squares. If we introdue the onnetion between the two squares we an expetthat for example the �rst eigenfuntion on this region will be small in the right squaresine without the bridge it would be zero there. Correspondingly the eigenfuntionbelonging to the seond eigenvalue will be small on the left square. Hene, theeigenfuntions belonging to smaller eigenvalues beome loalized due to the smallperturbation that destroys the symmetry of the dumbbell. Only for higher eigenvaluesan we expet global eigenfuntions to our sine then the loal wavelength of an
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Figure 8.3: Some eigenfuntions of the irular L region.
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Figure 8.4: A symmetri and a nonsymmetri dumbbell region.eigenfuntion beomes smaller than the width of the bridge. Some eigenfuntions ofthe unsymmetri dumbbell are plotted in Figure 8.6.Figure 8.7 ompares the subspae angle urves for the symmetri and the nonsym-metri dumbbell. The blue and the green urve for the smallest and seond smallestsubspae angle are almost idential sine smaller eigenvalues are lustered in pairs.Close to λ = 5 all four subspae angle urves beome small, indiating a luster offour eigenvalues. In the unsymmetri urve the eigenvalues are more separated andwe an observe some interesting features of the subspae angle urves. Consider forexample the �rst two eigenvalues. The blue urve for the smallest subspae anglehas minima lose to these eigenvalues. But between them the blue urve goes upagain and almost rosses the green urve belonging to the seond smallest subspaeangle. In the �gure it seems that the urves even ross. Only by zooming into thegraph does it beome visible that the blue and the green urve ome lose between

λ = 2 and λ = 3 but avoid eah other. These avoided rossings were investigatedby Barnett in [8℄. It is interesting to look at the approximate eigenfuntions be-longing to the smallest and the seond smallest subspae angle before and after theavoided rossing. This is shown in Figure 8.8 and 8.9. The left plot of Figure 8.8shows the approximate eigenfuntion orresponding to the smallest subspae angle at
λ = 2.1, just before the avoided rossing, while the right plot shows the approximateeigenfuntion orresponding to the seond smallest subspae angle at this value of λ.Figure 8.9 shows the same funtions but now for the value λ = 2.2, whih is afterthe avoided rossing. Before the avoided rossing ours the funtion assoiated withthe smallest subspae angle looks like the �rst eigenfuntion on this region while af-ter the avoided rossing it looks like the seond eigenfuntion. The seond smallestsubspae angle shows just the opposite behavior. Thus we see that the most rapidhange in the approximate eigenfuntions appears at the avoided rossings and fur-thermore, the funtions assoiated with higher subspae angles are approximationsto the eigenfuntions of neighboring eigenvalues.
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Figure 8.5: Some eigenfuntions of the symmetri dumbbell. The �rst eigenvaluesare lose to those of the square with side length π.
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Figure 8.6: Some eigenfuntions of the nonsymmetri dumbbell. The �rst eigenvaluesare loalized. But also for some higher eigenvalues loalization an our at theorresponding eigenfuntions.
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Figure 8.7: Subspae angle urves for the symmetri and the nonsymmetri dumbbell.
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Figure 8.8: Approximate eigenfuntions orresponding to the smallest (left) and se-ond smallest (right) subspae angle at the value λ = 2.1 before the avoided rossingours.

Figure 8.9: The same plot as in Figure 8.9 but now for the ase λ = 2.2, after theavoided rossing.



CHAPTER 8. COMPUTED EIGENVALUES AND EIGENFUNCTIONS 1408.4 The GWW isospetral drumsIn 1966 Ka [41℄ asked the famous question �Can one hear the shape of a drum?�.This question asks if there exist two distint regions whih have the same spetrum.A beautiful survey of this question was given by Protter in 1987 [60℄. But the answerwas �rst found by Gordon, Webb and Wolpert in 1992 [32℄ and it is no, one annothear the shape of a drum. Two of the simplest isospetral regions whih they foundare the GWW isospetral drums. However, the proof of isospetrality does not givethe eigenvalues. Highly aurate omputations of the eigenvalues were �rst done byDrisoll in 1997 [21℄. He used a modi�ation of the domain deomposition methodby Desloux and Tolley (see Chapter 7 for an introdution) to ompute the �rst 25eigenvalues of the GWW isospetral drums to 12 digits of auray. In Figure 8.10 wepresent some of the eigenvalues of the isospetral drums omputed with the subspaeangle method, showing that our method is at least as aurate as that of Desloux,Tolley and Drisoll.8.5 Eigenvalue avoidaneThe phenomenon of eigenvalue avoidane is linked to the question of how likely it isthat a given operator has multiple eigenvalues. In 1929 von Neumann and Wigner[83℄ showed that the set of real symmetri N ×N matries with multiple eigenvalueshas odimension 2, whih means that this set has two degrees of freedom less thanthe set of all symmetri matries and is therefore unlikely to be enountered byhane. Let us look at the family of matries F (t) := A + tB, where A and Bare real symmetri N × N matries and t is a real parameter. If A and B arerandomly hosen the eigenvalues λk(t), k = 1, . . . , N of F (t) might ome very loseto eah other. But they will probably not interset sine we only have one degreeof freedom t but two onditions for a multiple eigenvalue. This eigenvalue avoidanephenomenon is beautifully explained by Peter Lax in his textbook Linear Algebra [46℄,and illustrated by a piture on the over. Eigenvalue avoidane is not only observedfor �nite dimensional operators. Uhlenbek in 1976 [76℄ and Teytel in 1999 [73℄showed that these results an be generalized to ertain lasses of selfadjoint operators
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Figure 8.10: Some eigenfuntions of the GWW isospetral drums. Both regions havethe same spetrum.
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Figure 8.11: Eigenvalue urves for a parameter-dependent retangle. At L = 1 theseond and third eigenvalues interset. Eigenvalue rossings for some higher eigenval-ues are also visible.ating on Hilbert spaes. A beautiful analysis of eigenvalue rossings on triangles waspublished in 1984 by Berry and Wilkinson [13℄.In this setion we want to make this phenomenon visible using the subspae anglemethod. Consider a retangle with side lengths L and 1/L. If we let L take valuesfrom 0.5 to 2 then for L = 1 we obtain a square and the shapes for L = 0.5 and L = 2are idential. Hene, for the eigenvalues λk(L) on this region we have λk(0.5) = λk(2).At L = 1 the seond and third eigenvalue ross sine on a square we have λ2 = λ3.The eigenvalue urves λk(L) for the �rst eigenvalues on this region are shown in Figure8.11. Now assume that we perturb the shape slightly, i.e. the new shape is de�nedby the four points 0, L, L− p + i/L, i/L, where p > 0 is a small perturbation. Then,as in the �nite dimensional ase, we annot expet eigenvalue rossings to our anymore. The eigenvalues might still ome lose but they will not interset. For thevalue p = 0.2 this is shown in Figure 8.12. All eigenvalue rossings have disappeared.It seems that the eigenvalues avoid eah other.If we derease p further then λ2(1) and λ3(1) will ome loser and eventually beequal for p = 0. How small an we make p and still numerially detet that thesetwo eigenvalues are distint? This is a good test for the auray of the subspae
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Figure 8.12: Eigenvalue urves for a perturbed parameter-dependent retangle. Alleigenvalue rossings have disappeared. The eigenvalues avoid eah other.angle method. Figure 8.13 shows the subspae angle urve lose to 5π2 (the seondeigenvalue on the unperturbed square) for p = 10−13 and L = 1. The urve has twominima pointing to the two di�erent eigenvalues λ2 and λ3 on the perturbed region.Sine the subspae angle is of the order of magnitude of 10−14, we an assume thatthe minima are within a relative error of roughly 10−14 the orret eigenvalues. Theurve in Figure 8.13 is also another nie example for the perturbation results derivedin Chapter 4 for the subspae angle method. Due to ill-onditioning in the basis theurve shows osillations whih beome smaller as we approah the minima makingit possible to detet the eigenvalues to high auray and therefore to distinguish λ2and λ3 even for the small perturbation p = 10−13.8.6 A region with a holeUntil now we have always onsidered simply onneted regions. In this setion wewant to give our �rst example of a multiply onneted region. It is an annulus, inwhih the outer and the inner irle have di�erent enters. The inner irle has radius
0.5 and enter at 0. The outer irle has radius 1 and enter at 0.4. As basis funtionswe use linear ombinations of Fourier-Bessel funtions of the �rst and of the seond
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Figure 8.13: The subspae angle urve for a slightly perturbed unit square. Althoughthe perturbation p has the value 10−13 two distint eigenvalues are reognizable.kind in the form
N
∑

k=0

Yk(
√

λr)
(

A
(N)
Y cos kθ + B

(N)
Y sin kθ

)

+
N
∑

k=0

Jk(
√

λr)
(

A
(N)
J cos kθ + B

(N)
J sin kθ

)

.(8.1)The idea is that this is analogous to approximating a holomorphi funtion in anannulus with a Laurent series. This approah an also be justi�ed from the fat thatevery solution of −∆u = λu in a irular annulus R1 < |z| < R2 an be expanded ina series of the form (8.1) with N → ∞ (see [80℄, �22). Figure 8.14 shows some of theeigenvalues of the annulus region.The subspae angle method an also do regions with several holes. Suh a region isshown in Figure 8.15. The inner irle is of radius 1 and the outer irle is of radius
2. In the upper plot the small holes are of radius 0.4, while in the lower plot theradius of the right small hole is redued to 0.3. The eigenfuntions are approximatedby linear ombinations of Fourier-Bessel funtions of the �rst and seond kind aroundthe big enter hole together with Fourier-Bessel funtions of the seond kind aroundthe small holes. Similarly to the example of the dumbbell we an see loalizatione�ets of the eigenfuntions if the symmetry is broken.
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Figure 8.14: Some eigenfuntions of a irle with a hole. An interesting loalizatione�et is visible in the eigenfuntion of λ100.
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Figure 8.15: Eigenfuntions on a irular region with �ve holes. As in the exampleof the dumbbell the breaking of symmetry leads to loalization.



CHAPTER 8. COMPUTED EIGENVALUES AND EIGENFUNCTIONS 1478.7 A square with a square shaped holeWhile in the previous setion the holes in the region did not have singular orners, wenow onsider a square with a square shaped hole. The inner boundary is a square withside length one and lower left orner at zero while the outer boundary is a square withside length three and lower left orner at −0.5 − 0.5i. The four inner orners of theregion are singular with interior angle 3
2
π. The outer orners are regular. We ouldompute the eigenvalues and eigenfuntions by utting the region along its symmetryaxis in two halves to obtain two simply onneted regions. The odd modes are thenobtained by omputing the eigenvalues on the half region with zero Dirihlet boundaryonditions and the even modes are obtained by omputing the eigenvalues of the halfregion with zero Neumann onditions along the symmetry axis and zero Dirihletboundary onditions on the other sides. But by slightly hanging the position of theinner square the symmetry would be lost and this would not be possible any longer.Therefore, we diretly use the domain deomposition GSVD method to ompute theeigenvalues and eigenfuntions on the whole region. This an be done by dividing theregion into four subdomains, eah of whih ontains one singular orner. Figure 8.16shows some eigenfuntions of the region omputed with the domain deompositionGSVD. To obtain the �rst 7 digits of the presented eigenvalues around 40 basisfuntions are needed at eah singular orner. The orresponding smallest generalizedsingular value is of the magnitude 10−3 whih shows a squared onvergene e�etfor the eigenvalue on this region. The exponential onvergene rate is relatively slowsine the eigenfuntions have singularities inside the inner square.



CHAPTER 8. COMPUTED EIGENVALUES AND EIGENFUNCTIONS 148

Figure 8.16: Some eigenfuntions on the square with a square-shaped hole. Only foreigenfuntions belonging to higher eigenvalues is the loal wavelength small enoughto fully penetrate the lower left part of the region.



Chapter 9
Conlusions
This hapter summarizes the ontributions of this thesis and gives an outlook tofurther researh questions in numerial linear algebra, approximation theory and forfurther appliations.9.1 Numerial linear algebraThe �rst hapters of this thesis were onerned with how tools from linear algebraan be applied to the MPS in order to obtain a stable and aurate algorithm. Theoriginal MPS of Fox, Henrii and Moler used the determinant of square matriesontaining the basis funtions evaluated at boundary olloation points to determinean eigenvalue. In Chapter 2 we showed that this approah generally fails on moreompliated regions. The method gets somewhat better behaved if one hooses manymore boundary olloation points than there are basis funtions [54℄. In terms ofnumerial linear algebra this means going away from determinants of square matri-es to singular values of retangular matries. But as we showed in Chapter 2 thefundamental problem of spurious solutions remains. We need a method whih alsouses information about the approximate eigenfuntions in the interior of the region.Two suh approahes are the PWDM by Heller and Barnett's method. But while the�rst one only partially solves the stability problems of the MPS the latter one is onlyaurate up to O(

√
ǫmach) and expliitly has to deal with the ill-onditioning in thebasis funtions as we showed in Setion 4.6.149



CHAPTER 9. CONCLUSIONS 150Based on prinipal angles between subspaes we developed a stable and auratemethod in Chapter 3. The prinipal idea was to introdue additional interior pointsand to minimize a ertain angle between two subspaes. We then showed thatthis is equivalent to minimizing the smallest generalized singular value of the penil
{AB(λ), AI(λ)}. Hene, the MPS beomes stable by going over from singular valueomputations to generalized singular values.We also showed that Barnett's approah an be interpreted as solving the generalizedeigenvalue problem

AB(λ)T AB(λ)x(λ) = µ(λ)AI(λ)T AI(λ),whih is just a squared formulation of our method. In Setion 4.6 we omparedthe GSVD approah with the formulation as generalized eigenvalue problem andshowed that the GSVD is a more stable and aurate tool for the MPS. Again itis advantageous to use a tool for retangular matries (GSVD) rather than one forsquare matries (generalized eigenvalues).The GSVD and other algorithms that work on retangular matries are still lessdeveloped than square matrix methods. While there is a variety of methods for largestrutured eigenvalue and generalized eigenvalue problems, we are only aware of twomethods for the GSVD of large and strutured problems [39, 87℄. Suh methodswould espeially be useful for the domain deomposition GSVD approah proposedin Chapter 7.Also the stability of the GSVD for matrix penils {A,B} suh that Y =

[

A
B

] is ill-onditioned has not yet been very muh explored in the literature. In most artilesabout the GSVD it is assumed that Y is well-onditioned. In this thesis we showedthat the GSVD an also deliver meaningful results for heavily ill-onditioned prob-lems. Sine ill-onditioned bases appear in a variety of appliations further researhof the GSVD in suh situations an lead to new robust algorithms.Another question is that of the resolvent and pseudospetra for the Method of Par-tiular Solutions. Figure 9.1 shows an extension of Figure 3.2 into the omplexplane by taking omplex values for λ. This raises the question of how subspaeangles are onneted to pseudospetra and the resolvent norm of the Laplaian. Let
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Figure 9.1: Extension of Figure 3.2 to the omplex plane. The plot shows the levelurves |s1(λ)| = 0.0.5, 0.1, 0.15, . . . for the L-shaped region.
r(λ) := (λI + ∆)−1 be the resolvent funtion of the Laplaian. The resolvent norm isde�ned as

‖r(λ)‖ := sup
u∈L2(Ω)
‖u‖Ω=1

‖r(λ)u‖Ω.For the MPS we an de�ne a similar funtion using the otangent of the subspaeangle between A(λ) (here A(λ) is the spae of all possible partiular solutions asde�ned in (1.2)) and D0. Then
cot θ(λ) = sup

u∈A(λ)
‖u‖∂Ω=1

‖u‖Ω.Both funtions, the resolvent and cot θ(λ), have poles at the eigenvalues. Findinga meaningful onnetion between both would also lead to a meaningful onnetionbetween subspae angles and pseudospetra. Although the Laplaian is a selfadjointoperator and therefore its pseudospetra are simply disks around the eigenvalues, aonnetion to subspae angles ould lead to interesting new insights.An example is the method of Vergini and Saraeno (see [82℄ or the introdution in thethesis of Barnett [6℄). It solves a generalized eigenvalue problem that depends on theparameter λ and omputes from the generalized eigenvalues approximate distanes tothe eigenvalues of (1.1) losest to λ. The advantage is that only one matrix deom-position is neessary to obtain approximations for several eigenvalues of (1.1). Alsothe resolvent norm is a distane omputation sine for the Laplaian ‖r(λ)‖ = 1
|λ−λk| ,where λk is the eigenvalue of (1.1) losest to λ. But while the resolvent norm is wellunderstood there are still many open questions onerning the method of Vergini and



CHAPTER 9. CONCLUSIONS 152Saraeno. For example, urrently it only works satisfatory on star-shaped regions.But it has many onnetions to Barnett's method, whih an be regarded as a squaredversion of our subspae angle omputations. Therefore, onneting the resolvent and
cot θ(λ) might give new insight into the method of Vergini and Saraeno.9.2 Approximation theoryAnother major aspet of this thesis is the approximation theory for the Methodof Partiular Solutions. Based on results of Vekua and Garabedian we derived inChapter 6 exponential onvergene estimates for the MPS for regions with zero orone singular orner and omputed the asymptoti exponential rates for several regionsusing onformal mapping tehniques. For regions with multiple singular orners wehave numerial results indiating faster than algebrai onvergene if an inreasingnumber of basis funtions at the singular orners is used. In Chapter 7 we extendedour results to domain deomposition methods and thereby improved the originalestimates of Desloux and Tolley.But still there are several open questions onerning the approximation theory ofthe MPS. We do not yet have a theoretial analysis of the onvergene rate shownin Figure 6.15 whih would give onvergene estimates of our method for regionswith multiple singularities. Also the onvergene of the MPS in the ase of multiplyonneted regions has not yet been investigated. For example, in the region shown inFigure 8.14 we observed rapid onvergene to the solution. We think that there is alose onnetion to rational approximation in the omplex plane.In this thesis we always used Fourier-Bessel basis sets. These are easily adapted tore�et orner singularities of the eigenfuntions and are diretly onneted to poly-nomials via the Vekua theory. However, in some appliations other basis sets arepreferable. For example, in the ase of the Bunimovih stadium billiard a ombina-tion of real plane waves and evanesent waves leads to very good results [6, 81℄. Howdo Fourier-Bessel basis sets ompare with real plane waves? Figure 9.2 ompares theonvergene behavior of the subspae angle method for the �rst eigenvalue on theirular L region with Fourier-Bessel funtions and real plane waves. Both basis setsshould lead to the same onvergene behavior as there are no orner singularities on
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Figure 9.2: Comparison of real plane waves and Fourier-Bessel funtions on the ir-ular L region. Although they should both have to the same theoretial asymptotirate of onvergene the numerial behavior is ompletely di�erent.this region. But with real plane waves the onvergene stops at about 10−3 whilethe onvergene of the Fourier-Bessel basis set ontinues until about 10−11 (it annotonverge further sine we know λ1 only to 12 digits of auray). Explaining thisphenomenon would lead to new insight to the question of when to use whih basisset.A very di�erent basis set is used in the Method of Fundamental Solutions. There,one approximates the solution of (1.1) by linear ombinations of singular partiularsolutions (in our ase Fourier-Bessel funtions of the seond kind), whih lie on a urveenlosing Ω (see for example [17, 51℄). In [17℄ it is stated that these basis sets behavefavorably ompared to Fourier-Bessel funtions sine all fundamental solutions behaveuniformly on the region. This is not true for Fourier-Bessel funtions whih beomeexponentially small in Ω for inreasing order. But further numerial experimentsare neessary to determine if fundamental solutions really lead to a better numerialbehavior than Fourier-Bessel basis sets, and it is yet unlear how orner singularitiesare approximated with suh basis sets.



CHAPTER 9. CONCLUSIONS 1549.3 Further appliationsIn this thesis we foused on solutions of the Laplae eigenvalue problem (1.1) withDirihlet boundary onditions. Neumann boundary onditions an also easily beimplemented. Instead of the basis funtions evaluated at boundary olloation pointsthe matrix AB(λ) then ontains the normal derivative of the basis funtions evaluatedat the boundary olloation points. The algorithms desribed in this thesis an also beapplied to more general ellipti eigenvalue problems if partiular solutions are known.The numerial onstrution of partiular solutions for ellipti PDEs with polynomialoe�ient funtions was disussed by Shryer in [64℄. If we want to go over to threedimensional problems we ould similarly as in 2d use partiular solutions for the threedimensional Laplae eigenvalue problem and �nd the eigenvalues with the subspaeangle method. Di�ulties arise if the region has orners. In three dimensions ornersan have almost arbitrary shapes and it is a hard problem to �nd partiular solutionsin 3d whih are adapted to the orner singularities.Another interesting appliation in 2d is the extension of the subspae angle methodto the biharmoni eigenvalue problem. This would give us a tool to ompute Chladni�gures to high auray using partiular solutions1.In this thesis we have only treated interior eigenvalue problems. But also of greatinterest is the solution of Helmholtz problems in the exterior of a region. Adapting thesubspae angle method to suh problems ould lead to many interesting appliationsof the MPS in sattering theory.A fasinating topi is eigenvalue problems on fratal drums. Computing eigenvaluesand eigenfuntions of the Koh snow�ake shown in Figure 9.3 is a beautiful exampleof this [5, 45℄. Sine approximations of this fratal have thousands of orners theapproah of apturing orner singularities by singular Fourier-Bessel funtions doesnot seem feasible. The basis size would be too big. Currently, the most suessfulapproah seems to be the one proposed in [5℄ whih uses a onformal mapping teh-nique for regions with thousands of orners to transplant the eigenvalue problem onthe snow�ake into a system of nonlinear equations in a referene region. It would be1Napoleon would be fasinated by this!
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Figure 9.3: The Koh snow�akefasinating to also �nd a way of using partiular solutions for omputing eigenvaluesto high auray for this region.9.4 Do we have the best method for omputing eigen-values on planar regions?It is dangerous to ask suh a question sine the best method always depends toomuh on the spei� appliation. If we want general purpose solvers for arbitraryregions then methods like boundary element methods (BEM) or �nite element meth-ods (FEM) are probably the best hoie. The piture looks di�erent if we fous onregions with pieewise analyti boundary and a small number of singular orners.Then the subspae angle method is easily implementable and at the same time highlyaurate. Certainly, we ould also tune general purpose methods like FEM to deliverrapid onvergene on suh regions. But the beauty of the MPS together with the sub-spae angle approah is that writing a ode for a ertain region is often just a matterof minutes due to its simple idea. For suh problems the subspae angle method isprobably the best hoie for many appliations. It is not only fast and aurate butalso easily implementable. In Figure 9.4 we show Matlab ode that �ts on a singlepage and omputes the �rst three eigenvalues on the L-shaped region to 10 digits ofauray in just �ve seonds on a modern omputer2. This is what we are striving2This is an example of a�Ten Digit Algorithm" as proposed by Trefethen in [74℄.



CHAPTER 9. CONCLUSIONS 156for in numerial analysis, �nding simple and beautiful algorithms whih deliver fastand aurate solutions to our problems.



CHAPTER 9. CONCLUSIONS 157% Ldrum.m Compute eigenvalues of Laplaian on L-shaped region% T. Betke and L. N. Trefethen 9/03%% The first three eigenvalues are omputed by the method of% partiular solutions (Betke & Trefethen, SIAM Review 2005).% Compute subspae angles for various values of lambda:N = 36; k = 1:N; % orders in Bessel expansionnp = 2*N; % no. of bndry & interior ptst1 = 1.5*pi*(.5:np-.5)'/np; % angles of bndry ptsr1 = 1./max(abs(sin(t1)),abs(os(t1))); % radii of bndry ptst2 = 1.5*pi*rand(np,1); % angles of interior ptsr2 = rand(np,1)./max(...abs(sin(t2)),abs(os(t2))); % radii of interior ptst = [t1;t2℄; r = [r1;r2℄; % bndry and interior ombinedlamve = .2:.2:25; S = [℄; % trial values of lamfor lam = lamveA = sin(2*t*k/3).*...besselj(2*k/3,sqrt(lam)*r);[Q,R℄ = qr(A,0);s = min(svd(Q(1:np,:))); S = [S s℄; % subspae angle for this lamend% Convert to signed subspae angles:I = 1:length(lamve); % all lam pointsJ = I(2:end-1); % interior pointsJ = J( S(J)<S(J-1) & S(J)<S(J+1) ); % loal minimaJ = J + (S(J-1)>S(J+1)); % points where sign hangesK = 0*I; K(J) = 1;S = S.*(-1).^umsum(K); % introdue sign flipssubplot(3,1,1)hold off, plot(lamve,S), hold on % plot signed angle funtionplot([0 max(lamve)℄,[0 0℄,'-k') % plot lam axis% Find eigenvalues via 9th-order interpolation:for j = length(J):-1:1I = J(j)-5:J(j)+4;lam = polyval(polyfit(S(I)/norm(S(I)),lamve(I),9),0);plot(lam*[1 1℄,[-1 1℄,'r')text(lam,.6,sprintf('%13.9f',lam),'olor','r')end% Plot the first eigenfuntion:[X,Y℄ = meshgrid(-1:.05:1,-1:.05:1); Z = X(:)+i*Y(:);p = [0 1i -1+1i -1-1i 1-1i 1℄;[in on℄ = inpolygon(real(Z),imag(Z),real(p),imag(p));zB = Z(on); zI = Z(in&~on); z = [zB;zI℄; t = mod(angle(z/i),2*pi);A = besselj(2*k/3,sqrt(lam)*abs(z)).*sin(2*t*k/3);[Q,R℄ = qr(A,0); [U,S,V℄ = svd(Q(1:length(zB),:));V = V(:,end); Q = Q*V; [t,I℄ = max(abs(Q)); Q = Q/Q(I);F = NaN*zeros(size(Z));F(in&~on) = Q(length(zB)+1:end); F(on) = Q(1:length(zB),:);F = reshape(F,length(X),length(Y)); subplot(3,1,2:3)surf(X,Y,F), view(-150,40), axis off, zlim([0 .7℄)Figure 9.4: This ode omputes the �rst three eigenvalues on the L-shaped regionto 10 digits of auray. Instead of using fminsearh the subspae angle urve isonverted to a urve whih has sign hanges lose to the eigenvalues. These are thendetermined by a 9th-order polynomial interpolation.
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