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Numeri
al Computation of Eigenfun
tions of PlanarRegionsTimo Bet
keKeble CollegeUniversity of OxfordA thesis submitted for the degree ofDo
tor of PhilosophyMi
haelmas 2005In 1967 Fox, Henri
i and Moler published a beautiful arti
le des
ribing the Methodof Parti
ular Solutions (MPS) for the Lapla
e eigenvalue problem with zero Diri
hletboundary 
onditions on planar regions. The idea is to use parti
ular solutions thatsatisfy the eigenvalue equation but not ne
essarily the zero boundary 
onditions toapproximate the eigenfun
tions. Unfortunately, their method be
omes unstable formore 
ompli
ated regions in
luding regions with several 
orner singularities, whi
hled to a de
line of interest in su
h methods in the numeri
al analysis 
ommunity.In this thesis we return to the original idea of Fox, Henri
i and Moler and devisea modi�
ation based on angles between subspa
es that avoids the problems of theirmethod. Our new �subspa
e angle method" has 
lose links to the generalized singu-lar value de
omposition (GSVD). We use this to show the stability of our methodand explain why the GSVD is a natural framework for methods based on parti
ularsolutions.Classi
al error bounds for the MPS were derived by Moler and Payne. We extendthese bounds to our method and verify the �rst eigenvalue on the L-shaped region to13 rounded digits of a

ura
y.The approximation theory of the MPS goes ba
k to results by Vekua. We use histheory and analyti
 
ontinuation of eigenfun
tions to prove exponential 
onvergen
e ofour method on regions with zero or one 
orner singularity. Using 
onformal mappingte
hniques we 
ompute the exa
t asymptoti
 exponential rate on several regions. Forregions with multiple 
orner singularities we propose a 
hoi
e of basis fun
tions thatseems to lead to better than algebrai
 
onvergen
e rates.We then show how to extend the GSVD approa
h to a domain de
ompositionmethod by Des
loux and Tolley and improve their original 
onvergen
e estimatesusing Vekua's theory.Finally, we present eigenvalue and eigenfun
tion 
omputations on many planarregions in
luding the L-shaped region, isospe
tral drums and some multiply 
onne
tedregions.
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Chapter 1
Introdu
tion
1.1 The Diri
hlet eigenvalue problemThis thesis is about the a

urate numeri
al solution of the Lapla
e eigenvalue problemwith Diri
hlet boundary 
onditions, de�ned by

−∆u = λu in Ω, (1.1a)
u = 0 on ∂Ω, (1.1b)where Ω is a bounded planar region. One of the early roots of the great mathemati
alinterest in this problem is the work of Chladni at the end of the 18th and the beginningof the 19th 
entury. He used sand to make the nodal lines in vibrating plates visible.Napoleon was so ex
ited by these experiments that he set out a pri
e of 3000 fran
s foranyone who 
ould explain the mathemati
al theory behind these �gures. This pri
ewas awarded in 1816 to Sophie Germain, who managed to partially explain them by�nding the fourth order PDE des
ribing vibrations of a plate but did not state theboundary 
onditions 
orre
tly. Although the mathemati
al theory behind Chladni's�gures di�ers from the membrane eigenvalue problem (1.1), his work 
an be seen asthe key starting point in the investigation of both phenomena.A

ording to Lord Rayleigh [70℄, the mathemati
al analysis of the membrane eigen-value problem was �rst 
onsidered by Poisson, who investigated vibrations on a re
-tangle. Important 19th 
entury 
ontributions were also made by Lamé, Clebs
h,1



CHAPTER 1. INTRODUCTION 2Weber, Rayleigh, S
hwarz and Po
kels1.In the 20th 
entury the membrane eigenvalue problem gained large interest in the
ontext of S
hrödinger's equation. It was shown that (1.1) governs quantum statesof a parti
le trapped in a two-dimensional well. Nowadays this equation plays animportant role in the �eld of quantum 
haos, whi
h has emerged in the last twenty tothirty years. Physi
ists in this �eld are interested in the behavior of eigenfun
tionsfor very high energies, i.e. large values of λ [33℄.Among mathemati
ians the membrane eigenvalue problem gained a lot of attentionin the se
ond half of the 20th 
entury with Ka
's famous arti
le from 1966 �Can onehear the shape of a drum?� [41℄. The question asks whether there are two distin
tplanar regions whi
h have the same spe
trum. This was �rst answered in 1992 byGordon, Webb and Wolpert [32℄ who were able to 
onstru
t su
h isospe
tral regions.1.2 Drum 
omputations and a famous logoThe 
omputation of eigenvalues and eigenfun
tions of (1.1) is a nontrivial problem.General purpose methods are for example �nite di�eren
es, boundary element, or �-nite element methods. Another more spe
ialized approa
h is the Method of Parti
ularSolutions (MPS), whi
h was introdu
ed by Fox, Henri
i and Moler in 1967. It usesparti
ular solutions that satisfy the eigenvalue equation (1.1a) but not ne
essarilythe zero boundary 
onditions. The idea is to �nd values of λ for whi
h there existlinear 
ombinations of the basis fun
tions whi
h are small on a given set of boundary
ollo
ation points. This method was su

essfully applied by Fox, Henri
i and Molerto 
ompute the �rst eigenvalues on the L-shaped region to up to eight digits of a
-
ura
y. Most numeri
al analysts will have seen an example of this method withouta
tually knowing it. The famous Matlab logo is derived from applying this method tothe L-shaped region and is an approximation of the �rst eigenfun
tion on this region.Apparently, it does not satisfy the zero boundary 
onditions. For aestheti
 reasonsMoler 
hose the image in Figure 1.1 instead of the 
orre
t eigenfun
tion. The 
orre
teigenfun
tion 
an be obtained with the Matlab 
ommand membrane(1,15,9,4). This1An extensive bibliography for the membrane eigenvalue problem 
an be found in the beautifulreview arti
le by Kuttler and Sigillito [44℄.
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Figure 1.1: The famous Matlab logo.does not 
ompute the �rst eigenvalue but uses a stored 
onstant and only 
omputesthe eigenfun
tion. The fun
tion used in the Matlab logo is obtained with the 
om-mand membrane, whi
h is equivalent to 
alling membrane(1,15,9,2). The 
ommandlogo internally 
alls the membrane fun
tion but formats the results su
h that it is theMatlab logo in the familiar form shown in Figure 1.1.Unfortunately, the original MPS by Fox, Henri
i and Moler fails for more 
ompli
atedregions. This led to a de
line of interest in this idea in the Numeri
al Analysis
ommunity. Until re
ently, the most su

essful method for (1.1) has been a domainde
omposition approa
h by Des
loux and Tolley [18℄, whi
h was later improved byDris
oll [21℄.While there was a de
line of interest in the MPS among numeri
al analysists therehas been a growing interest in su
h methods among physi
ists in the last twenty yearsunder the name of �point mat
hing methods". One of the original works is due toHeller [34, 35℄ who developed a method very similar to the MPS without knowingthe work of Fox, Henri
i and Moler. His method and its generalizations are nowadaysfrequently used by physi
ists working in quantum 
haos and related �elds.1.3 The stru
ture of this thesisThe starting point of this thesis was the original paper by Fox, Henri
i and Molerfrom 1967. It bothered us that su
h a beautiful idea should fail for more 
ompli
atedregions su
h as polygons with several 
orner singularities. Sin
e there are only a �nite



CHAPTER 1. INTRODUCTION 4number of known singularities on su
h regions there should be a beautiful and robustmethod whi
h 
omputes the eigenvalues and eigenfun
tions to high a

ura
y.This thesis 
an be roughly divided into four di�erent areas:1. E�
ient tools from linear algebra2. A

ura
y bounds3. Approximation theory4. Eigenfun
tion 
omputationsChapters 2 to 4 and the �rst half of Chapter 7 belong to the �rst area. In Chapter 2and 3 we investigate the failure of the Method of Parti
ular Solutions of Fox, Henri
iand Moler and introdu
e two tools from linear algebra, subspa
e angles and thegeneralized singular value de
omposition (GSVD). With these tools we devise a newmethod in Chapter 3 whi
h we 
all the �subspa
e angle method� and show a �rstexample of it on the L-shaped region. Parts of Chapters 2 and 4 are also publishedin [15℄. The robustness of our method is investigated in Chapter 4, where we take a
lose look at the 
ondition numbers of 
ertain generalized singular values, whi
h arejust the tangents of subspa
e angles that we 
ompute in our method. It turns outthat our new approa
h even admits highly a

urate 
omputations of eigenvalues andeigenfun
tions of (1.1) if the basis of parti
ular solutions is highly ill-
onditioned. Inthe �rst half of Chapter 7 we extend the idea of using generalized singular values toa 
ertain 
lass of domain de
omposition methods for (1.1).Classi
al a posteriori a

ura
y bounds for the Method of Parti
ular Solutions aredis
ussed in Chapter 5 and extended to the subspa
e angle method. In the se
ondhalf of the 
hapter we use these bounds to verify thirteen rounded digits of the �rsteigenvalue on the L-shaped region. This is the most a

urate 
omputation of the �rsteigenvalue on the L-shaped region that we are aware of.The approximation theory of the Method of Parti
ular Solutions is investigated inChapter 6. We show how to use results from Vekua and Garabedian to establishexponential 
onvergen
e estimates of the MPS for regions with zero or one singular
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orner and how one 
an 
ompute the exa
t asymptoti
 
onvergen
e rates on theseregions using 
onformal mapping te
hniques and analyti
 
ontinuation of eigenfun
-tions. These ideas are extended to domain de
omposition methods in the se
ond halfof Chapter 7. For regions with multiple singular 
orners we devise in the last part ofChapter 6 an approa
h that seems to deliver faster than algebrai
 
onvergen
e rates.Computations of eigenvalues and eigenfun
tions of several regions are presented inChapter 8. We also take a 
loser look at the 
on
ept of higher subspa
e angles andavoidan
e phenomena between them. Parts of Chapter 8 are published in [14, 75℄.1.4 NotationMost of the notation used in this thesis is standard. Everything else will be de�nedwhen appropriate. Here we summarize some of the notation used throughout thethesis.By a region Ω we understand an open 
onne
ted set in R
2. In some se
tions (espe
iallyin Chapter 7) we also use the term domain for a region. Often we will identify the
omplex plane C with the set R

2 by the identity z = x + iy. We also frequently usepolar 
oordinates (r, θ) to denote a point z = reiθ. The 
losure of a region Ω is denotedby Ω. The 
omplex 
onjugate of a 
omplex number z is denoted by z and Ω∗ is theset of all 
omplex numbers whose 
omplex 
onjugate is in Ω, i.e. Ω∗ := {z : z ∈ Ω}.The area |Ω| of a region Ω is de�ned as
|Ω| :=

∫

Ω

1dxdy.For a s
alar real or 
omplex variable x we denote by |x| its absolute value. If x ∈ R
nthen |x| := (

∑n
k=1 |xk|2)1/2, where xk is the kth 
omponent of the ve
tor x. For

x, y ∈ R
n we denote by 〈x, y〉 = xT y the standard Eu
lidian inner produ
t and by

‖x‖2 := |x| its Eu
lidian norm. The maximum norm of a ve
tor x ∈ R
n is de�ned by

‖x‖∞ := maxn |xn|.Sometimes we use Matlab notation to denote parts of a matrix. Hen
e, if A is amatrix the �rst 
olumn of A is A(:, 1). For real matri
es we will use two norms. The
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tral norm of A ∈ R
m×n is de�ned as ‖A‖2 :=

√

λmax(AT A), where λmax(A
T A) isthe largest eigenvalue of AT A and the Frobenius norm ‖A‖F is de�ned as ‖A‖F :=

√

tr(AT A), where tr is the tra
e operator. It follows dire
tly that ‖A‖2 ≤ ‖A‖F ≤
√rank(A)‖A‖2.The L2-inner produ
t 〈u, v〉 in Ω is de�ned by

〈u, v〉Ω :=

∫

Ω

u(x, y)v(x, y)dxdy.The asso
iated norm is de�ned by ‖u‖Ω := 〈u, u〉1/2
Ω . We will also need the innerprodu
t of two fun
tions on the boundary ∂Ω. This is de�ned as the path integral

〈u, v〉∂Ω :=

∫

∂Ω

u(s)v(s)ds.Furthermore, we let ‖u‖∂Ω := 〈u, u〉1/2
∂Ω . The sup-norm ‖u‖∞,S of a fun
tion u in a set

S is de�ned as
‖u‖∞,S := sup

x∈S
|u(x)|.Sometimes we need the relative ma
hine a

ura
y ǫmach, whi
h is de�ned as thedistan
e from 1 to the next larger �oating point number. In IEEE double pre
isionthe value of this number is 2−52. We will also en
ounter the unit roundo� u whi
h is

2−53 in IEEE double pre
ision arithmeti
2.In most 
hapters we use the spa
es A(λ) and D0 whi
h are de�ned as
A(λ) := {u ∈ C(Ω) ∩ C2(Ω) : −∆u = λu in Ω} (1.2)and

D0 := {u ∈ C(Ω) ∩ C2(Ω) : u|∂Ω = 0}. (1.3)Hen
e, A(λ) is the spa
e of all parti
ular solutions whi
h are 
ontinuous in Ω and D0is the spa
e of fun
tions whi
h are twi
e 
ontinuously di�erentiable in Ω and zero on
∂Ω. Depending on the se
tion the symbol A(λ) 
an also denote a subspa
e of thespa
e of parti
ular solutions or the spa
e spanned by a basis of parti
ular solutionsevaluated on a set of dis
retization points. Similarly, D0 
an also mean the spa
e offun
tions whi
h are zero on a given set of boundary 
ollo
ation points. This will be
lear from the 
ontext and also stated again in the 
orresponding se
tions.2See [38℄ for a detailed des
ription of these quantities.



CHAPTER 1. INTRODUCTION 71.5 Basi
 properties of eigenfun
tions on planar re-gionsWe now state without proof some basi
 properties properties of the solutions of theeigenvalue problem (1.1) whi
h are useful for the understanding of the following 
hap-ters. Referen
es to further results and proofs are given in [44℄.All eigenvalues λk of (1.1) are positive. The �rst eigenvalue is always simple. We 
anorder the eigenvalues with multipli
ity a

ording to
0 < λ1 < λ2 ≤ · · ·with a limit point at in�nity, and the 
orresponding eigenfun
tions 
an be 
hosen toform an orthonormal 
omplete set in L2(Ω). That is,
< ui, uj >Ω= δij,where ui is the eigenfun
tion asso
iated with λi and δij is the Krone
ker delta. Onsome elementary regions the eigenvalues and eigenfun
tions are expli
itly known. Fora re
tangle with 0 ≤ x ≤ a, 0 ≤ y ≤ b the eigenfun
tions are

um,n(x, y) = sin
(mπx

a

)

sin
(nπy

b

)

, m, n = 1, 2, . . .with 
orresponding eigenvalues
λm,n = π2

[

(m

a

)2

+
(n

b

)2
]

.In the 
ase of a disk of radius a the eigenfun
tions are given by
um,n(r, θ) = Jm(

jmnr

a
)[A cos mθ + B sin mθ], m = 0, 1, . . . , n = 1, 2, . . .where jmn is the nth zero of the mth order Bessel fun
tion Jm. The eigenvalues are

λm,n =

(

jmn

a

)2

.If for two regions Ω1 ⊂ Ω2 then for the eigenvalues λ
(1)
k of Ω1 and λ

(2)
k of Ω2 it followsthat

λ
(1)
k ≥ λ

(2)
k .



CHAPTER 1. INTRODUCTION 8Among all regions with the same area the disk has the smallest eigenvalue λ1. Thisis the result of the famous Faber-Krahn inequality whi
h states that
λ1 ≥

π

|Ω|j
2
01.But a large region does not ne
essarily have a small �rst eigenvalue λ1. Let ρ be theradius of the largest ins
ribed disk in a simply 
onne
ted region Ω. Osserman3 [56℄showed that

λ1 ≥
1

4ρ2
.In 1994 the value 1

4
was improved by Bañuelos and Carroll to 0.619 [2℄. It still remainsan open question what is the largest 
onstant e su
h that λ1 ≥ e

ρ2 for general simply
onne
ted regions.The eigenvalues of (1.1) 
annot be arbitrarily distributed. An important result tothis e�e
t is Weyl's law,
λk ∼ 4πk

|Ω| as n → ∞.A proof 
an for example be found in [61℄.The nodal lines of uk are the set of points in Ω where uk = 0. Courant's nodal linetheorem states that the nodal lines of the kth eigenfun
tion uk divide Ω into not morethan k subregions [61℄. The eigenfun
tion of the �rst eigenvalue λ1 has no nodal lines,and by orthogonality it follows that λ1 is always simple.In symmetri
 regions eigenfun
tions 
an be 
hosen to have either odd or even sym-metry. An odd eigenfun
tion has a nodal line along the symmetry axis and an eveneigenfun
tion has zero normal derivative along this axis. Further symmetry 
lasseswere investigated by Hers
h [37℄. This 
an sometimes be used to redu
e the eigenvalueproblem (1.1) to a problem on a simpler region and was applied by Fox, Henri
i andMoler to the eigenvalue problem on the L-shaped region.Eigenfun
tions are real analyti
 inside Ω. The smoothness on ∂Ω depends on theregion. If a 
orner of ∂Ω 
onsists of two straight ar
s meeting at an angle π/k, where
k is an integer, then any eigenfun
tion 
an be 
ontinued to an analyti
 fun
tion inthe neighborhood of the 
orner. Otherwise, eigenfun
tions 
an have singularities at3In [3℄ Bañuelos and Carroll point out that this result even goes ba
k to Makai in 1965.



CHAPTER 1. INTRODUCTION 9the 
orner, whi
h have to be dealt with by the numeri
al method in order to a
hievefast 
onvergen
e to the eigenfun
tion. We will say mu
h more about these matters inChapter 6.For the eigenvalue problem (1.1) there are di�erent sets of parti
ular solutions. Usingseparation of variables in polar 
oordinates for the equation −∆u = λu one 
an derivethe solutions
Jαk(

√
λr) sin αkθ, Jαk(

√
λr) cos αkθ (1.4)for α, λ > 0 and k ∈ N, where Jαk is the Bessel fun
tion of the �rst kind of order

αk. We will 
all the fun
tions in (1.4) Fourier-Bessel sine and Fourier-Bessel 
osinefun
tions. If αk 6∈ N these fun
tions are not C∞ at 0. A similar set of parti
ularsolutions is obtained by using Bessel fun
tions of the se
ond kind instead of the �rstkind in (1.4). We obtain
Yαk(

√
λr) sin αkθ, Yαk(

√
λr) cos αkθ.We will only need these fun
tions for the 
ase α ∈ N. It is important to note that

Yαk(x) → −∞ for x → 0. Therefore, the origin of the polar 
oordinates has to lieoutside the region if we want to use Fourier-Bessel fun
tions of the se
ond kind asparti
ular solutions.Another 
lass of parti
ular solutions are real plane waves. In 
artesian 
oordinatesthese are given as Re{ei
√

λ(x cos α+y sin α)}, Im{ei
√

λ(x cos α+y sin α)},or equivalently in polar 
oordinates asRe{ei
√

λr cos(θ−α)}, Im{ei
√

λr cos(θ−α)} (1.5)for −π ≤ α ≤ π. These are waves os
illating with wavelength 2π/
√

λ in the dire
tiongiven by α and 
onstant perpendi
ular to α. To obtain a set of 2N basis fun
tionsone usually takes α = kπ
N

for k = 0, . . . , N − 1. The following argument shows thatthis is a sensible 
hoi
e. It holds that
Jn(

√
λr)einθ =

−in

2π

∫ 2π

0

ei
√

λr cos(θ−τ)einτdτfor n ∈ N. Using the trapezoidal rule we obtain
Jn(

√
λr)einθ ≈ −−in

2N

2N−1
∑

k=0

ei
√

λr cos(θ−πk
N

)ein πk
N . (1.6)
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ombining terms belonging to k and N + k it follows for n even thatRe{Jn(
√

λr)einθ} ≈
N−1
∑

k=0

α
(N)
k cos(

√
λr cos(θ − πk

N
)),Im{Jn(

√
λr)einθ} ≈

N−1
∑

k=0

β
(N)
k cos(

√
λr cos(θ − πk

N
)),for 
ertain real 
oe�
ients α

(N)
k and β

(N)
k . If n is odd the same formulas are valid with

sin(
√

λr cos(θ − πk
N

)) instead of cos(
√

λr cos(θ − πk
N

)). Density results and approxi-mation properties of Fourier-Bessel fun
tions and real plane waves are investigatedin [68℄.A very interesting set of basis fun
tions are evanes
ent plane waves. These are ob-tained by 
hoosing a 
omplex shift α in (1.5). Then (1.5) is a wave os
illating withwavelength 2π/(
√

λ cosh Im α) along the dire
tion Re α and de
aying exponentially inthe dire
tion Re α + π/2 Sign(Im α) [12℄. Evanes
ent plane waves have been appliedwith great su

ess to obtain a

urate eigenvalue approximations on the Bunimovi
hstadium billiard [6, 81℄.



Chapter 2
The Method of Parti
ular Solutions(MPS)
In 1967 Fox, Henri
i and Moler published a beautiful arti
le �Approximations andbounds for eigenvalues of ellipti
 operators" [25℄ des
ribing the Method of Parti
ularSolutions for eigenvalue problems on planar regions. Based on theoreti
al work ofBergman and Vekua ([10, 80℄, see also Chapter 6) they approximated solutions of (1.1)by linear 
ombinations of parti
ular solutions that satisfy (1.1a) but not ne
essarily(1.1b). The boundary 
onditions were approximated using a 
ollo
ation method.With this approa
h they 
omputed the �rst 10 eigenvalues of the L-shaped region toan a

ura
y of up to 8 digits. By deriving error estimates they were able to give lowerand upper bounds for ea
h eigenvalue.This simple and elegant method and its appli
ation to the L-shaped region led to manyrelated dissertations and arti
les by Fox's and Mayers' students Donnelly, Mason,Reid and Walsh at Oxford [19, 50, 63℄ and Moler's students S
hryer and Eisenstat atMi
higan and Stanford [23, 64℄.Unfortunately, the MPS in the form proposed by Fox, Henri
i and Moler su�ersfrom problems for more 
ompli
ated regions, espe
ially regions with several 
ornersingularities. This led to a de
line of resear
h in the MPS in the 1970's. Indeed, thebest method known as of a year or two ago, developed by Des
loux and Tolley in1983 [18℄ and improved by Dris
oll in 1997 [21℄, is based on domain de
ompositionrather than global approximations. 11



CHAPTER 2. THE METHOD OF PARTICULAR SOLUTIONS 12While the MPS got less attention in the numeri
al analysis 
ommunity, it was in-dependently redis
overed by physi
ists working in semi
lassi
al me
hani
s, quantum
haos and related �elds; this literature often speaks of methods of �point mat
hing�.One of the originators of this work is Heller, who in the 1980s used a method verysimilar to the MPS to investigate �s
ars� in high energy eigenstates of the Bunimovi
hstadium billiard [34℄. It is interesting to note that although Heller's method is nowa standard tool in physi
s, the only indi
ation he gave of it in [34℄ was the followingsenten
e:These are just a few of nearly a dozen types of s
ars found so far, using asimple algorithm written by the author.He gave a thorough explanation of his method a few years later in [35℄. Heller'sapproa
h was generalized and improved by his student Barnett [6℄.Another method based on parti
ular solutions is the s
aling method of Vergini andSara
eno [82℄. The advantage of their method is that it 
omputes good approxima-tions to many high energy eigenstates with just one matrix de
omposition, as opposedto the traditional MPS, where several de
ompositions are needed to get one eigen-state a

urately. Investigating this method has led to some interesting theoreti
alresults [7, 8℄. Unfortunately, the formulation of Vergini and Sara
eno only worksfor star-shaped regions. But still it is a remarkable method that deserves furtherinvestigation.In this 
hapter we will �rst analyze the original MPS of Fox, Henri
i and Moler. Thenwe will dis
uss in detail the failure of this method for more 
ompli
ated regions. Thisfailure and understanding it points the way to the more robust methods developed inthe later 
hapters.2.1 The MPS of Fox, Henri
i and MolerThe idea of the MPS as proposed by Fox, Henri
i and Moler is to take a set offun
tions that satisfy (1.1a) and to �nd a parameter λ for whi
h there exists a linear
ombination of these fun
tions that is small on the boundary ∂Ω.



CHAPTER 2. THE METHOD OF PARTICULAR SOLUTIONS 13Let us 
onsider an in�nite wedge with interior angle π/α. The eigenfun
tions of thiswedge are the fun
tions
u(r, θ) = Jαk(

√
λr) sin αkθ (2.1)for arbitrary λ > 0 and k ∈ N. The idea of Fox, Henri
i and Moler was to approximate

0

0

π
αFigure 2.1: An in�nite wedge with interior angle π/α. The eigenfun
tions (2.1) ofthis region are known as Fourier-Bessel fun
tions.eigenfun
tions of a polygon 
ontaining a 
orner with interior angle π/α by linear
ombinations of Fourier-Bessel fun
tions of the form (2.1). Hen
e, we want to �nd
oe�
ients c

(N)
k and a value for λ su
h that

u(r, θ) =
N
∑

k=1

c
(N)
k Jαk(

√
λr) sin αkθis a good approximation to an eigenfun
tion of (1.1), i.e. u(r, θ)|∂Ω ≈ 0. On the ar
sadja
ent to the 
orner with interior angle π/α, we automati
ally have u(r, θ) = 0.The rest of the boundary is dis
retized with 
ollo
ation points zj = rje

iθj ∈ ∂Ω, j =

1, . . . , N . Condition (1.1b) now be
omes
u(rj, θj) =

N
∑

k=1

c
(N)
k Jαk(

√
λrj) sin αkθj = 0, j = 1, . . . , N.This is equivalent to the system of equations

AB(λ)c = 0, (2.2)where (AB)jk = Jαk(
√

λrj) sin αkθj. In Chapter 3 we will also introdu
e a matrix AI
onsisting of Fourier-Bessel fun
tions evaluated at interior points of Ω. One 
an solve(2.2) by looking for the zeros of det(AB(λ)), whi
h was the original approa
h of Fox,Henri
i and Moler.
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Figure 2.2: The 
onvergen
e for the �rst eigenvalue of the unit square. In ea
h step
2N basis fun
tions and 
ollo
ation points are used.Let us try this method on a simple region. On the unit square [0, 1]2 the eigenfun
tionsare expli
itly known as

um,n(x, y) = sin(mπx) sin(nπy), m, n = 1, 2, . . .with 
orresponding eigenvalues
λm,n = π2

(

m2 + n2
)

.We expand around the 
orner at z = 0. Then the Fourier-Bessel basis fun
tionsare automati
ally zero on the two sides adja
ent to z = 0. Ea
h of the other twoboundary sides is dis
retized with N 
ollo
ation points. Therefore, 2N basis fun
tionsare 
hosen to obtain a square matrix AB(λ) ∈ R
2N,2N . The 
onvergen
e behavior ofthe MPS for the �rst eigenvalue 2π2 is shown in Figure 2.2. The �gure seems to showat least �spe
tral" 
onvergen
e, i.e. 
onvergen
e at the rate O(N−s) for every s > 0.Indeed, from the 
onvergen
e theory developed in Chapter 6 it follows that the rateof 
onvergen
e is O(R−N) for ea
h R > 1. This example seems to hint that the MPSmight be a powerful method. But the example is still too simple to reveal mu
h.Therefore, let us try a more 
ompli
ated region.Figure 2.3 shows the famous L-shaped region. We approximate around the reentrant
orner with linear 
ombinations of Fourier-Bessel fun
tions of the form J 2

3
k(
√

λr) sin 2
3
k.
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α = 2

3

Figure 2.3: Dis
retization of the L-shaped region for the MPS.This 
an
els out the singularity of the eigenfun
tion at the reentrant 
orner and the-oreti
ally leads again to spe
tral 
onvergen
e, as we will show in Chapter 6. The zeroboundary 
onditions are automati
ally satis�ed on the ar
s adja
ent to the reentrant
orner. Ea
h of the other sides is dis
retized using N 
ollo
ation points.To avoid numeri
al under�ow in 
al
ulating det(AB(λ)) due to bad s
aling of theFourier-Bessel basis ea
h 
olumn of AB(λ) is now s
aled to have unit norm. The�rst eigenvalue of the L-shaped region is λ1 ≈ 9.6397238440219. The 
onvergen
ebehavior of the MPS to this eigenvalue is shown in Figure 2.4. The MPS does notget more than four digits and breaks down after N = 15. This shows that there is aproblem with the original MPS as formulated by Fox, Henri
i and Moler. They wereable to get around this problem and 
al
ulate 8 digits by using symmetry propertiesof the eigenfun
tions to redu
e the problem size. But as we will show now, su
hte
hniques are only able to improve the a

ura
y of the MPS in a few spe
ial 
ases.On more 
omplex regions the method almost always fails.2.2 The failure of the original MPSThe MPS tries to �nd a value λ > 0 su
h that there exists a linear 
ombinationof Fourier-Bessel basis fun
tions whi
h is small at the boundary 
ollo
ation points.What happens now if AB(λ) is ill-
onditioned for all λ > 0 ?Let AB(λ) ∈ R
n×p with n ≥ p (we now in
lude the 
ase where there may be more
ollo
ation points than basis fun
tions) and assume that the smallest singular value
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Figure 2.4: Failure of 
onvergen
e of the original MPS for the �rst eigenvalue of theL-shaped region.
σp(λ) of AB(λ) satis�es σp(λ) = O(ǫmach). Then there exists a ve
tor c ∈ R

p, ‖c‖2 = 1su
h that ‖AB(λ)c‖2 = O(ǫmach). If λ is 
lose to an eigenvalue λk of (1.1), then
ũ(r, θ) =

N
∑

k=1

ckJαk(
√

λr) sin αkθmay be a good approximation of an eigenfun
tion (in Chapter 5 we will dis
uss errorbounds for the MPS). However, if λ is not 
lose to an eigenvalue of (1.1), then ũ(r, θ)satis�es the eigenvalue equation −∆u = λu and is numeri
ally zero on the boundary
ollo
ation points. The only solution of (1.1), if λ is not an eigenvalue, is u(r, θ) = 0.Therefore, we 
an expe
t ũ(r, θ) ≈ 0 in Ω.The MPS 
annot distinguish between fun
tions that are numeri
ally zero in Ω andtrue eigenfun
tions, sin
e it only 
onsiders boundary 
ollo
ation points. But if AB(λ)is ill-
onditioned for every λ > 0, we 
an always �nd a linear 
ombination of basisfun
tions that is 
lose to zero at the boundary 
ollo
ation points, leading to spurioussolutions that are 
lose to zero on the whole of Ω if λ is not 
lose to an eigenvalue. Inthis se
tion we present numeri
al experiments that demonstrate this behaviour anddis
uss the matter of when we 
an expe
t AB(λ) to be ill-
onditioned for all λ > 0. Letus return to the example of the L-shaped region from Se
tion 2.1. The 
onvergen
ein Figure 2.4 breaks down after N = 15. Figure 2.5 shows the 
ondition number
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Figure 2.5: The 
ondition number of AB(λ) for λ = λ1 and the arbitrary value
λ = λ1/2. After N = 15 both matri
es be
ome numeri
ally singular, making itimpossible for the MPS to dete
t the eigenvalue λ1.
κ2(AB(λ)) measured in the 2−norm for a growing number N of basis fun
tions. For λwe 
hose two di�erent parameters. The �rst is λ = λ1, where λ1 ≈ 9.6397238440219is the �rst eigenvalue on the L-shaped region. The se
ond is the arbitrary 
hoi
e
λ = λ1/2. The 
olumns of AB(λ) ∈ R

4N×4N (we have N 
ollo
ation points on ea
hof the 4 sides not adja
ent to the reentrant 
orner) are again s
aled to unit norm.Both 
urves grow exponenentially. After N = 14 the results be
ome erroneous dueto rounding errors. To dete
t an eigenvalue of (1.1) the MPS depends on the gapbetween those two 
urves, whi
h does not widen mu
h as N in
reases and is in any
ase 
omputed in
orre
tly after N = 14.How 
an we improve the 
ondition of AB(λ)? In Figure 2.5 we already used diagonals
aling of the 
olumns of AB(λ) to improve its 
ondition number. This is 
ru
ialhere sin
e the s
aling of Fourier-Bessel fun
tions be
omes exponentially smaller withgrowing order k, whi
h introdu
es severe ill-
onditioning in AB(λ). Over all possible
hoi
es of 
olumnwise s
aling a nearly optimal strategy is to s
ale all 
olumns to unitnorm, sin
e for A ∈ R
m×n and rank(A) = n,

κ2(ADC) ≤ √
n min

D∈Dn

κ2(AD).Here, Dn ⊂ R
n×n denotes the set of nonsingular diagonal matri
es and DC :=



CHAPTER 2. THE METHOD OF PARTICULAR SOLUTIONS 18diag(‖A(:, k)‖2)
−1 is the diagonal matrix that s
ales all 
olumns of A to unit norm(see [38℄, p. 125 for a proof).S
aling alone, although ne
essary, does not deliver satisfa
tory results, as Figure 2.5shows. We 
ould try using di�erent distributions of points on the boundary. Indeed,using points in a Chebyshev distribution on ea
h ar
 allows us to obtain 8 digits ofa

ura
y before the method breaks down. To make the MPS less dependent on the
hoi
e of points it is advisable to use many more points on the boundary than thereare expansion terms, as proposed in [54℄. But this does not solve the fundamentalproblem of the MPS that it fails to ex
lude spurious solutions whi
h are numeri
allyzero everywhere in the region. The following example demonstrates a situation wherethe MPS fails even to get a few digits of the �rst eigenvalue. Consider a quadrilateralwith four 
orner singularities de�ned by the points 0, 1, 1.5 + 1.5i, 1 + 1.5i. Theeigenfun
tions have singularities at all four 
orners (singularities of eigenfun
tions aredis
ussed in Chapter 6). Therefore, in order to get fast 
onvergen
e to the solution,Fourier-Bessel expansions at all 
orners are needed. The �rst eigenvalue of (1.1) onthis region is λ1 ≈ 24.73768313904717. Figure 2.6 shows the 
onvergen
e of thesolution for a growing number N of basis terms at ea
h 
orners. On ea
h side of theboundary 100 points were used. For N = 3 the method obtains the �rst three digits

24.7 
orre
tly, but for larger N it fails 
ompletely. The reason is that the four Fourier-Bessel expansions only behave di�erently very 
lose to the singularities. Otherwisethey approximately span the same spa
e of fun
tions on Ω. This leads to the matrix
AB(λ) being heavily ill-
onditioned independently of λ.Fox, Henri
i and Moler were aware of the fa
t that their method might run intoproblems for more 
ompli
ated regions. In [25℄ they noted:In all fairness, it should be reported that results are not always as sat-isfa
tory as these examples indi
ate. . . . Other methods. . . are 
urrentlybeing investigated.In [21℄ Dris
oll wrote about the problems in applying the MPS to a 
hallenging regionwith several 
orner singularities:
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Figure 2.6: The MPS fails 
ompletely in the 
ase of a quadrilateral with Fourier-Besselexpansions at all 
orners.As the number of terms in the trun
ated expansion is in
reased, the matrixbe
omes very nearly singular for all values of λ, and dete
ting the truesingularity numeri
ally be
omes impossible. In fa
t, we have been unableto produ
e more than two or three a

urate digits for a few of the smallesteigenvalues with this method.In Chapter 3 we develop an approa
h to the MPS that solves these problems andallows highly a

urate approximations to eigenvalues and eigenfun
tions on planarregions. But before we want to dis
uss two methods developed by physi
ists, thePWDM of Heller and its generalization by Barnett. Both methods partially solve theproblems of the MPS by introdu
ing a normalization of the trial fun
tions.2.3 The PWDM of HellerThe idea of Heller's PWDM (PlainWave De
omposition Method) is very similar to theoriginal MPS of Fox, Henri
i and Moler. Two fa
ts about this method are remarkable.The �rst is that it was developed 
ompletely independently of the literature in theNumeri
al Analysis 
ommunity about methods based on parti
ular solutions. The
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ond is that it utilized a simple tri
k to partially solve the problem of spurioussolutions. Heller originally used this method to 
ompute s
ars in 
haoti
 billiards[34℄, where he used real plane waves as basis fun
tions. But the method 
an equallywell be applied to other sets of parti
ular solutions like Fourier-Bessel fun
tions orevanes
ent plane waves.The idea of the method is the following. Let us pi
k a basis of N parti
ular solutions.As in the MPS, we 
ould 
hoose N boundary points and obtain the system of equations
A(λ)c = 0.But as dis
ussed in the last se
tion, this introdu
es spurious solutions in the sear
hspa
e whi
h destroy the 
onvergen
e. To avoid su
h solutions that are numeri
allyzero everywhere in the region, Heller pi
ked one point in the interior of the regionand imposed the 
ondition that the trial fun
tions are 0 on N − 1 boundary pointsand equal to 1 at the interior point. This leads to the system of equations
A(λ)c = en,where eN is the Nth unit ve
tor [0, . . . , 0, 1]T ∈ R

N and the last row of A(λ) now
onsists of the parti
ular solutions evaluated at the interior point. To 
he
k thequality of an approximate eigenfun
tion, it is �rst normalized in the interior of theregion and then evaluated at many boundary points. Heller 
alls this boundary normthe �tension� of the trial fun
tion. If the tension is small, then hopefully the trialfun
tion is a good approximation to an eigenfun
tion of (1.1).Like the MPS, the method of Heller 
an also be formulated using a least-squaresapproa
h. Let p be the number of basis fun
tions and n the number of boundarypoints, with n ≥ p. Furthermore, let l(λ)T ∈ R
1,p be the row ve
tor of basis fun
tionsevaluated at the interior point. Then for a �xed eigenvalue estimate λ, Heller's method
an be formulated as

min
x∈R

p

l(λ)T x=1

‖A(λ)x‖2. (2.3)Let l(λ) = QR be the full QR de
omposition of l(λ) and de�ne ã := A(λ)Q(:, 1)and Ã := A(λ)Q(:, 2:p). Sin
e l(λ) is a ve
tor we have R = [ξ, 0, . . . , 0]T ∈ R
p forone ξ ∈ R. Equation (2.3) 
an now be transformed into the standard least-squaresproblem

min
z∈Rp−1

∥

∥

∥

∥

Ãz +
ã

ξ

∥

∥

∥

∥

2

.
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ξ
Q(:, 1) + Q(:, 2:p)z (see [30℄, Se
tion12.1.4).Alternatively, we 
ould attempt to solve the least-squares problem

min
x∈Rp

∥

∥

∥

∥

[

A(λ)
lT (λ)

]

x − en

∥

∥

∥

∥

2

. (2.4)This delivers a trial fun
tion that is small at the boundary points but 
lose to one atthe interior point, whi
h is often good enough to avoid spurious solutions. Approxi-mations of 
onstrained least squares problems by standard least squares problems aredis
ussed in [30, 78℄. In [78℄ several error bounds are also given.Heller's method is widely used in the quantum 
haos 
ommunity and related �elds.It is easily appli
able and often delivers good approximations to eigenmodes. Thedrawba
k of the method is the 
hoi
e of the interior point. If it is 
lose to a nodalline of the exa
t eigenfun
tion then even good approximations to the eigenfun
tionare s
aled up by the normalization at the interior point and are dis
arded as spurioussolutions. Hen
e, this method is only a partial solution to the stability problems ofthe MPS.2.4 Barnett's generalization of the PWDMThe PWDM of Heller 
an have problems if a nodal line is 
lose to the interior point.Barnett's generalization of the PWDM solves this problem [6℄. Let
A(λ) = span{u(1), . . . , u(N)}be the spa
e spanned by N parti
ular solutions u(1), . . . , u(N) satisfying −∆u(k) =

λu(k), k = 1, . . . , N whi
h are twi
e di�erentiable in Ω and 
ontinuous on Ω. For
u, v ∈ A(λ) de�ne the boundary inner produ
t1

〈u, v〉∂Ω :=

∫

∂Ω

u(s)v(s) ds.1If λ is an eigenvalue of (1.1), 〈·, ·〉∂Ω is not positive de�nite and therefore in the stri
t sense notan inner produ
t.



CHAPTER 2. THE METHOD OF PARTICULAR SOLUTIONS 22Furthermore, we need the standard L2-inner produ
t
〈u, v〉∂Ω :=

∫

Ω

u(x, y)v(x, y) dxdy.The 
orresponding norms are de�ned as ‖u‖∂Ω = 〈u, u〉1/2
∂Ω and ‖u‖Ω = 〈u, u〉1/2

Ω .For a fun
tion u ∈ A(λ) we 
an de�ne the tension
t(u) :=

‖u‖∂Ω

‖u‖Ω

.Furthermore, let us de�ne the minimal tension as
tm(λ) := min

u∈A(λ)
t(u). (2.5)If tm(λ) = 0, then λ is an eigenvalue of (1.1), sin
e then there exists a nonzero fun
tion

u ∈ A(λ) satisfying −∆u = λu and ‖u‖∂Ω = 0. To 
ompute tm(λ), Barnett proposedthe following method. Let u =
∑N

k=1 xku
(k). Then

t2m(λ) = min
u∈A(λ)

〈u, u〉∂Ω

〈u, u〉Ω
= min

x∈RN

xT F (λ)x

xT G(λ)x
,where F and G are de�ned by

Fij(λ) = 〈ui, uj〉∂Ω, Gij(λ) = 〈ui, uj〉Ω.Hen
e, we 
an represent t2m(λ) as the minimum of a Rayleigh quotient. The solutionis given as the smallest eigenvalue µ1(λ) of the eigenvalue problem
F (λ)x(λ) = µ(λ)G(λ)x(λ) (2.6)and we obtain tm(λ) = µ1(λ)1/2.This method is a true generalization of Heller's method sin
e it guarantees that ap-proximate eigenfun
tions are normalized over the whole region Ω instead of beingnormalized at only one point. But the numeri
al implementation of Barnett's methodhas two drawba
ks. The �rst is that almost linearly dependent basis sets lead to a
ommon numeri
al null spa
e of the matri
es F (λ) and G(λ). One strategy to preventthis is to proje
t the 
ommon null spa
e out of the eigenvalue problem, as des
ribedin [6℄. This issue is also further dis
ussed in Se
tion 4.6.



CHAPTER 2. THE METHOD OF PARTICULAR SOLUTIONS 23The other problem is the following. Suppose for the 
omputed smallest eigenvalue
µ̃1(λ) that

µ̃1(λ) = µ1(λ) + f,where f = O(ǫmach) is a small perturbation in the order of ma
hine a

ura
y. Wethen obtain
t̃m(λ) =

√

µ1(λ) + f.Therefore, no matter how small µ1(λ) is, the minimum of the 
omputed value t̃m(λ)for the tension 
annot be
ome lower than √
f = O(

√
ǫmach), meaning that Barnett'smethod is limited to an a

ura
y of O(

√
ǫ). Sin
e asymptoti
ally the fun
tion tm(λ)behaves like K|λ − λk| 
lose to an eigenvalue λk for a 
onstant K > 0 [7℄, we 
angenerally not expe
t to dete
t eigenvalues to more than 8 digits of a

ura
y if wework in IEEE double pre
ision. For most appli
ations in physi
s this restri
tion to

8 digits of a

ura
y is usually not harmful. But in this thesis we want to develop amethod that is able to dete
t eigenvalues to an a

ura
y 
lose to ma
hine pre
isionif the basis of parti
ular solutions admits su
h a

urate approximations. In the next
hapter we will develop su
h a method based on angles between subspa
es and inSe
tion 3.5 we show that Barnett's method 
an be interpreted as a squared versionof our new approa
h.



Chapter 3
Subspa
e angles and the generalizedSVD (GSVD)
In the last 
hapter we dis
ussed the failure of the MPS in the form put forwardby Fox, Henri
i and Moler. The reason for the failure is that we do not have a well-
onditioned problem sin
e the method does not 
ontain information about the interiorof the region. This problem was partially solved by Heller's PWDM and Barnett'sgeneralization of it. But Heller's method only partially solves the problem sin
e itheavily depends on the 
hoi
e of the interior point, and Barnett's approa
h 
annot�nd eigenvalues to a higher a

ura
y than the square root of ma
hine pre
ision. Fur-thermore, the ill-
onditioning of the basis poses stability problems in the formulationas a generalized eigenvalue problem.In order to reliably �nd eigenvalues and eigenfun
tions of (1.1) we need1. A well-
onditioned problem,2. A stable algorithm for solving it.The �rst of these goals 
an be a
hieved by introdu
ing several interior points. Toextra
t approximate eigenfun
tions using the information from boundary and interiorpoints we introdu
e an algorithm that 
an be formulated either as a problem of �ndingthe angle between 
ertain subspa
es or as a generalized singular value problem. Thestability of this algorithm will be dis
ussed in detail in Chapter 4.24
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hlet eigenvalue problem and angles be-tween subspa
esConsider the spa
e A(λ) of all solutions of −∆u = λu in Ω whi
h are 
ontinuous on
∂Ω, i.e.

A(λ) := {u ∈ C(Ω) ∩ C2(Ω) : −∆u = λu in Ω}.Let D0 ⊂ C(Ω) ∩ C2(Ω) be the spa
e of fun
tions in this 
ontinuity 
lass whi
h arezero on ∂Ω. If for a given λ > 0 the spa
es A(λ) and D0 have a nontrivial interse
tionthere exist nonzero fun
tions in A(λ) satisfying the eigenvalue equation and the zeroboundary 
onditions, whi
h are therefore eigenfun
tions belonging to the eigenvalue
λ. The following lemma is immediately obtained.Lemma 3.1.1 The spa
es A(λ) and D0 have a nontrivial interse
tion if and only if
λ > 0 is an eigenvalue of (1.1).The prin
ipal angle between two subspa
es is a useful tool to measure whether theyhave a nontrivial interse
tion. Suppose that 〈·, ·〉 is a suitable inner produ
t withindu
ed norm ‖ · ‖. Then the prin
ipal angle θ(λ) between A(λ) and D0 
an bede�ned as

cos θ(λ) := sup
u∈A(λ), ‖u‖=1
v∈D0, ‖v‖=1

〈u, v〉. (3.1)What is the right inner produ
t to measure the prin
ipal angle between A(λ) and
D0? If the standard L2-inner produ
t 〈u, v〉 =

∫

Ω
uvdx is 
hosen, then θ(λ) = 0for all λ > 0 sin
e the eigenfun
tions of (1.1) in Ω are in D0 and form a 
ompleteorthonormal set of L2(Ω). We need to in
orporate the information on the boundaryof the region. One way to do this is by introdu
ing a mixed inner produ
t of the form

〈u, v〉 :=

∫

Ω

uvdx +

∫

∂Ω

uvdx = 〈u, v〉Ω + 〈u, v〉∂Ω (3.2)The following theorem shows that this inner produ
t leads to a useful meaning of theangle between A(λ) and D0.Theorem 3.1.2 If θ(λ) is de�ned by the inner produ
t (3.2), then the value λ > 0 isan eigenvalue of (1.1) if and only if θ(λ) = 0.



CHAPTER 3. SUBSPACE ANGLES AND THE GSVD 26Proof If λ is an eigenvalue of (1.1), any eigenfun
tion u asso
iated with λ is anelement of D0 and of A(λ). It follows that θ(λ) = 0. Conversely, in Chapter 5 weshow
|λ − λk|

λk

≤ c tan θ(λ)for a 
onstant c that only depends on the region Ω, where
|λ − λk|

λk

= min
n

|λn − λ|
λn

.The minimum is taken over all eigenvalues λn of (1.1). If θ(λ) = 0 it follows that
λ = λk.3.2 Prin
ipal angles in �nite dimensional spa
esBefore we turn the idea of using prin
ipal angles for the MPS into an algorithm we givean introdu
tion to prin
ipal angles in �nite dimensional spa
es and their 
al
ulation.The following de�nition is due to Björ
k and Golub [16℄.Prin
ipal angles between subspa
es Let A and B be subspa
es of R

m with q =dim(A) ≥ dim(B) = p. The prin
ipal angles θ1 ≤ · · · ≤ θp are re
ursively de�ned as
cos θk := 〈uk, vk〉 = max

u∈A, ‖u‖2=1
v∈B, ‖v‖2=1

〈u, v〉, u ⊥ u1, . . . , uk−1, v ⊥ v1, . . . , vk−1. (3.3)The ve
tors uk and vk are the prin
ipal ve
tors asso
iated with the prin
ipal angles
θk.Let QA ∈ R

m×q and QB ∈ R
m×p be orthogonal bases of A and B. Björ
k and Golubshowed that the prin
ipal angles θk and the asso
iated pairs of prin
ipal ve
tors ukand vk 
an be obtained from the singular value de
omposition

QT
AQB = ŨΣṼ T , (3.4)where Ũ ∈ R

q×q and Ṽ ∈ R
p×p are orthogonal matri
es and Σ ∈ R

q×p is diagonalwith Σ = diag(cos θ1, . . . , cos θp). The vk are the 
olumns of the matrix QBṼ and the
uk are the �rst p 
olumns of QAŨ . The Björ
k-Golub algorithm for angles betweensubspa
es therefore 
onsists of two steps:
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• Compute orthogonal bases QA and QB of A and B.
• Compute the singular values of QT

AQB to obtain the 
osines of the prin
ipalangles.If one is interested in very small angles it is ne
essary to work with the sines of theprin
ipal angles. Consider the 
ase in whi
h θ1 = O(
√

ǫmach ). Then cos θ1 ≈ 1− θ2
1

2
=

1 − O(ǫmach). Therefore, the 
osine of prin
ipal angles 
an only be determined upto the square root of ma
hine pre
ision. Sines of prin
ipal angles do not have thisrestri
tion.The sines of the prin
ipal angles between the spa
es A and B 
an be elegantly intro-du
ed using the CS de
omposition.Theorem 3.2.1 (CS De
omposition) Let Q =

[

Q1

Q2

] be a matrix with orthonor-mal 
olumns, where Q1 ∈ R
m1×n, Q2 ∈ R

m2×n and m1 ≥ n. Then there exist orthog-onal matri
es U , W and V su
h that
[

Q1

Q2

]

=

[

U 0
0 W

] [

S
C

]

V T .1The matri
es S and C are diagonal with entries
0 = s1 = · · · = sr < sr+1 ≤ · · · ≤ sr+j < sr+j+1 = · · · = sn = 1and
1 = c1 = · · · = cr > cr+1 ≥ · · · ≥ cr+j > cr+j+1 = · · · = cn = 0.Depending on Q, it is possible that r = 0 or r+ j = n. Furthermore, s2

k + c2
k = 1, k =

1, . . . , n.Proof A proof for the general 
ase involving a row and 
olumn partitioning of Q 
anbe found in [59℄, where the history and many appli
ations of the CS de
ompositionare also reviewed. Here, we only need the simple 
ase of a row partitioning. Theproof given here follows the one in [30℄.1Often the CS de
omposition is written down in the form [

Q1

Q2

]

=

[

U 0
0 W

] [

C
S

]

V T . But for ourpurpose it is more suitable to use the notation given here.
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omposition of Q1, where S 
ontains the singularvalues s1 ≤ · · · ≤ sn of Q1 in as
ending order. Sin
e Q is orthogonal, sk ≤ 1 for
k = 1, . . . , n. De�ne [K1 K2

]

= Q2V , where K1 ∈ R
m2×r+j and K2 ∈ R

m2×n−r−j.Then
[

U 0
0 Im2×m2

]T [
Q1

Q2

]

V =





S̃ 0
0 Im1−r−j×n−r−j

K1 K2



 ,where S̃ ≡ diag(s1, . . . , sr+j) ∈ R
r+j×r+j 
ontains the singular values of Q1 whi
h aresmaller than 1. Sin
e the 
olumns of the right-hand side matrix have unit norm andare mutually orthogonal, K2 = 0, and the matrix

K̃1 = K1diag(1/√1 − s2
1, . . . , 1/

√

1 − s2
r+j)has orthonormal 
olumns. De�ne W =

[

K̃1 K̃⊥
1

] with K̃⊥
1 
hosen su
h that W isorthogonal. Then W T Q2V = C, whi
h �nishes the proof.The de
omposition Q2 = WCV T is just the singular value de
omposition of Q2. Theremarkable property of the CS de
omposition is that the singular value de
omposi-tions of Q1 and Q2 both have the same right singular ve
tors, whi
h are the 
olumnsof the matrix V .With the help of the CS de
omposition it is easy to formulate a notion of sines ofangles between two subspa
es. The 
osines of the angles between the spa
es A and

B are the singular values of QT
AQB. De�ne the matrix
Q =

[

(I − QAQT
A)QB

QAQT
AQB

]

.Sin
e Q has orthonormal 
olumns, the CS de
omposition 
an be applied, leading to
[

(I − QAQT
A)QB

QAQT
AQB

]

=

[

U 0
0 W

] [

S
C

]

V T . (3.5)
WCV T is the singular value de
omposition of QAQT

AQB. Sin
e premultiplying QT
AQBwith QA does not 
hange the singular values the diagonal elements of C are the
osines of the prin
ipal angles between A and B. From Theorem 3.2.1 it follows that

s2
k + c2

k = 1, k = 1, . . . , n. Hen
e, the sk are the sines of the prin
iple angles and weobtain sk = sin θk. We do not need the full CS de
omposition to 
ompute the sines ofthe prin
ipal angles sin
e they are just the singular values of (I − QAQT
A)QB, whi
h
an be dire
tly 
omputed.



CHAPTER 3. SUBSPACE ANGLES AND THE GSVD 29Up to now we have assumed that q = dim(A) ≥ dim(B) = p. Consider now the
ase in whi
h q < p. Then there exist only q prin
ipal angles, whose 
osines are thesingular values of QT
BQA ∈ R

p×q. But the singular values of QT
AQB are identi
al tothose of QT

BQA. However, if we form the CS de
omposition of [(I − QAQT
A)QB

QAQT
AQB

] then
cq+1 = · · · = cp = 0, and these values are by de�nition not prin
ipal angles between
A and B. But for the ease of notation we will drop the 
ondition q ≥ p from now onand de�ne θq+1, . . . , θp = π/2 whenever q < p while keeping in mind that these arenot true prin
ipal angles a

ording to De�nition 3.2.3.3 A subspa
e angle algorithm for the MPSWe now return to the question of how to implement a subspa
e angle algorithm for theMethod of Parti
ular Solutions. As with the MPS of Fox, Henri
i and Moler, we wantto work on a set of dis
retization points. But instead of working only on boundarypoints we now add some interior points. Let z1, . . . , zN ∈ ∂Ω be the boundary 
ollo
a-tion points. In addition we 
hoose a number of interior points z̃1, . . . , z̃M ∈ Ω, whi
hin pra
ti
e we generally take to be random, though other 
hoi
es are also possible.Sin
e it is not possible in a pra
ti
al algorithm to work with the spa
e of all fun
tionsthat satisfy the eigenvalue equation −∆u = λu in Ω, the spa
e A(λ) now 
onsistsonly of the span of the basis of parti
ular solutions u(1), . . . , u(p) of −∆u = λu. Also,instead of working with the spa
es A(λ) and D0 themselves, we work with theirrepresentations at the boundary and interior dis
retization points. Then the bases ofthese spa
es 
an be written in matrix form. As in the original MPS of Fox, Henri
iand Moler, the matrix AB(λ) denotes the basis fun
tions evaluated on the boundary
ollo
ation points, while we additionally introdu
e the matrix AI(λ) of basis fun
tionsevaluated on the interior points. Hen
e, the dis
retized spa
e A(λ) is the span of the
olumns of

A(λ) =

[

AB(λ)
AI(λ)

]

.Similarly, the 
olumns of the matrix
D0 =

[

0
IM×M

]

∈ R
(N+M)×Mprovide a basis of the spa
e of fun
tions that are zero at the boundary 
ollo
ationpoints.
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[

QB(λ)
QI(λ)

]

R(λ) =

[

AB(λ)
AI(λ)

]be a QR de
omposition of A(λ) and let
[

QB(λ)
QI(λ)

]

=

[

U(λ) 0
0 W (λ)

] [

S(λ)
C(λ)

]

V (λ)T . (3.6)be the CS de
omposition of Q(λ). Then the prin
ipal angles φk(λ), k = 1, . . . , pbetween A(λ) and D0 are given by
sk(λ) = sin θk(λ), ck(λ) = cos θk(λ).Proof From Se
tion 3.2 it follows that the sines and 
osines of the prin
ipal anglesbetween A(λ) and D0 are obtained from the CS de
omposition of
[

(I − D0D
T
0 )Q(λ)

D0D
T
0 Q(λ)

]

=









QB(λ)
0
0

QI(λ)









.Using (3.6) we �nd
[

(I − D0D
T
0 )Q(λ)

D0D
T
0 Q(λ)

]

=









U(λ) 0
0 I

0 I
W (λ) 0

















S(λ)
0

C(λ)
0









V (λ)T .Hen
e, S(λ) and C(λ) de�ne the sines and 
osines of the prin
ipal angles between
A(λ) and D0.How does this result relate to the angle θ(λ) between the original non-sampled spa
es
A(λ) and D0? In the 
ase of the sampled spa
es we have

cos θ1(λ) = max
x∈R

p

y∈R
M

〈A(λ)x,D0y〉under the 
ondition that ‖A(λ)x‖2 = ‖D0y‖2 = 1 for the angle θ1(λ) between thesampled spa
es. Sin
e
〈A(λ)x,D0y〉 = 〈

[

AB(λ)
AI(λ)

]

x,

[

0
I

]

y〉 = 〈AB(λ)x, 0〉 + 〈AI(λ)x, y〉,
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rete analogue of the angle θ(λ) for the non sampled spa
es in theinner produ
t (3.2). In both 
ases the boundary part of the inner produ
t is alwayszero for inner produ
ts between elements of A(λ) and of D0. But nevertheless it isimportant sin
e the normalization of the elements of A(λ) depends on the boundaryand interior part of the inner produ
t, no matter whether we work with the sampledor non-sampled spa
es.From (3.6) it follows that ‖QB(λ)v1(λ)‖2 = s1(λ) and ‖QI(λ)v1(λ)‖2 = c1(λ), where
v1(λ) is the �rst 
olumn of V (λ). Consider the 
ase s1(λ) ≪ 1. Then also
‖QB(λ)v1(λ)‖2 ≪ 1 and

‖QI(λ)v1(λ)‖2 = c1(λ) =
√

1 − s2
1(λ) ≈ 1.Therefore, if s1(λ) ≪ 1 there exists a fun
tion in A(λ) that is small on the boundarypoints and bounded away from 0 in the interior of Ω. This fun
tion is expe
ted to bea good approximation to an eigenfun
tion of (1.1). Hen
e, the subspa
e angle methodautomati
ally ex
ludes the possibility of numeri
ally zero approximate eigenfun
tions.The subspa
e angle method 
an be written down in four steps.

• Choose N boundary 
ollo
ation points and M interior dis
retizationpoints.
• Repeat for every λ1. Form the matri
es AB(λ) and AI(λ).2. Compute the QR fa
torization [QB(λ)

QI(λ)

]

R(λ) =

[

AB(λ)
AI(λ)

].3. Compute the smallest singular value s1(λ) of QB(λ).The 
hoi
e of points is done on
e and for all while the steps 1�3 are repeated for ea
hvalue of λ. The numeri
al stability of Step 2 and 3 will be further dis
ussed in Chapter4. We want to �nish this se
tion by applying the subspa
e angle method to the L-shaped region. In addition to just 
ollo
ation points on the boundary we now addrandom interior points as shown in Figure 3.1. Figure 3.2 shows a plot of the sine s1(λ)of the prin
ipal angle θ1(λ), whi
h we 
all the subspa
e angle 
urve. On ea
h boundaryside not adja
ent to the reentrant 
orner 100 equally spa
ed points were 
hosen. Inthe interior of the region 50 points were randomly distributed. The approximation
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Figure 3.1: In addition to boundary 
ollo
ation points the subspa
e angle methodutilizes interior points.
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Figure 3.2: The subspa
e angle 
urve on the L-shaped region. The �rst three minimashow the positions of the �rst three eigenvalues on this region.
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Figure 3.3: The same plot as in Figure 2.5 but now for the matrix QB(λ). There isa 
lear gap between the 
ondition numbers for the eigenvalue λ1 and the arbitraryvalue λ1/2 whi
h widens for a growing number N of basis fun
tions.basis 
onsists of 20 Fourier-Bessel terms of the form J 2k
3

(
√

λr) sin 2kθ
3

, k = 1, . . . , 20,with origin at the reentrant 
orner.In Figure 2.5 we 
ompared the 
ondition number of AB(λ) in the original MPS fora growing number of basis fun
tions in the two 
ases λ = λ1 and λ = λ1/2. Letus do the same for the matrix QB(λ). The result is shown in Figure 3.3. In thesubspa
e angle method there is a 
lear gap in the 
ondition numbers of QB(λ1) and
QB(λ1/2) that widens ni
ely as the number N of basis terms grows, making it possibleto determine the eigenvalue λ1 to high a

ura
y.In Figure 3.4 we show the approximation error |λ − λ1| for a growing number N ofbasis fun
tions. We 
ompared the eigenvalue approximations with the value λ1 ≈
9.6397238440219, whi
h we believe to be 
orre
t to 14 digits. In Chapter 5 we willshow that this value is 
orre
t to at leat 13 rounded digits. The minimum of the sub-spa
e angle 
urve was in ea
h step determined with the Matlab fun
tion fminsear
h.Why is it possible to determine the minimum to su
h high a

ura
y using fminsear
h?Figure 3.5 shows the subspa
e angle 
urve 
lose to the value λ1 for N = 50, 60 and 80basis fun
tions. By in
reasing the number of basis fun
tions 
lose to λ1 the subspa
e
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Figure 3.4: The approximation error for the �rst eigenvalue de
reases exponentiallyon the L-shaped region.angle 
urve more and more looks like
s1(λ) ≈ K|λ − λk|for a value K > 0. This asymptoti
ally linear behavior makes it possible to determinethe eigenvalue to high a

ura
y. In Se
tion 3.5 we show that the subspa
e anglemethod is 
losely related to Barnett's method and that for the value tm(λ) de�nedin (2.5) we have tm(λ) ≈ tan θ1(λ). Barnett showed [7℄ that 
lose to an eigenvalue λk

t2m(λ) = C|λ − λk|2 + O(|λ − λk|4) for a 
onstant C > 0 if we approximate from thespa
e of all parti
ular solutions. Sin
e s1(λ) = sin θ1(λ) we 
an expe
t the subspa
eangle 
urve to have a similar asymptoti
 behavior 
lose to an eigenvalue λk if N ishigh enough.3.4 The MPS and the generalized singular value de-
ompositionThe original MPS of Fox, Henri
i and Moler 
an be formulated as a singular valuede
omposition to obtain approximations for eigenvalues and eigenfun
tions of (1.1).The approa
h of Barnett uses generalized eigenvalue problems, and in this 
hapter we
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Figure 3.5: The asymptoti
 behavior of the subspa
e angle 
urve 
lose to the eigen-value λ1. For a growing number N of basis fun
tions the 
urve seems to behavelinearly 
lose λ1.
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ed an approa
h based on prin
ipal angles between 
ertain subspa
es. We nowwant to show how this is 
onne
ted to the Generalized Singular Value De
omposition(GSVD) whi
h will lead us to a natural framework for all methods based on parti
ularsolutions dis
ussed so far.The GSVD was introdu
ed by Van Loan in [77℄. He introdu
ed B-singular values andde�ned them as the elements of the set
µ(A,B) = {µ|µ ≥ 0, det(AT A − µ2BT B) = 0}.This de�nition also explains why the µ were subsequently 
alled generalized singularvalues. Ordinary singular values are just the solutions of the equation det(AT A −

µ2I) = 0, while now there is also a matrix B involved. In [58℄ Paige and Saunders in-trodu
ed a slightly more general form of the GSVD and also gave a more 
onstru
tiveproof, whi
h will be the basis of the results given here.Theorem 3.4.1 (Generalized Singular Value De
omposition) Let A ∈ R
m1×nwith m1 ≥ n and B ∈ R

m2×n. Assume that Y =

[

A
B

] has linearly independent
olumns. There exist orthogonal matri
es U ∈ R
m1×m1 and W ∈ R

m2×m2 and anonsingular matrix X ∈ R
n×n su
h that
A = USX−1, B = WCX−1, (3.7)where S and C are de�ned as in Theorem 3.2.1.Proof Let QR = Y be the QR de
omposition of Y and partition Q in the same wayas Y is partitioned into A and B, i.e.

[

QA

QB

]

R =

[

A
B

]

. (3.8)Applying the CS de
omposition to Q we obtain
[

A
B

]

=

[

U 0
0 W

] [

S
C

]

V T R.Sin
e Y has linearly independent 
olumns, the matrix R−1 exists. With X = R−1Vthe de
omposition of A and B in (3.7) follows.



CHAPTER 3. SUBSPACE ANGLES AND THE GSVD 37The pairs (sk, ck), k = 1, . . . , n are 
alled generalized singular value pairs of the pen
il
{A,B}. The generalized singular values are de�ned as σk = sk/ck. If ck > 0 then
σk is �nite. Using the notation from Theorem 3.2.1 there are r + j �nite generalizedsingular values σ1 ≤ · · · ≤ σr+j and n − r − j in�nite generalized singular values
σr+j+1 = · · · = σn = ∞. The kth 
olumn xk of the matrix X is 
alled the rightgeneralized singular ve
tor for the generalized singular value pair (sk, ck).The main part of the proof is the CS de
omposition. The GSVD is a simple 
onse-quen
e of this. Paige and Saunders proved the GSVD without the restri
tions that
m1 ≥ n and rank(Y ) = n. But for our purposes this generality is not ne
essary. Ifa stable way of 
omputing the CS de
omposition is known then this 
an be dire
tlyused to 
ompute the GSVD sin
e the GSVD is just a QR de
omposition plus a CS de-
omposition. This pro
edure was dis
ussed by Van Loan in [79℄. A di�erent approa
hwas taken by Paige in [57℄, who used an algorithm based on 
y
li
 transformations of
A and B. This idea was re�ned by Bai and Demmel in [4℄, whi
h forms the basis forthe Lapa
k implementation of the GSVD.The GSVD has several interesting properties. By 
ombining the equations for A and
B in (3.7) we arrive at

c2
kA

T Axk = s2
kB

T Bxk, k = 1, . . . , n.Therefore, the squares of the �nite generalized singular values σ1, . . . , σr+j are the�nite generalized eigenvalues of the generalized eigenvalue problem
AT Ax = σ2BT Bx.The singular values σk, k = 1, . . . , min{m,n} of a matrix A ∈ R

m×n 
an be 
hara
-terized as
σk = max

H⊂R
ndim(H)=k

min
x∈H\{0}

‖Ax‖2

‖x‖2

. (3.9)Let m ≥ n. By ordering the singular values in as
ending order (i.e. σ1 ≤ · · · ≤ σn)an equivalent minimax 
hara
terization 
an be derived:
σk = min

H⊂R
ndim(H)=k

max
x∈H\{0}

‖Ax‖2

‖x‖2

. (3.10)For generalized singular values a similar 
hara
terization is possible.



CHAPTER 3. SUBSPACE ANGLES AND THE GSVD 38Theorem 3.4.2 The generalized singular values σk, k = 1, . . . , r + j of {A,B} 
anbe 
hara
terized as
σk = min

H⊂R
ndim(H)=k

max
x∈H\{0}

‖Ax‖2

‖Bx‖2

.Proof The singular values sk of the matrix QA from (3.8) 
an be 
hara
terized as
sk = min

H⊂R
n

dim(H)=k

max
y∈H\{0}

‖QAy‖2

‖y‖2

.Sin
e σk = sk/
√

1 − s2
k we obtain

σk = min
H⊂R

n

dim(H)=k

max
y∈H

‖y‖2=1

‖QAy‖2
√

1 − ‖QAy‖2
2

.The matrix R is nonsingular. Therefore dim(H) = dim({x ∈ R
n|Rx ∈ H}). Sin
ealso

‖Ax‖2

‖Bx‖2

=
‖QAy‖2

‖QBy‖2

=
‖QAy‖2

√

1 − ‖QAy‖2
2for y = Rx and ‖y‖2 = 1 the result follows.Generalized singular values are 
losely related to prin
ipal angles between subspa
es.Theorem 3.4.3 Let θ1 ≤ · · · ≤ θr+j < π/2 be the prin
ipal angles between thesubspa
es A and B of R

n. Let PA be the orthogonal proje
tor onto A and P⊥
A itsorthogonal 
omplement. Let the matrix B be de�ned su
h that its 
olumns form abasis of B. Then the �nite generalized singular values σk, k = 1, . . . , r + j of thepen
il {P⊥

A B,PAB} are related to the prin
ipal angles θk by σk = tan θk.Proof The proof is a simple 
onsequen
e of the CS de
omposition in (3.5). Let
B = QBR and multiply (3.5) by R to obtain

[

(I − QAQT
A)B

QAQT
AB

]

=

[

U 0
0 W

] [

S
C

]

V T R. (3.11)With PA = QAQT
A and P⊥

A = I−QAQT
A equation (3.11) is just the generalized singularvalue de
omposition of the pen
il {P⊥
A B,PAB}. Sin
e the generalized singular valuepairs (sk, ck), k = 1, . . . , n are the sines and 
osines of the prin
ipal angles between Aand B and ck > 0 for k = 1, . . . , r + j, the result follows.
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orollary of this statement is a minimax 
hara
terization for the tan-gents of prin
ipal angles between subspa
es.Corollary 3.4.4 Let the notation be as in Theorem 3.4.3. Then θ1, . . . , θr+j 
an be
hara
terized as
tan θk = min

H⊂R
n

dim(H)=k

max
x∈H\{0}

‖P⊥
A Bx‖2

‖PABx‖2

, k = 1, . . . , r + j. (3.12)Proof The result follows dire
tly from Theorem 3.4.2 and 3.4.3.To 
on
lude this se
tion we show how the generalized singular values of the pen
il
{A,B} 
an be expressed as angles between 
ertain subspa
es.Corollary 3.4.5 Let A ∈ R

m1×n with m1 ≥ n and B ∈ R
m2×n. De�ne Y =

[

A
B

] andassume that rank(Y ) = n. Let Y be the spa
e spanned by the 
olumns of Y and de�ne
D0 ⊂ R

m1+m2 as the spa
e of ve
tors whi
h �rst m1 entries are zero. Let the �nitegeneralized singular values of the pen
il {A,B} be σ1, . . . , σr+j. Then the prin
ipalangles 0 ≤ θk < π/2 between Y and D0 are given as tan θk = σk.Proof Let PD0
be the proje
tor onto D0 and P⊥

D0
its orthogonal 
omplement. Thegeneralized singular value pairs of {P⊥

D0
Y, PD0

Y } are identi
al to those of {A,B}. Theproof therefore follows immediately from Theorem 3.4.3.A similar result is also proved in [87℄ by Zha.3.5 The GSVD as a uni�ed approa
h for the Methodof Parti
ular SolutionsWe are now ready to show how to apply the GSVD to the Method of Parti
ularSolutions. Let A(λ) := span{u(1), . . . , u(n)} be a given spa
e of parti
ular solutions



CHAPTER 3. SUBSPACE ANGLES AND THE GSVD 40satisfying −∆u = λu in Ω. As in the approa
h of Barnett we 
an attempt to minimizethe boundary tension
t(u) =

‖u‖∂Ω

‖u‖Ω

,over all u ∈ A(λ), where ‖u‖∂Ω, ‖u‖Ω and the 
orresponding inner produ
ts arede�ned as in Se
tion 2.4. Every u ∈ A(λ) 
an be written as
u =

n
∑

k=1

xku
(k).We 
an rewrite this expression using a matrix-ve
tor produ
t form by de�ning asemi-in�nite matrix A(s)(λ) as2

A(s)(λ) =
[

u1(z), . . . , un(z)
]

, z ∈ Ω.(A Matlab toolbox that 
an operate with su
h matri
es was re
ently developed byBattles [9℄). The 
olumns of this matrix are not ve
tors of fun
tions evaluated atdis
rete points but the fun
tions themselves. Every element u ∈ A(λ) now has thesimple form u = A(s)(λ)x. By de�ning the two semi-in�nite matri
es
A

(s)
B (λ) = A(s)(λ), z ∈ ∂Ω,

A
(s)
I (λ) = A(s)(λ), z ∈ Ω,the tension t(u) 
an be reformulated as

t(x) =
‖A(s)

B (λ)x‖∂Ω

‖A(s)
I (λ)x‖Ω

. (3.13)We are interested in the minimum
tm(λ) = min

x∈Rn

‖A(s)
B (λ)x‖∂Ω

‖A(s)
I (λ)x‖Ω

.If the matri
es A
(s)
B (λ) and A

(s)
I (λ) were dis
rete, the solution would simply be givenby the smallest generalized singular value of the pen
il {A(s)

B (λ), A
(s)
I (λ)}. Sin
e thisis not the 
ase one way of 
omputing tm(λ) is to square t(x) and to solve the 
orre-sponding eigenvalue problem. In our semi-in�nite matrix notation this be
omes

A
(s)
B (λ)T A

(s)
B (λ)x(λ) = µ(λ)A

(s)
I (λ)T A

(s)
I (λ)x(λ)2In this se
tion we use the index s to distinguish semi-in�nite matri
es from ordinary matri
es
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es A
(s)
B (λ)T A

(s)
B (λ) and A

(s)
I (λ)T A

(s)
I (λ) are de�ned as

(A
(s)
B (λ)T A

(s)
B (λ))ij = 〈ui, uj〉∂Ω, (A

(s)
I (λ)T A

(s)
I (λ))ij = 〈ui, uj〉Ω.These are just the matri
es F (λ) and G(λ) from the generalized eigenvalue problem(2.6). But we want to avoid working with a squared formulation. So how 
an we workwith A

(s)
B (λ) and A

(s)
I (λ) dire
tly? We 
ould attempt to dis
retize these two matri
esby evaluating the 
olumn fun
tions of A

(s)
B (λ) on a number of boundary 
ollo
ationpoints and the 
olumn fun
tions of A

(s)
I (λ) on some interior points. This then leadsto the dis
rete problem

tm(λ) ≈ σ1(λ) = min
x∈Rn

‖AB(λ)x‖2

‖AI(λ)x‖2

,where σ1(λ) is the smallest generalized singular value of the dis
retized pen
il
{AB(λ), AI(λ)}3. From Corollary 3.4.5 it follows that σ1(λ) = tan θ1(λ), where θ1(λ)is the angle between the dis
retized spa
es A(λ) and D0. Therefore, we have

tm(λ) ≈ tan θ1(λ).So when do we have F (λ) ≈ AB(λ)T AB(λ) and G(λ) ≈ AI(λ)T AI(λ) ? Every entryof F (λ) and G(λ) is an L2 inner produ
t, whi
h is evaluated by a quadrature rule.Using the trapezium rule and equidistributed points on ∂Ω we obtain
Fij(λ) ≈ h

N
∑

k=1

u(i)(zk)u
(j)(zk),where h is the distan
e between two points on ∂Ω. If the same evaluation points areused as dis
retization points for AB(λ) we �nd F ≈ hAB(λ)T AB(λ), where the error

F (λ) − hAB(λ)T AB(λ) is determined by the error of the quadrature rule. Similarly,we have G(λ) ≈ h̃2AI(λ)AI(λ) using a quadrature rule on a regular grid with grid size
h̃. By a s
aling argument we 
an assume h = h̃ = 1. Hen
e, the error tm(λ) − σ1(λ)depends on the underlying quadrature rule. We do not want to dis
uss this in greaterdetail here sin
e for pra
ti
al purposes it is not ne
essary to 
hoose the dis
retizationpoints su
h that σ1(λ) is 
lose to tm(λ). This would lead to a very high number ofinterior points. Instead we just need enough interior points to guarantee that the3We re
ently learned that in unpublished work Eisenstat also 
onsidered using the GSVD for theMethod of Parti
ular Solutions. His starting point was the minimization of error bounds for theMPS.
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tions stay bounded away from zero. In most experiments thiswas a
hieved by 
hoosing just a few dozen interior points.Let us now summarize the results from this 
hapter. To repair the MPS of Fox,Henri
i and Moler it is ne
essary to additionally use interior points. Using boundaryand interior points we 
an formulate a subspa
e angle method that minimizes thesmallest prin
ipal angle θ1(λ) between A(λ) and D0, where these two spa
es arerepresented on the boundary and interior dis
retization points. The subspa
e anglemethod 
omputes for ea
h λ the value s1 = sin θ1(λ). An equivalent formulation of thesubspa
e angle method 
an be derived as the generalized singular value de
ompositionof the pen
il {AB(λ), AI(λ)}. For the smallest generalized singular value σ1(λ) ofthis pen
il it follows from Corollary 3.4.5 that σ1(λ) = tan θ1(λ). Therefore, thesubspa
e angle method 
an be seen as a dire
t generalization of the original MPS bygoing over from 
omputing the smallest singular value of AB(λ) to 
omputing thesmallest generalized singular value of {AB(λ), AI(λ)}. Barnett's method solves thegeneralized eigenvalue problem F (λ)x(λ) = µ1(λ)G(λ)x(λ), whi
h 
an be interpretedas the square of the GSVD of {AB(λ), AI(λ)}. Squaring the GSVD problem leadsto a loss of a

ura
y as already dis
ussed in Chapter 2. Further impli
ations of thesquared generalized eigenvalue formulation in 
omparison to the GSVD are dis
ussedin Chapter 4. Heller's PWDM uses exa
tly one point in the interior but does not use aGSVD approa
h to solve the resulting problem. Using the GSVD we 
an in
orporatean arbitrary number of interior points, thereby solving stability problems whi
h 
anresult from only having one interior point.At the beginning of this 
hapter we posed the two goals of formulating a well-
onditioned problem and having a stable method to solve this problem. From the�rst example of the L-shaped region given in this 
hapter it seems that using interiorpoints together with the subspa
e angle method a
hieves these goals. Indeed, in thenext 
hapter we show that the smallest subspa
e angle θ1(λ) is well-
onditioned if λis 
lose to an eigenvalue λk of (1.1), allowing us to approximate eigenvalues of (1.1)to high a

ura
y.



Chapter 4
Numeri
al stability
In the last 
hapter we derived the subspa
e angle method and its equivalent formu-lation as a generalized singular value problem. The �rst results on the L-shapedregion looked promising. But we haven't yet dis
ussed the e�e
t of ill-
onditioningin the basis on the reliability of the method. It is well known that singular valuesare perfe
tly 
onditioned. The same is true for eigenvalues of symmetri
 matri
es.However, for generalized singular values the pi
ture looks di�erent. Depending on thepen
il {A,B}, the 
ondition number of generalized singular values 
an be arbitrarilybad. Sin
e the GSVD underlies the subspa
e angle method, this raises the questionhow reliable the subspa
e angle method is and if we 
an trust the results that weobtain with it. This se
tion starts with two examples that show how ill-
onditioningin the approximation basis 
an introdu
e visible numeri
al errors in the 
omputedgeneralized singular values. Then we will dis
uss 
urrently known perturbation re-sults and 
ondition numbers for generalized singular value problems and apply themto the subspa
e angle method to obtain a

urate bounds on the forward error of themethod. In the last se
tion of this 
hapter we 
ompare the 
ondition numbers inthe subspa
e angle method to those of the 
orresponding formulations as generalizedeigenvalue problem in Barnett's method. For all 
omputations in this 
hapter we usestandard Matlab fun
tions.

43
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Figure 4.1: The GWW-1 isospe
tral drum. The singular 
orners are marked by dots.4.1 Two examples for highly ill-
onditioned prob-lemsOur �rst example is the �rst of the two famous Gordon-Webb-Wolpert (GWW)isospe
tral drums, shown in Figure 4.1. There are four singular 
orners around whi
han eigenfun
tion of (1.1) 
annot be analyti
ally 
ontinued (more on analyti
 
ontinu-ation in Chapter 6). Highly a

urate eigenvalue approximations 
an only be a
hievedif these singularities are re�e
ted in the approximation basis by using expansions withFourier-Bessel fun
tions around the singular 
orners.To obtain the �rst eigenvalue to 12 digits of a

ura
y, an expansion with 60 Fourier-Bessel basis fun
tions around ea
h of the 4 singular 
orners is ne
essary. The resultingeigenvalue approximation is λ1 ≈ 2.537943999801. The tangent of the smallest prin
i-pal angle 
omputed with the Matlab GSVD fun
tion for this shape is plotted in Figure4.2 (for GSVD 
omputations we use throughout this thesis the Matlab GSVD fun
-tion, whi
h performs a QR followed by a CS de
omposition). Before the 
urve bendsdown to the �rst eigenvalue, it is heavily os
illating, but then it be
omes smoother1Beautiful pi
tures of the �rst eigenmodes on the isospe
tral drums and 
omputations of theireigenvalues to 12 digits of a

ura
y were published by Dris
oll in 1997 [21℄.
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Figure 4.2: The smallest generalized singular value σ1(λ) for the GWW-1 isospe
traldrum. Away from the eigenvalue, the 
urve shows large os
illations.
lose to the eigenvalue. Figure 4.3 shows the 
ondition number of A(λ) =

[

AB(λ)
AI(λ)

]2for di�erent values of λ. For all these values of λ the basis is numeri
ally singular.At the eigenvalue λ1 the 
ondition number is 1.2 × 1016. But still we are able toapproximate λ1 to an a

ura
y of 12 digits.An arti�
ial but more striking example of the possible e�e
ts of ill-
onditioning isgiven in Figure 4.4. This shows the 
urve of the smallest generalized singular valuefor the MPS on the unit square with 20 Fourier-Bessel basis terms around ea
h ofthe four 
orners. An expansion at a single 
orner would be su�
ient to obtain the�rst eigenvalue λ1 = 2π2 up to an a

ura
y of ma
hine pre
ision; the expansions atthe other 
orners are redundant. Due to the redundant information in the basis the
urve shows large os
illations. But these os
illations seem to de
rease near λ1. Inthis 
hapter we show that even in the presen
e of su
h os
illations, highly a

urateapproximations to eigenvalues of (1.1) are still possible.2Here and in all other examples we work with bases in whi
h every 
olumn is s
aled to unit normto avoid ill-
onditioning e�e
ts 
aused by the di�erent s
aling of basis fun
tions.
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Figure 4.3: The 
ondition number of the Fourier-Bessel basis in the 
ase of the GWW-1 isospe
tral drum. The basis is numeri
ally singular for all values of λ.
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Figure 4.4: On a unit square expansions at all four 
orners lead to large os
illationsin the 
omputed generalized singular values.
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ipal angles betweensubspa
esThe subspa
e angle algorithm 
omputes the smallest prin
ipal angle between thespa
es A(λ) and D0 represented by the matri
es A(λ) and D0. The spa
e D0 of fun
-tions that are zero at the boundary points is exa
tly represented by the orthonormal
olumns of D0. But the matrix A(λ) 
onsists of basis fun
tions evaluations and isusually highly ill-
onditioned. Therefore, it is feasible to ask what 
hanges in theprin
ipal angles are 
aused by small 
hanges in A(λ).Let A ∈ R
m×n,m ≥ n be given and denote byR(A) the spa
e spanned by the 
olumnsof A. Let δA ∈ R

m×n be a small perturbation of A. The �rst question is how faraway is the spa
e R(A) from the spa
e R(A+δA) spanned by the 
olumns of A+δA.This question was answered by Wedin in 1983.Theorem 4.2.1 (Wedin, [86℄) Let θ1, . . . , θn be the prin
ipal angles between R(A)and R(A + δA). Then
sin θk ≤ ‖δA‖2‖A†‖2, k = 1, . . . , n.Proof Let PA be the proje
tor onto R(A) and PA+δA the proje
tor onto A + δA.Then (I − PA+δA)(A + δA) = 0 and therefore
(I − PA+δA)δA = −(I − PA+δA)A.We have PA = AA† and therefore

(I − PA+δA)δAA† = −(I − PA+δA)PA.The sines of the prin
ipal angles θk are the singular values of (I−PA+δA)PA. Therefore,
sin θk ≤ ‖(I − PA+δA)PA‖2 ≤ ‖δA‖2‖A†‖2.Hen
e, if the 
olumns of A form a highly ill-
onditioned basis of R(A), the spa
e

R(A + δA) 
an �utter arbitrarily under small perturbations δA. Let us now ask howthe prin
ipal angles between the range of the 
olumn spa
es of the matri
es A and
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B 
hange under small perturbations. From the last theorem we 
an expe
t that theperturbation bounds essentially depend on the 
ondition numbers of A and B. Butdepending on the dire
tion of the perturbations one 
an obtain signi�
antly betterbounds. This was analyzed by Golub and Zha in 1994.Theorem 4.2.2 (Golub, Zha, [31℄) Let A and Ã, and B and B̃ have the samerank, i.e.

rank(A) = rank(Ã) = p rank(B) = rank(B̃) = qand assume p ≥ q. For any orthogonally invariant norm ‖ · ‖, let the 
onditionnumbers of A and B be de�ned as follows:
κ(A, ‖ · ‖) = ‖A‖‖A†‖2, κ(B, ‖ · ‖) = ‖B‖‖B†‖2.Let S be the matrix of sines of the prin
ipal angles and C be the matrix of 
osines of theprin
ipal angles between R(A) and R(B). Similarly let S̃ and C̃ be the 
orrespondingmatri
es for the prin
ipal angles between the perturbed spa
es R(Ã) and R(B̃). Thenwe have

‖C − C̃‖2 ≤
√

2

{

κ(A, ‖ · ‖) cos θ1
‖A − Ã‖
‖A‖ + κ(B, ‖ · ‖) cos φ1

‖B − B̃‖
‖B‖

}and
‖S − S̃‖2 ≤

√
2

{

κ(A, ‖ · ‖) cos θ2
‖A − Ã‖
‖A‖ + κ(B, ‖ · ‖) cos φ2

‖B − B̃‖
‖B‖

}

,with
θ1 = θmin(C(A, Ã),R(B)), θ2 = θmin(C(A, Ã),R(B)⊥)

φ1 = θmin(R(Ã), C(B, B̃)), φ2 = θmin(R(Ã)⊥, C(B, B̃)),where C(A, Ã) is the orthogonal 
omplement of R(A) ∩ R(Ã) in R(A) + R(Ã), and
C(B, B̃) is the orthogonal 
omplement of R(B) ∩ R(B̃) in R(B) + R(B̃). For thespe
tral norm we 
an substitute the 
onstant √2 with 1.This result does not only depend on the size of the perturbation but also on itsdire
tion. The problem with this error bound is that it treats all prin
ipal anglestogether. If the theorem delivers a perturbation bound for the prin
ipal angles of,say, 10−5, this is reasonable for the larger angles but 
atastrophi
 for very smallprin
ipal angles. We are espe
ially interested in very small angles. Therefore, weneed to treat them separately. Sin
e the subspa
e angle algorithm 
an be interpretedas a generalized singular value 
omputation, we 
an apply 
ondition numbers forgeneralized singular values to obtain error estimates.
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tly 
onditioned underperturbations in A. This follows from the fa
t that if σ is a singular value of A, then
±σ are eigenvalues of the symmetri
 matrix [ 0 A

AT 0

], and eigenvalues of symmetri
matri
es are perfe
tly 
onditioned (see [40℄ for a proof).For generalized singular value problems the situation is more 
ompli
ated. Conditionnumbers for these problems were de�ned and analyzed by Sun [71℄.Let A ∈ R
n×p and B ∈ R

m×p and de�ne Y =

[

A
B

]. Furthermore, let rank(Y ) = p.We de�ne a perturbed pen
il {Ã, B̃} as Ã = A + E and B̃ = B + F . If (s, c) isa generalized singular value pair of {A,B}, the 
orresponding perturbed generalizedsingular value pair of {Ã, B̃} is denoted by (s̃, c̃). Furthermore, let σ = s
c
and σ̃ = s̃

c̃be the 
orresponding generalized singular values. Then a 
ondition number c(σ) for
σ 
an be de�ned in the following way.Condition number for generalized singular values Let γA,γB and ξ be positiveparameters. Then the 
ondition number c(σ) of a generalized singular value σ of thepen
il {Ã, B̃} is de�ned as

c(σ) = lim
δ→0

sup



� ‖E‖2
γA

,
‖F‖2
γB

�T





∞

≤δ

|σ̃ − σ|
ξδ

.If γA = γB = ξ = 1 then c(σ) is an absolute 
ondition number. Relative 
onditionnumbers are obtained for the parameters γA = ‖A‖2,γB = ‖B‖2 and ξ = σ. Bysetting E = 0 or F = 0 one obtains the 
ondition numbers
cA(σ) = lim

δ→0
sup

‖E‖2
γA

≤δ,F=0

|σ̃ − σ|
ξδ

cB(σ) = lim
δ→0

sup
‖F‖2
γA

≤δ,E=0

|σ̃ − σ|
ξδ

.The forward error 
an be estimated as
|σ̃ − σ|

ξ
≤ c(σ)

∥

∥

∥

∥

∥
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γA

,
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γB

)T
∥

∥

∥

∥

∥

∞

+ O




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∥

∥
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γA

,
‖F‖2

γB

)T
∥

∥

∥

∥

∥

2

∞



 . (4.1)
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ondition number c(σ) in 
omputable quantities.Theorem 4.3.1 (Sun, [71℄) Let x be the right generalized singular ve
tor asso
iatedwith σ. Then the 
ondition number c(σ) 
an be expressed as
c(σ) =

‖x‖2(γB‖Ax‖2 + γA‖Bx‖2)

ξ‖Bx‖2
2

. (4.2)If we assume that γA = γB = ξ = 1 then we obtain for the resulting absolute 
onditionnumber the expression
c(σ) =

‖x‖2

‖Bx‖2

(1 + σ) =
‖x‖2

c
(1 + σ) (4.3)sin
e σ = s

c
= ‖Ax‖2

‖Bx‖2
and ‖Bx‖2 = c. Therefore, if the generalized singular value σ issmall, the 
ondition number c(σ) mainly depends on ‖x‖2. Let [QA

QB

]

R be the QRde
omposition of [A
B

] and let τ be the smallest singular value of R. Then a 
rudeupper bound on ‖x‖2 is given by τ−1 sin
e from Theorem 3.4.1 it follows that thereis a ve
tor v with ‖v‖2 = 1 su
h that x = R−1v. We �nd ‖x‖2 ≤ τ−1. By using thestru
ture of the GSVD we 
an often give better bounds on ‖x‖2.Lemma 4.3.2 Let σ = s/c be a generalized singular value of the pen
il {A,B} andlet x be its 
orresponding right generalized singular ve
tor. Then
‖x‖2 ≤ min{ s

τA

,
c

τB

,
1

τ
}, (4.4)where τA and τB are the smallest singular values of A and B and τ is the smallestsingular value of Y =

[

A
B

].Proof The 
ase ‖x‖2 ≤ τ−1 was already dis
ussed. From Theorem 3.4.1 it followsthat ‖Ax‖2 = s and ‖Bx‖2 = c. With x̂ := x/‖x‖2 we obtain ‖x‖2 = s
‖Ax̂‖2

and
‖x‖ = c

‖Bx̂‖2
. Sin
e ‖Ax̂‖2 ≥ τA and ‖Bx̂‖2 ≥ τB, the proof follows.From Lemma 4.3.2 it follows that if one of the matri
es A, B or Y is well-
onditioned,then ‖x‖2 is small. Otherwise ‖x‖2 is only small if s ≪ 1 or c ≪ 1. The 
ase c ≪ 1 isnot interesting for us sin
e then s ≈ 1. But the subspa
e angle method aims to �nda λ for whi
h the sine s1(λ) of the smallest prin
ipal angle between A(λ) and D0 issmall.
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kward stablility of the subspa
e angle methodTo apply the bound on the forward error in (4.1) we need to know the ba
kward errorof the subspa
e angle method. The algorithm 
onsists of two steps. First the QRde
omposition
[

AB(λ)
AI(λ)

]

=

[

QB(λ)
QI(λ)

]

R(λ)is 
omputed. Then in the se
ond step the smallest singular value s1(λ) of QB(λ) is
omputed, whi
h is the sine of the wanted prin
ipal angle. A general stability analysisfor the Björ
k-Golub algorithm for 
omputing prin
ipal angles between subspa
es isgiven by Drma£ in [22℄. Due to the spe
ial stru
ture of the subspa
e angle algorithmwe 
an give a simpli�ed analysis here.Matlab 
omputes the QR fa
torization of a given matrix A using the Lapa
k QRfa
torization, whi
h is based on Householder re�e
tions. An analysis of HouseholderQR algorithms 
an be found in [38℄. Let γ̃ := cku
1−cku

, where c is a small integer
onstant and u is the unit round-o�. Then for the Householder QR algorithm thefollowing theorem holds, whi
h summarizes Theorem 19.4 of [38℄ and the dis
ussionafterwards.Theorem 4.4.1 Let Q̂ ∈ R
m×n and R̂ ∈ R

n×n be the 
omputed QR fa
tors of A ∈
R

m×n, (m ≥ n) obtained via the Householder QR algorithm. Then there exists amatrix Q ∈ R
m×n with orthonormal 
olumns su
h that

A + ∆A = QR̂,where
‖∆A(:, j)‖2 ≤ γ̃mn‖A(:, j)‖2, j = 1 : n.For Q̂ it holds that

‖Q̂ − Q‖F ≤ √
nγ̃mn.We 
an now prove a mixed stability result of the subspa
e angle algorithm. Thefollowing theorem is essentially a simpli�ed version of Theorem 2.1 of [22℄, where thegeneral form of the Björ
k-Golub algorithm was 
onsidered. In the following theoremswe ignore the extra treatment of the possible O(ǫmach) error from the evaluation ofthe basis fun
tions in A(λ).
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e angle algorithm) Let s̃1(λ)be the 
omputed sine of the smallest prin
ipal angle from the subspa
e angle algorithmapplied to the matrix of sampled basis fun
tions A(λ) =

[

AB(λ)
AI(λ)

]

∈ R
(n+m)×p with

AB(λ) ∈ R
n×p and AI(λ) ∈ R

m×p. Then there exists a value s̄1(λ), whi
h is the exa
tsine 
omputed from the subspa
e angle method applied to the matrix Ā(λ) = A(λ) +

∆A(λ), su
h that |s̃1(λ) − s̄1(λ)| ≤ q(n, p)ǫmach +
√

pγ̃(n+m)p and ‖∆A(:, j)(λ)‖2 ≤
γ̃(n+m)p‖A(:, j)(λ)‖2, where q(n, p) is a modestly growing fun
tion of n and p.Proof Let Q̂(λ) =

[

Q̂B(λ)

Q̂I(λ)

] and R̂(λ) be the 
omputed QR fa
tors of A(λ) by theHouseholder QR algorithm. Then the 
omputed sine s̃1(λ) is the smallest singularvalue of Q̂B(λ)+∆Q̂B(λ), where ‖∆Q̂B(λ)‖2 ≤ q(n, p)ǫmach and q(n, p) is a modestlygrowing fun
tion of n and p (see [1℄ for details). Sin
e singular values are perfe
tly
onditioned we have |s̃1(λ) − ŝ1(λ)| ≤ q(n, p)ǫmach, where ŝ1(λ) is the exa
t smallestsingular value of Q̂B(λ). From Theorem 4.4.1 it follows that there exists a matrix
Q̄(λ) with orthonormal 
olumns su
h that ‖Q̂(λ)− Q̄(λ)‖F ≤ √

pγ̃(n+m)p and A(λ) +

∆A(λ) = Q̄(λ)R̂(λ) with ‖∆A(:, j)(λ)‖2 ≤ γ̃(n+m)p‖A(:, j)(λ)‖2. Let s̄1(λ) be theexa
t smallest singular value of Q̄B(λ). Then
|s̃1(λ) − s̄1(λ)| ≤ |s̃1(λ) − ŝ1(λ)| + |ŝ1(λ) − s̄1(λ)|

≤ q(n, p)ǫmach +
√

pγ̃(n+m)psin
e
‖Q̂(λ) − Q̄(λ)‖2 ≤ ‖Q̂ − Q̃‖F ≤ √

pγ̃(n+m)p,and therefore |ŝ1(λ) − s̄1(λ)| ≤ √
pγ̃(n+m)p.Theorem 4.4.2 states that the subspa
e angle method has a ba
kward error 
omponentresulting from the QR fa
torization, namely from A(λ) + ∆A(λ) = Q̄(λ)R̂(λ), where

Q̄(λ) is a matrix with orthonormal 
olumns and R̂ is the 
omputed upper triangularfa
tor and a forward error 
omponent resulting from the subsequent singular valuede
omposition. However, this forward error 
omponent is in the order of ma
hinepre
ision sin
e singular values are perfe
tly 
onditioned. The important in�uen
eis the error produ
ed by working with A(λ) + ∆A(λ) instead of working with A(λ).Theorem 4.2.1 states thatR(A(λ)+∆A(λ)) 
an �utter almost arbitrarily under smallperturbations ∆A(λ) if A(λ) is ill-
onditioned.
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e angle methodIn the last se
tion we derived the ba
kward error of the subspa
e angle method. By
ombining this with the 
ondition numbers derived in Theorem 4.3.1 we 
an nowderive bounds for the forward error of the 
omputed subspa
e angle. Although undersmall perturbations ∆A(λ) the spa
e R(A(λ)) 
an �utter arbitrarily, small prin
ipalangles only su�er from small absolute perturbations, whi
h will still allow us enougha

ura
y for the subspa
e angle method to work and will also explain the behaviorin the Figures 4.2 and 4.4.Theorem 4.5.1 Let A(λ) =

[

AB(λ)
AI(λ)

] be the matrix of sampled basis fun
tions with
AB(λ) ∈ R

n×p and AI(λ) ∈ R
m×p. Let τB(λ) be the smallest singular value of AB(λ),

τI(λ) the smallest singular value of AI(λ) and τ(λ) the smallest singular value of
A(λ). Let s1(λ) be the exa
t sine of the smallest prin
ipal angle delivered by thesubspa
e angle method and let s̃1(λ) be the 
omputed value. Let c1(λ) =

√

1 − s1(λ)2be the 
orresponding 
osine. With
ν(λ) := min(

s1(λ)

τB(λ)
,
c1(λ)

τI(λ)
,

1

τ(λ)
)the forward error of the subspa
e angle method is bounded by

|s̃1(λ) − s1(λ)| ≤ ν(λ)(1 +
s1(λ)

c1(λ)
)

1

c1(λ)
γ̃(n+m)p

√
p‖A(λ)‖2

+ q(n, p)ǫmach +
√

pγ̃(n+m)p + O(p(γ̃(n+m)p‖A(λ)‖2)
2), (4.5)where q(n, p) is a modestly growing fun
tion of n and p.Before we give a proof let us have a 
loser look at this error bound. The importantpart of (4.5) is the �rst line. The se
ond line 
an safely be assumed to be O(ǫmach).Consider now the 
ase s1(λ) ≪ 1. Then c1(λ) ≈ 1 and (4.5) be
omes

|s̃1(λ) − s1(λ)| / ν(λ)γ̃(n+m)p
√

p‖A(λ)‖2.If γ̃(n+m)p = O(ǫmach) and ‖A(λ)‖2 = O(1) the forward error is proportional to
ν(λ)ǫmach. But if AB(λ) and AI(λ) have a 
ommon numeri
al nullspa
e then τ(λ) ≈
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τB(λ) ≈ τI(λ) ≈ O(ǫmach)

3 and therefore ν(λ) ≈ s1(λ)O( 1
ǫmach

). We obtain
|s̃1(λ) − s1(λ)| / Ks1(λ) (4.6)for a modest 
onstant K > 0. K will usually be larger than 1. Therefore, we 
annotexpe
t s̃1(λ) to have any 
orre
t digits. But the absolute error |s̃1(λ) − s1(λ)| isproportional to s1(λ). Therefore, if say s1(λ) = 10−8, then also s̃1(λ) won't be mu
hlarger than 10−8. It is not ex
luded that s̃1(λ) might have a mu
h smaller magnitudethan s1(λ). But the resulting minima 
oming from os
illations of s̃1(λ) are easilydistinguishable from true minima of s1(λ) as the Figures 4.2 and 4.4 show. This givesus enough information to determine the eigenvalues of (1.1) to high a

ura
y, sin
e weare only interested in the minima of the subspa
e angle 
urve and if the unperturbedsubspa
e angle 
urve be
omes small, (4.6) guarantees that the 
omputed 
urve alsobe
omes small. This re�e
ts very well the behavior observed in Figure 4.4. But theplot in Figure 4.2 looks mu
h better 
lose to the eigenvalue than predi
ted by theerror bound. This is dis
ussed after the following proof.Close to an eigenvalue the behavior in Figure 4.2 looks mu
h better than the predi
tederror bound. This is dis
ussed after the following proof.Proof of Theorem 4.5.1 From Theorem 4.4.2 it follows that |s̃1(λ) − s̄1(λ)| ≤

q(n, p)ǫmach +
√

pγ̃(n+m)p, where s̄1(λ) is the exa
t value delivered from the subspa
eangle method applied to the matrix A(λ)+∆A(λ) with ‖∆A(:, j)(λ)‖2 ≤ γ̃(n+m)p‖A(:

, j)(λ)‖2. Let ∆A(λ) be partitioned as A(λ), i.e. ∆A(λ) =

[

∆AB(λ)
∆AI(λ)

]. De�ne
θ̄1(λ) = arcsin s̄1(λ). From Corollary 3.4.5 it follows that the smallest generalizedsingular value σ̄1(λ) of the pen
il {AB(λ) + ∆AB(λ), AI(λ) + ∆AI(λ)} is the tangentof θ̄(λ), i.e. σ̄1(λ) = tan θ̄(λ). Using (4.1) we �nd by 
hoosing γA = γB = ξ = 1 that

|σ̄1(λ) − σ1(λ)| ≤ c(σ1(λ))‖∆A(λ)‖2 + O(‖∆A(λ)‖2),where σ1(λ) = s1(λ)/c1(λ) is the smallest generalized singular value of {AB(λ), AI(λ)}.A short 
al
ulation shows that from ‖∆A(:, j)(λ)‖2 ≤ γ̃(n+m)p‖A(:, j)(λ)‖2 it fol-lows that ‖∆A(λ)‖2 ≤ √
pγ̃(n+m)p‖A(λ)‖2. Also for θ, θ̄ ∈ [0, π/2) it holds that

| sin θ − sin θ̄| ≤ | tan θ − tan θ̄|. We obtain
|s̄1(λ) − s1(λ)| ≤ c(σ1(λ))γ̃(n+m)p

√
p‖A(λ)‖2 + O(p(γ̃(n+m)p‖A(λ)‖2)

2). (4.7)3This holds sin
e we assume all 
olumns of A(λ) to be s
aled to unit norm. Otherwise, the
omputed smallest singular values of AB(λ) and AI(λ) 
an be
ome arbitrarily small if the 
olumnsare badly s
aled.
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e |s̃1(λ) − s̄(λ)| is given by Theorem 4.4.2 as
|s̃1(λ) − s̄1(λ)| ≤ q(n, p)ǫmach +

√
pγ̃(n+m)p. (4.8)From Theorem 4.3.1 and Lemma 4.3.2 the 
ondition number c(σ1(λ)) 
an be estimatedas

c(σ1(λ)) ≤ ν(λ)(1 +
s1(λ)

c1(λ)
)

1

c1(λ)
. (4.9)Combining (4.7), (4.8) and (4.9) �nishes the proof.How sharp is the estimate in Theorem 4.5.1 ? The ampli�
ation fa
tor of the ba
kwarderror mainly depends on the estimate of ‖x1(λ)‖2 from Lemma 4.3.2, where x1(λ) isthe right generalized singular ve
tor for the smallest generalized singular value σ1(λ).So let us have a look at the estimated value for ‖x(λ)‖2 from Lemma 4.3.2 andthe 
omputed value of ‖x(λ)‖2 from Matlab's GSVD fun
tion. Figure 4.5 shows theestimated value of ‖x1(λ)‖2 (dashed line) 
ompared to the 
omputed value of ‖x1(λ)‖2(solid line) around the eigenvalue λ1 of the GWW-1 isospe
tral drum. The 
loser λ isto λ1 the smaller be
omes ‖x1(λ)‖2, whi
h is just the predi
ted behavior by Lemma4.3.2. But what does it mean for the subspa
e angle method if ‖x1(λ)‖2 ≈ 1015 awayfrom λ1? Sin
e s1(λ) = ‖AB(λ)x1(λ)‖2 = O(1) away from λ1, the ve
tor x1(λ) mustlie 
lose to the nullspa
e of AB(λ) and is just s
aled up su
h that s1(λ) = O(1). Bya similar argument the ve
tor x1(λ) also lies in the nullspa
e of AI(λ) away from λ1.Hen
e, the approximate eigenfun
tion is meaningless away from λ1 and just governedby rounding errors. This is the reason for the os
illations at the beginning of the 
urvein Figure 4.2. When λ approa
hes λ1 the ve
tor x1(λ) moves out of the nullspa
eof AI(λ) but stays in the nullspa
e of AB(λ). For example, at λ = λ1 − 10−5 wehave ‖x1(λ)‖2 ≈ 109. Therefore, if x1(λ) is in the numeri
al nullspa
e of AB(λ) we
an expe
t ‖AB(λ)x1(λ)‖2 ≈ 10−7 (sin
e then ‖AB(λ)x1(λ)‖2/‖x1(λ)‖2 ≈ 10−16) and

‖AI(λ)x1(λ)‖2/‖x1(λ)‖2 ≈ 10−9 (sin
e ‖AI(λ)x1(λ)‖2 ≈ 1). Indeed, we obtain thefollowing values: ‖AB(λ)x1(λ)‖2 ≈ 9.95 × 10−6, ‖AB(λ)x1(λ)‖2/‖x1(λ)‖2 ≈ 7.85 ×
10−15, ‖AI(λ)x1(λ)‖2/‖x1(λ)‖2 ≈ 7.89 × 10−10. These values di�er slightly from thepredi
tions sin
e the smallest singular values of AB(λ) and AI(λ) are not exa
tly
10−16 but in the magnitude of 10−15. But the qualitative behavior 
orresponds towhat we predi
ted.Let us summarize these results. In the ill-
onditioned 
ase the subspa
e angle methodalways seems to 
hoose a fun
tion that is asso
iated with a right singular ve
tor x1
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1Figure 4.5: The three �gures show a 
omparison between the estimated value of

‖x(λ)‖ (dashed line) and the 
omputed value for ‖x(λ)‖2 (solid line) around the �rsteigenvalue λ1 of the isospe
tral drum. The 
loser we get to λ1 the smaller ‖x(λ)‖2 is.
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h lives in the approximate nullspa
e of AB(λ). When λ approa
hes an eigenvalueof (1.1) the ve
tor x1 moves out of the nullspa
e of AI(λ) but stays in the nullspa
eof AB(λ). Therefore, the dependen
e of the norm estimate in Lemma 4.3.2 on thesmallest singular value of AB(λ) re�e
ts this behavior very well.In Chapter 2 we explained that the original MPS of Fox, Henri
i and Moler failsbe
ause it 
annot distinguish between true eigenfun
tions and fun
tions that are zeroeverywhere on the region. In the ill-
onditioned 
ase of the subspa
e angle method italso happens that far away from an eigenvalue the right generalized singular ve
tor
x1(λ) lives in the nullspa
e of A(λ). But the key di�eren
e to the MPS of Fox, Henri
iand Moler is that su
h approximate eigenfun
tions are s
aled up by the high normof x1(λ) so that they are of unit norm at the boundary and interior points. Thiss
aling guarantees that away from an eigenvalue we 
annot obtain an approximateeigenfun
tion that is 
lose to zero everywhere.Ex
ept in extreme 
ases like the square region with expansions at all 
orners or atsimilar regions, where all Fourier-Bessel expansions approximately span the samespa
e (for example if the region is a small perturbation of the square), the e�e
t ofill-
onditioning is mu
h less severe than predi
ted from the purely algebrai
 results inTheorem 4.5.1. For example, in Figure 4.2 the os
illations are only visible far awayfrom an eigenvalue. The reason is that the basis fun
tions in this example were 
hosento re�e
t the approximation problem, i.e. all basis fun
tions 
ontain useful informa-tion to obtain a

urate approximations for the eigenvalues and eigenfun
tions on theregion. Therefore, although the basis is highly ill-
onditioned, it only has redundantinformation far away from an eigenvalue where the high number of basis fun
tions isuseless. Closer to an eigenvalue the stru
ture of the problem leads to a mu
h betterbehavior than 
an be predi
ted by purely looking at the 
ondition number. This isalso the reason why the os
illations are so mu
h di�erent than for the square regionin Figure 4.4. Here, the basis was arti�
ially 
hosen to always 
ontain redundantinformation by introdu
ing expansions around all 
orners of the region. An expan-sion around only one 
orner already delivers enough information to approximate theeigenvalues on the square to high a

ura
y. Therefore, by arti�
ially introdu
ingredundant information we obtain high os
illations around the subspa
e angle 
urvewhi
h stay bounded from above relative to the 
urve. This is exa
tly the behaviorpredi
ted by Theorem 4.5.1. But for most appli
ations this extreme behavior won't
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ur. One of the few examples where su
h a behavior 
an be observed without artif-i
ally introdu
ing redundant information is in the 
ase of perturbations of the squaresu
h that we obtain a quadrilateral at whi
h the eigenfun
tions have singularities atall four 
orners. Then approximations at all 
orners are ne
essary to obtain highlya

urate eigenvalue approximations but we 
an observe similar os
illations as in Fig-ure 4.4 sin
e ex
ept very 
lose to the 
orners all expansions approximately span thesame spa
e in the interior of the region. Then Theorem 4.5.1 tells us that although wehave these os
illations, we 
an obtain approximations to the eigenvalues and eigen-fun
tions to high a

ura
y sin
e the os
illations stay bounded from above relative tothe subspa
e angle 
urve. Hen
e, we are still able to spot the minima of the subspa
eangle 
urve with high a

ura
y.4.6 The GSVD and generalized eigenvalue problemsIn Se
tion 3.5 we derived the 
onne
tions between the subspa
e angle method andthe generalized eigenvalue approa
h of Barnett. Let us now have a 
loser look at the
omparison of the numeri
al stability of both methods.A normwise perturbation bound for generalized eigenvalue problems is given in [26℄.There, the authors derive 
ondition numbers for the generalized eigenvalue problem
Ax = λBxunder normwise perturbation of A and B. Let the distan
e between the pen
ils {A,B}and {Ã, B̃} be de�ned as

δ = min{ω > 0; ‖A − Ã‖2 ≤ ωα and ‖B − B̃‖2 ≤ ωβ},with α, β ≥ 0. Setting α = ‖A‖2 and β = ‖B‖2 leads to a relative normwise distan
e.Let λ be a semi-simple �nite eigenvalue of the pen
il {A,B}. Then the 
onditionnumber ceig(λ) asso
iated with λ is
ceig(λ) =

(α + |λ|β)‖x‖2‖y‖2

|y∗Bx| , (4.10)where y is the left eigenve
tor asso
iated with λ. This 
ondition number is slightlydi�erent from the one given by Stewart and Sun in [65℄. They 
an treat in�nite



CHAPTER 4. NUMERICAL STABILITY 59eigenvalues by stating the eigenvalue problem as βAx = αBx. But this leads tothe use of more 
omplex metri
s sin
e now the e�e
t of perturbations on a two-dimensional parameter spa
e (α, β) has to be 
onsidered. This is done in [65℄ byusing the 
hordal metri

χ(〈α, β〉, 〈γ, δ〉) =

|αδ − βγ|
√

|α|2 + |β|2
√

|γ|2 + |δ|2
,whi
h leads to the 
ondition number

cchordal((α, β)) =
‖x‖2‖y‖2
√

|α|2 + |β|2
,where (α, β) is normalized su
h that α = y∗Ax and β = y∗Bx. Here we are onlyinterested in small eigenvalues λ. Therefore, the use of the 
hordal 
ondition number isnot ne
essary and we use the 
ondition number ceig(λ) de�ned in (4.10). Furthermore,we will set α = β = 1 in (4.10).In Se
tion 3.5 we showed that Barnett's method 
an be interpreted as minimizing thesmallest eigenvalue µ1(λ) of

AB(λ)T AB(λ)x(λ) = µ(λ)AI(λ)T AI(λ)x(λ), (4.11)whi
h is equivalent to �nding the smallest generalized singular value σ1(λ) of thepen
il {AB(λ), AI(λ)} sin
e µ1(λ) = σ2
1(λ). But the 
ondition numbers of the twoproblems di�er signi�
antly. The 
ondition number of the smallest eigenvalue µ1(λ)of 4.11 is given as

ceig(µ(λ)) =
(1 + µ1(λ))‖x(λ)‖2

2

‖AI(λ)x(λ)‖2
2

.This is approximately the square of the 
ondition number
c(σ1(λ)) =

(1 + σ1(λ))‖x(λ)‖2

‖AI(λ)x(λ)‖2

.for the 
orresponding generalized singular value σ1(λ). Therefore, in terms of numer-i
al stability it is always advisable to use the formulation as a GSVD problem insteadof a generalized eigenvalue problem. In Figure 4.6 we show the 
urve of µ1(λ) for theGWW-1 isospe
tral drum 
omputed by using the generalized eigenvalue formulation(4.11). Without rounding errors it should be equivalent to the square of the 
urve inFigure 4.2. But the 
urve in 4.6 seems to be 
ompletely garbled. Many of the valuesare negative, although the generalized eigenvalue problem only admits nonnegative
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Figure 4.6: The generalized eigenvalue 
urve for the GWW-1 isospe
tral drumeigenvalues. Some of the values returned by Matlab were even 
omplex. These areartefa
ts of the ill-
onditioning present in the eigenvalue formulation.In [6℄ Barnett over
omes these ill-
onditioning issues by proje
ting out the nullspa
ewhi
h 
auses this ill-
onditioning. Using our notation this 
an be done in the followingway. Let
AI(λ) = U(λ)Σ(λ)V (λ)Tbe the singular value de
omposition of AB(λ). Now de�ne a threshold ǫ̃ and let

σ1(λ) ≥ · · · ≥ σk(λ) > ǫ̃, k ≥ 1 be the singular values of AI(λ) that are larger than
ǫ̃. Partition V (λ) as V (λ) = [V1(λ) V2(λ)] with V1(λ) = V (:, 1:k) and V2(λ) = V (:

, k + 1:end). Then the regularized generalized eigenvalue problem is de�ned as
V1(λ)T AB(λ)T AB(λ)V1(λ)x̃(λ) = µ̃(λ)V T

1 AI(λ)T AI(λ)V1(λ)x̃(λ).A similar strategy was proposed and analyzed by Fix and Heiberger in [24℄. The right-hand side matrix now has the singular values σ2
1 ≥ · · · ≥ σ2

k > ǫ̃2. Therefore, to removeall numeri
ally zero singular values of AI(λ)T AI(λ) we need to 
hose ǫ̃ >
√

ǫmach. In[6℄ Barnett uses a threshold of ǫ̃2 = 10−14, i.e. ǫ̃ = 10−7.We 
an apply the same strategy to the GSVD formulation. Then, instead of �ndingthe smallest generalized singular value σ1(λ) of the pen
il {AB(λ), AI(λ)} we �nd the



CHAPTER 4. NUMERICAL STABILITY 61smallest generalized singular value σ̃1(λ) of {AB(λ)V1(λ), AI(λ)V1(λ)}. However, thefollowing strategy to obtain a regularization matrix V1(λ) is more suitable. Let
[

AB(λ)
AI(λ)

]

=

[

QB(λ)
QI(λ)

]

R(λ)be the initial QR de
omposition whi
h has to be formed in the subspa
e angle method.Now let
R(λ) = UR(λ)ΣR(λ)VR(λ)T (4.12)be the SVD of R(λ). The regularization matrix V1(λ) is de�ned as the �rst k 
olumnsof VR(λ) asso
iated with those singular values of R(λ), whi
h are above the threshold

ǫ̃. The generalized singular values of {AB(λ)V1(λ), AI(λ)V1(λ)} are now obtainedfrom the CS de
omposition of the pen
il {QB(λ)UR(:, 1:k), QI(λ)UR(:, 1:k)}. Thesmallest generalized singular value of {AB(λ), AI(λ)} is only modestly 
hanged withthis strategy if it is not too ill-
onditioned. This is shown in the following theorem.Theorem 4.6.1 Let σ1 = s1/c1 be the smallest generalized singular value and x1 its
orresponding right generalized singular ve
tor of the pen
il {A,B} with A ∈ R
n×pand B ∈ R

m×p. Let the regularization matrix V1 ∈ R
p×k be obtained by the strategydes
ribed above and denote by σ̃j j = 1, . . . , k the generalized singular values of thepen
il {AV1, BV1}. Thena) For all generalized singular values σ̃j of the pen
il {AV1, BV1},

σj ≤ σ̃jb) If ǫ̃‖x1‖2 < c1, then
σ1 ≤ σ̃1 ≤

s1 + ǫ̃‖x1‖2

c1 − ǫ̃‖x1‖2

.Proof Let V2 be the orthogonal 
omplement of V1, i.e. V = [V1 V2] is an orthog-onal matrix. Then ‖AV2y‖2 ≤ ǫ̃‖y‖2 and ‖BV2y‖2 ≤ ǫ̃‖y‖2 for all y ∈ R
p sin
e

‖
[

AV2

BV2

]

‖2 ≤ ǫ̃. Let x1 = V1y1 + V2y2. We have
‖AV1y1‖2 − ‖Ax1‖2 ≤ ‖AV1y1 − Ax1‖2 = ‖AV2y2‖2 ≤ ǫ̃‖y2‖2and
‖Bx1‖2 − ‖BV1y1‖2 ≤ ‖Bx1 − BV1y1‖2 = ‖BV2y2‖2 ≤ ǫ̃‖y2‖2
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‖AV1y1‖2

‖BV1y1‖2

≤ ‖Ax1‖2 + ǫ̃‖y2‖2

‖Bx1‖2 − ǫ̃‖y2‖2

.if ‖Bx1‖2− ǫ̃‖y2‖2 > 0. But this holds sin
e ‖Bx1‖2 = c1, ‖y2‖2 ≤ ‖x1‖2 and therefore
‖Bx1‖2 − ǫ̃‖y2‖2 = c1 − ǫ̃‖y2‖2 ≥ c1 − ǫ̃‖x1‖2 > 0.Together with ‖Ax1‖2 = s1 we �nd

‖AV1y1‖2

‖BV1y1‖2

≤ s1 + ǫ̃‖x1‖2

c1 − ǫ̃‖x1‖2

.From the minimax 
hara
terization in Theorem 3.4.2 it follows that
σ̃1 ≤

s1 + ǫ̃‖x1‖2

c1 − ǫ̃‖x1‖2

.The fa
t that σj ≤ σ̃j j = 1, . . . , k follows immediately from Theorem 3.4.2 sin
erestri
ting the pen
il {A,B} to {AV1, BV1} 
orresponds to minimizing only over asubset of all possible spa
es of dimension j in Theorem 3.4.2.A similar result for the regularization of the ill-
onditioned eigenvalue problem wasproved in [24℄. If σ1(λk) ≪ 1 at an eigenvalue λk of (1.1) we obtain for the perturbedgeneralized singular value σ̃1(λk):
σ̃1(λk) /

σ1(λk) + ǫ̃‖x1(λk)‖2

1 − ǫ̃‖x1(λk)‖2

= σ1(λk) + (1 + σ1(λk))ǫ̃‖x1(λk)‖2 + O((ǫ̃‖x(λk)‖2)
2),sin
e s1(λk) ≈ σ(λk) and c1(λk) ≈ 1. The magni�
ation fa
tor (1+σ1(λk))‖x(λk)‖2 isessentially the 
ondition number c(σ1(λk)). This 
an be expe
ted sin
e we ask for the
hange of a singular value under a small perturbation in the pen
il {AB(λk), AI(λk)}.In Figure 4.7 we plot the 
urves for the sine of the smallest generalized singuar value

σ1(λ) and for the smallest generalized eigenvalue µ1(λ) on the GWW-1 isospe
traldrum in the regularized 
ase. For both plots we use the same regularization matrix
V1 obtained from the QR de
omposition of [AB(λ)

AI(λ)

] followed by the SVD of the Rfa
tor with a threshold of ǫ̃ = 10−14. The os
illations at the beginning of the subspa
eangle 
urve now fully disappear and the generalized eigenvalue 
urve, although stillgarbled, now shows a mu
h better behavior than the non-pivoted 
urve in Figure4.6. The reason for the better behavior of the generalized singular value 
urve is
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Figure 4.7: The pivoted generalized singular value and generalized eigenvalue 
urveon the GWW-1 isospe
tral drum.



CHAPTER 4. NUMERICAL STABILITY 64that due to the pivoting also the 
ondition number of AB(λ)V1(λ) is now in the orderof magnitude of 1014 for all λ > 0 instead of 1016 in the non-pivoted 
ase. Thisgives enough a

ura
y to remove the os
illations of the subspa
e angle 
urve awayfrom the �rst eigenvalue λ1 of (1.1) on this region (
ompare to Figure 4.2). Also thegeneralized eigenvalue 
urve improves. But the threshold ǫ̃ is too small to remove thewhole 
ommon numeri
al nullspa
e of AI(λ)T AI(λ) and AB(λ)T AB(λ). To a
hievethis we would need that ǫ̃ > 10−8. In this example there is hardly any penalty dueto the pivoting. The value σ1(λ) at the eigenvalue λ1 grows from 1.7 × 10−11 to
2.1 × 10−11. The reason is that ‖x(λ1)‖2 ≈ 4.9 × 103, and therefore the error boundin Theorem 4.6.1 is approximately ǫ̃‖x(λ1)‖2 ≈ 4.9 × 10−11.



Chapter 5
A posteriori a

ura
y bounds
In this 
hapter we want to answer the following question. Given the subspa
e angle
θ(λ) between the spa
es A(λ) and D0 how 
an we bound the relative distan
e of λto the next eigenvalue of (1.1). To answer this question we 
annot work in spa
essampled at boundary and interior points. Therefore, by A(λ) we always denote thespa
e 
onsisting of all parti
ular solutions in C2(Ω) ∩ C(Ω) satisfying (1.1a) but notne
essarily (1.1b), and by D0 we denote the spa
e of all fun
tions in C2(Ω) ∩ C(Ω)whi
h are zero on ∂Ω.Error bounds for the MPS were derived by Fox, Henri
i and Moler in 1967 [25℄ andthese results were simpli�ed and extended by Moler and Payne in 1968 [55℄. Anex
ellent overview of error bounds for ellipti
 eigenvalue problems was written byStill in 1988 [66℄. The bounds by Moler and Payne are in
luded as spe
ial 
ases inthat paper. In this 
hapter we �rst review the bounds by Moler and Payne and extendthem to the subspa
e angle method. Then we apply these bounds to obtain a highlya

urate in
lusion for the �rst eigenvalue of the L-shaped region 
omputed with thesubspa
e angle method. In this thesis we are mostly 
on
erned with the eigenvalueproblem (1.1), but most of the bounds given in this 
hapter 
an be extended to thefollowing more general setting. Let H be a separable Hilbert spa
e with inner produ
t
〈·, ·〉 and indu
ed norm ‖·‖. Let T be an operator with domain D(T ), su
h that D(T )is dense in H. Furthermore, let T by symmetri
, i.e.

〈u, Tv〉 = 〈Tu, v〉, u, v ∈ D(T )65
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trum {λi} and 
orresponding orthonormal eigenve
-tors ui, whi
h are 
omplete in H. By T̂ we denote an extension of T to a domain
D(T̂ ) su
h that T̂ u = Tu for all u ∈ D(T ) and D(T ) ⊂ D(T̂ ) ⊂ H.For the eigenvalue problem (1.1) the Hilbert spa
e H is the spa
e of square integrablefun
tions L2(Ω) with inner produ
t

〈u, v〉Ω =

∫

Ω

u(x, y)v(x, y)dxdy.For the operator T we have T = −∆ and
D(−∆) = {u ∈ C(Ω) ∩ C2(Ω) : u|∂Ω = 0},whi
h is just the spa
e D0 used in previous 
hapters. The extension D(T̂ ) in this 
aseis the spa
e C(Ω) ∩ C2(Ω)5.1 A

ura
y bounds and the subspa
e angle methodThe �rst error bound for the MPS of whi
h we are aware was proved by Fox, Henri
iand Moler1 [25℄.Theorem 5.1.1 (Fox, Henri
i, Moler [25℄) Let λ and u be an approximate eigen-value and eigenfun
tion of (1.1) normalized to ‖u‖Ω = 1 whi
h satisfy the eigenvalueequation (1.1a) but not ne
essarily the zero boundary 
onditions (1.1b). Let

ǫ = max
x∈∂Ω

|u(x)|and assume ǫ < 1. Then there exists an eigenvalue λk of (1.1) satisfying
|λk − λ|

λ
≤

√
2ǫ + ǫ2

1 − ǫ2
. (5.1)The advantage of this theorem is that all information needed for the upper bound in(5.1) 
an be obtained from 
omputed data. This enabled Fox, Henri
i and Moler togive upper and lower bounds for the 
omputed eigenvalues.1They proved the error bound not only for the eigenvalue problem (1.1) but also for eigenvaluesof slightly more general ellipti
 operators.



CHAPTER 5. A POSTERIORI ACCURACY BOUNDS 67We do not give the original proof of this theorem here but instead present a proof byMoler and Payne for a very similar bound.Theorem 5.1.2 (Moler, Payne [55℄) Let T be a symmetri
 operator with domain
D(T ) and extension D(T̂ ) as de�ned above. Let λ be an approximate eigenvalueand u ∈ D(T̂ ) the 
orresponding approximate eigenve
tor of T satisfying T̂ u = λu.Assume there exists w ∈ D(T̂ ) with

T̂w = 0 (5.2)and
u − w ∈ D(T ). (5.3)Let

ǫ =
‖w‖
‖u‖ ,and assume ǫ < 1. Then there exists an eigenvalue λk of T satisfying

|λ|
1 + ǫ

≤ |λk| ≤
|λ|

1 − ǫ
.Proof Let

an = 〈u, un〉, bn = 〈w, un〉,where un is the normalized eigenfun
tion asso
iated with the eigenvalue λn. We have
〈u − w, Tun〉 = 〈T (u − w), un〉 = 〈T̂ u, un〉 − 〈T̂w, un〉.and therefore

λn(an − bn) = λanor equivalently
λn − λ

λn

an = bn.Choose λk su
h that
|λk − λ|
|λk|

= min
n

|λn − λ|
|λn|

.For this k it holds that
|λk − λ|
|λk|

|an| ≤ |bn|for all n. We obtain
|λk − λ|2
|λk|2

∞
∑

n=1

a2
n ≤

∞
∑

n=1

b2
n.
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e
ǫ2 =

∑∞
n=1 b2

n
∑∞

n=1 a2
nthe proof follows.To evaluate the error bound in Theorem 5.1.2 the norm of w has to be determined.In the 
ase T = −∆ this means that a boundary value problem has to be solved. Butsin
e the boundary values of w are known ‖w‖Ω 
an be easily estimated. From themaximum prin
iple for harmoni
 fun
tions it follows that

‖w‖Ω ≤ |Ω|max
x∈Ω

|w(x)| = |Ω|max
x∈∂Ω

|w(x)| = |Ω|max
x∈∂Ω

|u(x)|,where |Ω| =
∫

Ω
1dxdy is the area of Ω. We obtain

|λk − λ|
λk

≤ |Ω|maxx∈∂Ω |u(x)|
‖u‖Ω

. (5.4)Another possibility is to bound ‖w‖Ω using eigenvalues of a Steklo� eigenvalue prob-lem [66, 43℄, whi
h is de�ned as
∆2u = 0 in Ω

u = ∆u − q
∂u

∂n
= 0 on ∂Ω. (5.5)It 
an be shown (see for example [42℄) that the smallest eigenvalue q1 of (5.5) is
hara
terized by

q1 = min
∆h=0 in Ω

∫

∂Ω
h2ds

∫

Ω
h2dx

.It follows that
‖h‖Ω ≤ q

− 1

2

1 ‖h‖∂Ωfor all fun
tions h satisfying ∆h = 0 in Ω. This immediately leads to the followingbound of ǫ in Theorem 5.1.2 if T = −∆:
|λk − λ|

λk

≤ ǫ ≤ q
− 1

2

1

‖u‖∂Ω

‖u‖Ω

(5.6)As a 
orollary we obtain a bound on the relative error in terms of the prin
ipal angle
θ(λ) between A(λ) and D0.



CHAPTER 5. A POSTERIORI ACCURACY BOUNDS 69Corollary 5.1.3 For the angle θ(λ) between the spa
es A(λ) and D0 it holds that
|λk − λ|

λk

≤ q
−1/2
1 tan θ(λ).Proof Denote by |‖u‖| =

√

‖u‖2
Ω + ‖u‖2

∂Ω the mixed norm indu
ed by the innerprodu
t 〈·, ·〉 de�ned in (3.2). For every u ∈ A(λ) we have
sup
v∈D0

|‖v‖|=1

〈u, v〉 = ‖u‖Ω, (5.7)sin
e from 〈u, v〉 =
∫

Ω
u(x, y)v(x, y)dxdy for every v ∈ D0 and the Cau
hy-S
hwarzinequality it follows that 〈u, v〉 ≤ ‖u‖Ω for every v ∈ D0 with |‖v‖| = 1. Equality in(5.7) follows from the fa
t that u 
an be expanded in Ω in terms of the eigenfun
tions

uk ∈ D0 of (1.1). Combining (3.1) and (5.7), we get
cos θ(λ) = sup

u∈A(λ)

|‖u‖|=1

‖u‖Ω. (5.8)It follows that
tan θ(λ) = inf

u∈A(λ)

|‖u‖|=1

√

1 − ‖u‖2
Ω

‖u‖Ω

= inf
u∈A(λ)

‖u‖∂Ω

‖u‖Ω

. (5.9)Sin
e for every u ∈ A(λ) (5.6) holds it follows from (5.9) that
|λk − λ∗|

λk

≤ q
− 1

2

1 tan θ(λ).Hen
e, the subspa
e angle is a measure for the optimal error bound whi
h is possibleby approximating from A(λ), while Theorem 5.1.2 only uses one element u ∈ A(λ) toobtain a bound on the relative eigenvalue error. In appli
ations A(λ) is not the spa
eof all parti
ular solutions but the span of a �nite number of parti
ular solutions.Then Corollary 5.1.3 is still valid. But usually at an eigenvalue λk we will have
tan θ(λk) > 0, i.e., the bound on the relative error 
an be larger than zero at aneigenvalue. Similar bounds for the eigenve
tors are also possible. Moler and Payneestablished the following theorem.



CHAPTER 5. A POSTERIORI ACCURACY BOUNDS 70Theorem 5.1.4 (Moler, Payne [55℄) Using the hypotheses and notation of Theo-rem 5.1.2, assume in addition that ‖u‖Ω = 1. Let
α = min

λn 6=λk

|λn − λ|
|λn|

,and let uk be the normalized proje
tion of u onto the eigenspa
e of λk. Then
‖u − uk‖Ω ≤ ǫ

α
(1 +

ǫ2

α2
)

1

2 .If we 
hoose for ǫ the tangent of θ(λ) we obtain the following 
orollary.Corollary 5.1.5 We use the notation of Corollary 5.1.3 and Theorem 5.1.4. Thenfor every δ > 0 and ǫ̃ = q
− 1

2

1 tan θ(λ) there exists a fun
tion u ∈ A(λ), ‖u‖Ω = 1 su
hthat
‖u − uk‖Ω ≤ ǫ̃

α
(1 +

ǫ̃2

α2
)

1

2 + δ.Proof The proof follows by 
hoosing a fun
tion u ∈ A(λ) that 
omes su�
iently
lose to the in�mum in (5.9).Further results for the 
ase in whi
h the approximate eigenfun
tion u satis�es neither
T̂ u = λu nor u ∈ D(T ) are given in [43℄ and [66℄. We �nish this se
tion with avery interesting result by Still [66℄. The idea is the following. If an approximateeigenfun
tion ũ satis�es the zero boundary 
onditions (1.1b) but not ne
essarily theeigenvalue equation (1.1a) the Rayleigh quotient

ρ(ũ) :=
〈ũ,−∆ũ〉Ω
〈ũ, ũ〉Ωis a quadrati
ally good approximation to an eigenvalue in the sense that if the distan
eof ũ to a normalized eigenve
tor uk is O(ǫ), then the distan
e of ρ(ũ) to λk is O(ǫ2).Unfortunately, the fun
tions u ∈ A(λ) do not ne
essarily satisfy the zero boundary
onditions. But if we de�ne w as in Theorem 5.1.2 as the harmoni
 fun
tion with thesame boundary data as u ∈ A(λ), we 
an apply the Rayleigh quotient to u − w andobtain

ρ(u − w) =
〈u − w,−∆(u − w)〉Ω

〈u − w, u − w〉Ω
= λ

(

1 +
〈w, u − w〉Ω

〈u − w, u − w〉Ω

)

.



CHAPTER 5. A POSTERIORI ACCURACY BOUNDS 71From the properties of the Rayleigh quotient we 
an hope that
λ

(

1 +
〈w, u − w〉Ω

〈u − w, u − w〉Ω

)is a quadrati
ally good approximation to an eigenvalue. This is made pre
ise inthe following theorem by Still, whi
h also in
ludes the 
ase that the approximateeigenfun
tion u does not ne
essarily satisfy −∆u = λu.Theorem 5.1.6 (Still [66℄) Given u ∈ D(T̂ )\D(T ), ‖u‖ = 1, λ ∈ R, de�ne thefun
tion r by
r = T̂ u − λu.Let d+(ρ) and d−(ρ) be de�ned as

d+(ρ) = min
λν>λk

|λν − ρ|, d−(ρ) = min
λν<λk

|λν − ρ|,for a given eigenvalue λk of T .a) For a solution w ∈ D(T̂ ) of̂
Tw = 0, u − w ∈ D(T ),let

v1 := u − w, ǫ1 :=
‖λw + r‖Ω

‖u − w‖Ω

.Then with the Rayleigh quotient ρ1 = ρ(v1) given by
ρ1 = λ +

〈λw + r, v1〉
〈v1, v1〉

,the inequality
− (2ǫ1)

2

d+(ρ1)
≤ λk − ρ1 ≤

(2ǫ1)
2

d−(ρ1)holds for some eigenvalue λk of T .b) For a solution R ∈ D(T̂ ) of
T̂R = T̂ u − λu, u − R ∈ D(T )let
v2 := u − R, ǫ2 := |λ| ‖R‖

‖u − R‖ .
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ρ2 = λ +

〈λR, v2〉
〈v2, v2〉

,the inequality
− (2ǫ2)

2

d+(ρ2)
≤ λk − ρ2 ≤

(2ǫ2)
2

d−(ρ2)is valid.Sin
e for the MPS it holds that T̂ u = λu and therefore r = 0 part b) of Theorem5.1.6 gives no more information than part a). In pra
ti
e, the 
orre
tion term
〈λw + r, v1〉

〈v1, v1〉usually 
annot be easily 
omputed. But nevertheless, the result is interesting, sin
eit shows that with a small 
orre
tion to λ a quadrati
 a

ura
y is possible.5.2 Verifying 13 digits of the �rst eigenvalue on theL-shaped regionIn this se
tion we use the bound by Moler and Payne to verify the �rst eigenvalueof the L-shaped region to 13 rounded digits of a

ura
y and 
ompare it to approxi-mate bounds obtained from the 
omputed subspa
e angle. The starting point is thesubspa
e angle method. We dis
retize the boundary of the L-shaped region with 500Chebyshev distributed points on ea
h side not adja
ent to the reentrant 
orner. In ad-dition 50 interior points are randomly 
hosen. Using a Chebyshev distribution on theboundary has the e�e
t that near the 
orners of the region the absolute value of theapproximate eigenfun
tion stays smaller than with equally distributed points. Theeigenfun
tion is approximated with a basis of N = 80 Fourier-Bessel terms around thereentrant 
orner. The matrix A(λ) of parti
ular solutions evaluated at boundary andinterior points is normalized su
h that ‖A(λ)(:, k)‖2 = 1 for k = 1, . . . , N . The sub-spa
e angle method performs a QR fa
torization of A(λ) and 
omputes the smallestsingular value of the �rst part QB(λ) of Q(λ) 
orresponding to the boundary points.We denote the 
orresponding singular ve
tor of QB by v. As eigenvalue estimate
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h was obtained from the 
omputationunderlying Figure 3.4.The resulting approximate eigenfun
tion evaluated at all points is given as u = Q(λ)v.But we need the 
oe�
ient ve
tor of u in the original basis A(λ). Therefore, we haveto solve
A(λ)c = Q(λ)v.Sin
e A(λ) = Q(λ)R(λ) this is equivalent to the system of equations R(λ)c = v. Dueto ill-
onditioning the error between the 
omputed ve
tor c̃ and the true ve
tor c mightbe large. Nevertheless, the residual ‖R(λ)c̃− v‖2 will be small. The reason is that byignoring that the 
omputed Q is not exa
tly orthogonal the ve
tor c̃ is the exa
t rightgeneralized singular ve
tor of a small perturbation of the pen
il {AB(λ), AI(λ)}. ByLemma 4.3.2 and the dis
ussion after Theorem 4.5.1 we 
an then expe
t ‖c̃‖2 = O(1)if λ is 
lose to an eigenvalue of (1.1). Sin
e

‖R(λ)c̃ − v‖2 = ‖∆Rc̃‖2 ≤ ‖∆R‖2‖c̃‖2,where ∆R is the ba
kward error of solving R(λ)c = v it follows that ‖R(λ)c̃ − v‖2 issmall.Indeed, in our 
ase we have
‖R(λ)c̃ − v‖2 ≈ 1.11 × 10−16and

‖A(λ)c̃ − Q(λ)v‖2 ≈ 2.19 × 10−15.Therefore, the 
oe�
ient ve
tor c̃ de�nes an approximate eigenfun
tion that is smallat the boundary points (‖AB(λ)c̃‖2 ≈ 2.48 × 10−14) and large at the interior points(‖AI(λ)c̃‖2 ≈ 1). To apply the error bound from (5.4) we need to estimate theexpressions maxx∈∂Ω |u(x)| and ‖u‖Ω, where u is now the approximate eigenfun
tionde�ned by the 
oe�
ient ve
tor c̃. The L2-norm ‖u‖Ω 
an easily be estimated witha tri
k already used in [25℄. Let G be the 
ir
ular se
tor around the reentrant 
orner



CHAPTER 5. A POSTERIORI ACCURACY BOUNDS 74with radius 1 and angle 3
2
π that �ts into the L-shaped region. Then

‖u‖2
Ω ≥ ‖u‖2

G

=

∫

G

(u(x, y)2)d(x, y)

=
N
∑

k,j=1

ĉkĉj

∫ 1

0

J 2

3
k(
√

λr)J 2

3
j(
√

λr)rdr

∫ 3

2
π

0

sin
2

3
kθ sin

2

3
jθdθ

=
3

4
π

N
∑

j=1

ĉ2
j

∫ 1

0

J 2

3
k(
√

λr)2rdr, (5.10)where ĉk is the kth 
oe�
ient of u in the non-s
aled Fourier-Bessel basis (for the a
tual
omputations we use a s
aled basis). The last integral has an analyti
 expression interms of Fourier-Bessel fun
tions. But for 
onvenien
e we just evaluate it to higha

ura
y using the Matlab quadl fun
tion. In addition we use only the integral ofthe lowest order Bessel term in the above sum. We �nd
‖u‖Ω ≥ |ĉ1|

√

3

4
π

∫ 1

0

J 2

3
k(
√

λr)2rdr. (5.11)Figure 5.1 shows |u(x)| on the boundary 
ollo
ation points. The plot is s
aled withthe area of the L-Shaped region and the lower bound for ‖u‖Ω from (5.11). Hen
e,the maximum of the 
urve is an upper bound for the error in (5.4).The 
omputed 
urve shows os
illations around the true fun
tion values due to round-ing error e�e
ts. Sin
e these os
illations also lead to values that are larger than thetrue values we still obtain a good upper bound. With the upper bound of the s
aled
|u(x)| of 1.5 × 10−14 we obtain the in
lusion from (5.4) that

9.639723844021754 ≤ λ1 ≤ 9.639723844022043for the true �rst eigenvalue λ1 of the L-shaped region. This gives 13 rounded digits
orre
tly. Indeed, from Figure 3.4 we believe that the true value is 9.6397238440219to 14 digits of a

ura
y.How does this bound 
ompare to the subspa
e angle estimate in Theorem 5.1.3 ?We know neither the 
onstant q1 nor the exa
t subspa
e angle θ(λ). However, if weassume that tan θ(λ) ≈ σ1(λ), where σ1(λ) is the smallest generalized singular valueof the pen
il {AB(λ), AI(λ)} we 
an use (5.1.3) for an approximate estimate if q1 isnot too small. In our 
ase we obtain σ1(λ) ≈ 2.48 × 10−14 leading to a similar error
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Figure 5.1: Numeri
ally 
omputed values of |u(x)| on the boundary 
ollo
ation pointsafter s
aling by the square root of the area and the estimated value of ‖u‖Ω. Roundingerrors lead to os
illations around the true fun
tion values.
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Figure 5.2: The same plot as in Figure 5.1 but now for the value λ = 9.6397238,whi
h is the �rst 8 digits of the �rst eigenvalue of the L-shaped region.



CHAPTER 5. A POSTERIORI ACCURACY BOUNDS 76estimate as in (5.4). If we use the approximate eigenvalue λ = 9.6397238, whi
h is
orre
t to 8 digits we obtain σ1(λ) ≈ 2.8× 10−8. Indeed, the plot in Figure 5.2 showsthat the relative error is at most 1.5× 10−8. This demonstrates that usually it is notne
essary to apply the error bound in (5.4) to obtain a good error estimate. A goodrule of thumb is that the relative error of the eigenvalue approximation is smallerthan or equal to the 
omputed smallest generalized singular value σ1(λ).



Chapter 6
Convergen
e rates via 
omplexapproximation theory
While the previous 
hapters were 
on
erned with the stable 
omputation of eigenval-ues and the derivation of a

ura
y bounds we will now dis
uss what the approxima-tion properties of the basis are. In the 1940's Vekua dis
overed 
lose relationshipsbetween solutions of ellipti
 partial di�erential equations and holomorphi
 fun
tionsin the 
omplex plane [80℄. This work was one of the motivations for the Method ofParti
ular Solutions by Fox, Henri
i and Moler. A very good survey of this theorywas written by Henri
i in 1957 [36℄ and we will review some of the results of his paperto give a short introdu
tion to Vekua's theory. Closely related is the question of ana-lyti
 
ontinuation of solutions of ellipti
 PDE's. Classi
al papers on this subje
t werewritten in the 1950's by Garabedian [28℄ and Lewy [48℄ and we review Garabedian'sresults in the spe
ial 
ase of the eigenvalue problem (1.1). We will then show how to
onne
t Vekua's results with 
lassi
al results from 
omplex approximation to obtain
onvergen
e estimates for the Method of Parti
ular Solutions. Using analyti
 
ontin-uation and 
onformal mappings we derive bounds for the exponential 
onvergen
e ofthe MPS on regions with at most one 
orner singularity. For regions with multiple
orner singularities we review algebrai
 
onvergen
e rates whi
h go ba
k to Eisenstatin 1974 [23℄ and were later improved by Still in the 1980's [67, 69℄. Based on theseresults we show how to obtain in
reasing algebrai
 
onvergen
e rates for regions withmultiple singularities.

77
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tion to Vekua's theoryIn this se
tion we will 
losely follow Henri
i's beautiful presentation of Vekua's theoryin [36℄. Before we start let us brie�y review what is meant by a real analyti
 fun
tionand by a 
omplex analyti
 (holomorphi
) fun
tion and how these two are related1.Let u be a real fun
tion of the two variables x and y in a region Ω. Throughoutthis 
hapter we assume that Ω is bounded and simply 
onne
ted. Furthermore, theboundary ∂Ω is assumed to be a pie
ewise analyti
 Jordan 
urve. The fun
tion u is
alled real analyti
 at a point (x0, y0) ∈ Ω if in a neighborhood of this point it 
an berepresented as a Taylor series of the form
u(x, y) =

∑

n,m≥0

cn,m(x − x0)
n(y − y0)

m,where
cnm =

1

n!m!

∂n+mu(x0, y0)

∂xn∂ym
.A 
omplex fun
tion φ of the 
omplex variable z = x + iy is holomorphi
 at z0 if it is
omplex di�erentiable at z0. This is equivalent to having a Taylor series expansion ofthe form

φ(z) =
∞
∑

k=0

ck(z − z0)
k.in a neighborhood of z0. The 
oe�
ients ck are given as

ck =
1

k!

d

dz
φ(z0).If φ depends on several 
omplex variables z1, . . . , zn ∈ C

n it is 
alled holomorphi
 ifit is holomorphi
 in ea
h of its 
omplex variables. This is equivalent to the propertythat φ has a 
onvergent Taylor series in the N 
omplex variables z1, . . . , zn (see forexample Chapter 2 of [72℄).Let u be real analyti
 at a point (x0, y0). Then u 
an be extended to a holomorphi
fun
tion in two 
omplex variables by allowing x and y to take 
omplex values in a smallneighborhood S ⊂ C
2 around (x0, y0). This follows from the absolute 
onvergen
e ofthe Taylor series of u [49℄. We 
an write the holomorphi
 
ontinuation in the following1Often the term analyti
 is used for holomorphi
 fun
tions. To distinguish between real analyti
and 
omplex analyti
 fun
tions we will always use the term holomorphi
 instead of 
omplex analyti
.



CHAPTER 6. CONVERGENCE RATES 79way. Let z = x + iy and z∗ = x − iy. We have z = z∗ if and only if x and y are real.De�ne
U(z, z∗) = u

(

z + z∗

2
,
z − z∗

2i

)

.It follows that U(z, z) = u(x, y). If we let z and z∗ vary independently around
z0 = x0 + iy0 and z0, there exists a neighborhood S(z0) ⊂ C of z0 su
h that U isholomorphi
 in the region [S(z0), S

∗(z0)] ⊂ C
2, where S∗(z0) = {z : z ∈ S(z0)} isthe 
omplex 
onjugate region of S(z0). For an arbitrary real analyti
 fun
tion thisholomorphi
 
ontinuation is only possible in a small neighborhood S(z0) around z0.Vekua's theory asserts that for solutions of 
ertain ellipti
 PDEs this 
ontinuationis not only possible in the small but in the large, i.e. if u is analyti
 in Ω then U isholomorphi
 in [Ω, Ω∗]. To state the results of Vekua Henri
i de�nes three 
lasses offun
tions:I This 
lass 
ontains all fun
tions whi
h are twi
e 
ontinuously di�erentiable in

Ω.II This 
lass 
ontains all fun
tions f whi
h are real analyti
 in Ω.III This 
lass 
onsists of all fun
tions u of Class II whi
h possess a holomorphi
extension U into the region [Ω, Ω∗] ∈ C
2. Hen
e, for every point z0 ∈ Ω thereexists a neighborhood S(z0) su
h that Ω ⊂ S(z0) and U is holomorphi
 in

[S(z0), S
∗(z0)].A simple example given by Henri
i is the 
lass of harmoni
 fun
tions. Let u beharmoni
 in Ω. Then u is real analyti
, i.e. in Class II and it is well known that thereexists a fun
tion φ holomorphi
 in Ω su
h that

u(x, y) = Re{φ(z)}, z ∈ Ω.De�ne the fun
tion φ̄(z) := φ(z), whi
h is holomorphi
 for z ∈ Ω∗. Now let
U(z, z∗) =

1

2
[φ(z) + φ(z∗)].Then U is holomorphi
 in [Ω, Ω∗] and it holds that

U(z, z) =
1

2
[φ(z) + φ(z)] = u(x, y).



CHAPTER 6. CONVERGENCE RATES 80Therefore, U is the unique holomorphi
 extension of u into [Ω, Ω∗]. Let now the linearellipti
 partial di�erential equation Lu be de�ned as
Lu(x, y) = ∆u(x, y) + a(x, y)

∂u

∂x
(x, y) + b(x, y)

∂u

∂y
(x, y) + c(x, y)u(x, y) = 0. (6.1)The following theorem is a 
lassi
al result of the theory of ellipti
 PDEs [29℄.Theorem 6.1.1 If the 
oe�
ient fun
tions a, b, c are in Class II then every solution

u of Lu = 0 in Class I is also in Class II.Vekua proved the following even stronger result.Theorem 6.1.2 (Vekua) If the 
oe�
ient fun
tions a, b, c are in Class III, thenevery solution u of Lu = 0 in Class I is also in Class III.For Theorem 6.1.2 it is essential that Ω is simply 
onne
ted. Consider the followingexample. The harmoni
 fun
tion u(x, y) = log(x2 + y2) is harmoni
 in every annulus
A surrounding the origin, but the holomorphi
 extension U(z, z∗) = log z + log z∗ isnot holomorphi
 in [A,A∗].If L = ∆ then any holomorphi
 fun
tion φ(z) de�nes a solution of Lu = 0 via
u(x, y) = Re{φ(z)}. Vekua showed that this is just a spe
ial 
ase of a more gen-eral relationship between holomorphi
 fun
tions and solutions of ellipti
 PDEs with
oe�
ient fun
tions belonging to Class III. De�ne

A(z, z∗) =
1

4

{

a

(

z + z∗

2
,
z − z∗

2i

)

+ ib

(

z + z∗

2
,
z − z∗

2i

)}

,

B(z, z∗) =
1

4

{

a

(

z + z∗

2
,
z − z∗

2i

)

− ib

(

z + z∗

2
,
z − z∗

2i

)}

,

C(z, z∗) =
1

4
c

(

z + z∗

2
,
z − z∗

2i

)

.Let φ be any holomorphi
 fun
tion in Ω and �x z0 ∈ Ω. De�ne the integral operator
I[φ; z0](z, z

∗) =
1

2

{

G(z, z0, z, z
∗)φ(z) +

∫ z

z0

φ(t)H(t, z0, z, z
∗)dt+

G(z0, z
∗, z, z∗)φ̄(z∗) +

∫ z∗

z0

φ̄(t∗)H∗(z0, t
∗, z, z∗)dt∗

} (6.2)
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H(t, t∗, z, z∗) = B(t, t∗)G(t, t∗, z, z∗) − ∂G

∂t
(t, t∗, z, z∗),

H∗(t, t∗z, z∗) = A(t, t∗)G(t, t∗, z, z∗) − ∂G

∂t∗
(t, t∗, z, z∗).For z∗ = z these equations simplify to

I[φ; z0](z, z) = Re{G(z, z0, z, z)φ(z) +

∫ z

z0

φ(t)H(t, z0, z, z̄)dt

}

:= Re{V [φ; z0](z, z)}.The fun
tion G(t, t∗, z, z∗) is the 
omplex Riemann fun
tion for L. We will not go intofurther detail about its de�nition here. A detailed des
ription is given in [36℄. Forsome equations this fun
tion is expli
itly known. If L = ∆, then G(t, t∗, z, z∗) = 1,and for the Helmholtz operator L = ∆ + λ it is given as
G(t, t∗, z, z∗) = J0(

√
λ
√

(z − t)(z∗ − t∗)).We 
an now establish a 1−1 relationship between holomorphi
 fun
tions and solutionsof ellipti
 PDEs with 
oe�
ient fun
tions in Class III.Theorem 6.1.3 (Vekua) Fix z0 ∈ Ω. Then there exists a unique fun
tion φ holo-morphi
 in Ω with φ(z0) real su
h that
u(x, y) = Re{V[φ; z0]}(z, z), z = x + iy ∈ Ω

U(z, z∗) = I[φ; z0](z, z
∗), (z, z∗) ∈ [Ω, Ω∗].Moreover,

φ(z) = 2U(z, z0) − U(z0, z0)G(z0, z0, z, z0). (6.3)An equivalent integral representation, whi
h does not depend on the 
omplex Rie-mann fun
tion but 
an be approximated dire
tly from the 
oe�
ients of the ellipti
equation, was developed by Bergman [11℄. In [64℄ S
hryer uses it to 
onstru
t parti
-ular solutions for ellipti
 PDEs with polynomial 
oe�
ient fun
tions.From now on we will say that φ is asso
iated with u or u is asso
iated with φ if
u = Re{V [φ; z0]}. Let us apply this theorem to two examples. First let L = ∆. Then
V redu
es to the identity operator and we obtain

u(x, y) = Re{φ(z)}.



CHAPTER 6. CONVERGENCE RATES 82Furthermore, from (6.2) we �nd
U(z, z∗) = I[φ; z0](z, z

∗) =
1

2

{

φ(z) + φ̄(z∗)
}

.These are just the results we derived earlier for L = ∆. Now let L = ∆ + λ and let
Ω be the wedge with interior angle π/α (see Figure 2.1). An eigenfun
tion of thisregion is given as

u(r, θ) = Jαk(
√

λr) sin αkθ, k ∈ N, λ > 0.We want to derive the holomorphi
 fun
tion φ asso
iated with u. Let z = reiθ. Then
u(r, θ) = Jαk(

√
λ
√

zz)





(
√

z

z

)αk

−
(

√

z

z

)αk


 /(2i).From Theorem 6.1.2 it follows that the unique analyti
 
ontinuation of u(x, y) intothe region [Ω, Ω∗] ⊂ C
2 is given by

U(z, z∗) = Jαk(
√

λ
√

zz∗)





(
√

z

z∗

)αk

−
(

√

z∗

z

)αk


 /(2i) (6.4)sin
e U(z, z∗) is holomorphi
 in [Ω, Ω∗] and u(x, y) = U(z, z). Bessel fun
tions 
anbe expressed by power series as
Jν(x) = xν

∞
∑

n=0

an(−x2

4
)nfor 
ertain parameters an.2 Therefore, (6.4) be
omes

U(z, z∗) =
1

2i

(

zαk − (z∗)αk
)
√

λ
αk

∞
∑

n=0

an(−1

4
)n(λzz∗)n. (6.5)From Theorem 6.1.3 it follows that

φ(z) = 2U(z, z0) − U(z0, z0)G(z0, z0, z, z0).By a 
ontinuity argument we 
an �x z0 = 0 and obtain together with (6.5)
φ(z) =

1

i

√
λ

αk
a0z

αk.For u(x, y) = Jαk(
√

λr) cos αkθ we obtain similarly φ(z) =
√

λ
αk

a0z
αk.Let us summarize these results.2The an are de�ned by the re
urren
e relation a0 = 1

2νΓ(ν+1) , an = an−1/(n(n + ν)).



CHAPTER 6. CONVERGENCE RATES 83Lemma 6.1.4 Let Ω be a wedge with interior angle π/α and let L = ∆ + λ. Then
− 1

a0

√
λ

αk
Jαk(

√
λr) sin αkθ = Re{V[izαk, 0]}(z, z),

1

a0

√
λ

αk
Jαk(

√
λr) cos αkθ = Re{V[zαk, 0]}(z, z).The fun
tions de�ned by Re{V [izαk, 0]} and Re{V [zαk, 0]}(z, z) are sometimes 
alledgeneralized harmoni
 polynomials (see for example [52℄) sin
e for L = ∆ they lead tothe harmoni
 polynomials rαk sin αkθ and rαk cos αkθ.To establish rates of 
onvergen
e for the Method of Parti
ular Solutions the smooth-ness of the holomorphi
 fun
tion φ asso
iated with a solution u of Lu = 0 is important.This was analyzed by Eisenstat in [23℄. He showed that u and its asso
iated fun
tion

φ have the same smoothness behavior on the boundary. To state his theorem we needthe following de�nition.Let f be de�ned on a 
losed subset S of the 
omplex plane. Then f is Hölder
ontinuous with exponent 0 < γ ≤ 1 if there exists K > 0 su
h that
|f(z1) − f(z2)| ≤ K|z1 − z2|γ , for all z1, z2 ∈ S.De�ne Cp,γ(Ω) as the spa
e of fun
tions that are p times 
ontinuously di�erentiablein Ω and whose pth derivative is Hölder 
ontinuous with exponent γ in Ω. Eisenstatproved the following extension of Theorem 6.1.3.Theorem 6.1.5 (Eisenstat [23℄) Let Ω have no interior or exterior 
usps, i.e. forthe angle π/αq at ea
h 
orner q it holds that 0 < π/αq < 2π. Fix z0 ∈ Ω.1. Let Φ ∈ Cp,γ(Ω) be holomorphi
 in Ω and de�ne

u(x, y) := Re{V [Φ(z), z0]}(z, z), z = x + iy ∈ Ω.Then u ∈ Cp,γ(Ω) and satis�es Lu = 0 in Ω.2. If u ∈ Cp,γ(Ω) satis�es Lu = 0 in Ω, then there exists a unique holomorphi
fun
tion Φ ∈ Cp,γ(Ω) with Φ(z0) real su
h that
u(x, y) = Re{V [Φ(z), z0]}(z, z), z = x + iy ∈ Ω

U(z, z∗) = I[φ; z0](z, z
∗), [z, z∗] ∈ [Ω, Ω∗]. (6.6)



CHAPTER 6. CONVERGENCE RATES 84Moreover, Φ(z) = 2U(z, z0) − U(z0, z0)G(z0, z0, z, z0).6.2 Analyti
 
ontinuation of eigenfun
tions via re-�e
tionAn important appli
ation of Vekua's theory are re�e
tion prin
iples for solutions ofellipti
 PDE's. Let the boundary ∂Ω 
ontain a segment σ of the y�axis. Courant andHilbert [61℄ des
ribed how to analyti
ally 
ontinue solutions of the eigenvalue problem(1.1) a
ross σ. The analyti
 
ontinuation is simply given as ũ(x, y) = −u(−x, y) for
(x, y) in the mirror region Ω′ de�ned by re�e
ting Ω at the y-axis. In 1954 Garabedian[28℄ established re�e
tion prin
iples for the equation

Lu(x, y) = ∆u(x, y) + c(x, y)u(x, y) = 0with zero boundary 
onditions on an arbitrary analyti
 ar
. This was generalizedto ellipti
 PDEs of the form (6.1) and more general boundary 
onditions by Lewy[48℄. In the book by Garabedian [29℄ the extension of these results to some nonlinearellipti
 PDEs is des
ribed. Here, we just dis
uss the 
ase L = ∆ + λ and use thete
hnique des
ribed in [28℄. Let σ be an analyti
 segment of the boundary whi
h isparameterized in the form w = R(w) for w ∈ σ, where R is a holomorphi
 fun
tionin a neighborhood of σ. For example, if σ is a part of the x�axis then w = w on
σ and therefore R(w) := w. If σ is a 
ir
le with radius r then ww = r2 on σ and
R(w) := r2/w. This example shows that in general R is not an entire fun
tion.Assume that z0 ∈ σ. Then the fun
tion u(x, y) = U(z, z) 
an be expressed byTheorem 6.1.3 as

U(z, z) = Re{G(z, z0, z, z)φ(z) −
∫ z

z0

φ(t)
∂G

∂t
(t, z0, z, z)dt

}

.By partial integration and using (6.3) this equation be
omes
U(z, z) = U(z0, z0)G(z0, z0, z, z) + 2Re{∫ z

z0

∂U

∂t
(t, z0)G(t, z0, z, z)dt

}

, (6.7)sin
e U(z0, z0)G(z0, z0, z, z) is real and G(z, z0, z, z) = G(z0, z0, z, z0) = 1 for L =

∆+λ. If u(x, y) satis�es zero Diri
hlet boundary 
onditions on σ we have U(z0, z0) = 0and therefore
U(z, z) = 2Re{∫ z

z0

∂U

∂t
(t, z0)G(t, z0, z, z)dt

}

. (6.8)
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T (z) =

∫ z

z0

∂U

∂t
(t, z0)G(t, z0, z, R(z))dt. (6.9)From (6.8) it follows that

0 = U(z, z) = 2Re{T (z)} = T (z) + T (z)for z ∈ σ sin
e u(x, y) = U(z, z) satis�es the zero boundary 
onditions there and
z = R(z) on σ. T is holomorphi
 in Ω 
lose to σ and has zero real part on σ.Therefore, we 
an re�e
t it a
ross σ as

T̃ (z) = −T (R(z)) (6.10)for z in the re�e
tion of Ω 
lose to σ. On σ we have
T̃ (z) = −T (R(z)) = T (z).Hen
e, T̃ de�nes a holomorphi
 
ontinuation of T if R(z) maps 
omplex numbers
lose to σ on the other side of the boundary line σ. But this is always the 
ase as 
anbe seen by linearizing R(z) 
lose to z0. To obtain the re�e
ted fun
tion ũ(x, y) thefollowing two steps are ne
essary. From (6.9) it follows that

T (R(z)) +

∫ z

z0

∂U

∂t
(t, z0)G(t, z0, z, R(z))dt = 0 (6.11)is a Volterra integral equation3 de�ning the holomorphi
 
ontinuation of U(z, z0) out-side Ω. From (6.7) the analyti
 
ontinuation of u(x, y) a
ross σ 
an then be obtained.Computing the analyti
 
ontinuation of an eigenfun
tion u is 
ompli
ated sin
e itinvolves the appli
ation of Vekua operators and the solution of an integral equation.But usually we are only interested in the existen
e of the analyti
 
ontinuation intoa 
ertain region and this only depends on ∂Ω. Consider for example solutions of theeigenvalue problem (1.1) on the unit disk. Then R(w) := 1/w and we 
an analyti
ally
ontinue any eigenfun
tion to the whole of the 
omplex plane.Another simple 
onsequen
e of re�e
tion prin
iples for eigenfun
tions is the analyti

ontinuation in the neighborhood of 
ertain 
orners of regions. Let u be an eigenfun
-tion in a wedge with interior angle π/k, k ∈ N. Then by 
ontinued re�e
tion u 
anbe analyti
ally 
ontinued to an eigenfun
tion in a wedge with interior angle π. One3A Volterra integral equation has the form w(z) −

∫ z

z0

K(z, t)w(t)dt = f(z). If f is holomorphi
in Ω and the kernel K(z, t) is holomorphi
 in [Ω,Ω] ⊂ C
2 the solution w(z) is holomorphi
 in Ω [36℄.After partial integration (6.11) is of this form in the region of analyti
ity of T̃ .
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Γ

1

Γ
2

Ω

Figure 6.1: A region de�ned by the interse
tion of two 
ir
les�nal re�e
tion then yields the analyti
 
ontinuation of u in a whole neighborhood ofthe 
orner. Hen
e, any eigenfun
tion 
an be analyti
ally 
ontinued around a 
ornerthat lo
ally 
onsists of two straight lines meeting at an interior angle π/k, where k isan integer. If k is not an integer this is generally not possible. Around a 
orner withinterior angle π/α any eigenfun
tion u of (1.1) 
an be expanded into the series,
u(r, θ) =

∞
∑

k=1

ckJαk(
√

λr) sin αkθ. (6.12)whi
h is absolutely 
onvergent to u in a neighborhood of the 
orner [67℄. Asymptot-i
ally, we obtain
u(r, θ) = γrα sin αθ + o(rα), (6.13)for a 
onstant γ depending on the normalization of u. This was proved by Lehmannin 1957 [47℄ for more general ellipti
 PDEs. Therefore, if α is not an integer u 
an ingeneral not be analyti
ally 
ontinued around the 
orner. If the 
orner does not 
onsistof two straight lines then apart from some spe
ial 
ases u 
annot be analyti
ally
ontinued around the 
orner either. As an example 
onsider the region Ω de�ned bythe interse
tion of two 
ir
les Γ1 and Γ2 with radius 1 su
h that the angles at the two
orners are π/2. Figure 6.1 shows this region.
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tion on the region Ω of Figure 6.1 
an be analyti
ally
ontinued a
ross the two 
orners of ∂Ω.Proof Assume that there is an eigenfun
tion u of (1.1) on Ω that 
an be analyti
ally
ontinued around the two 
orners of Ω. Then we 
an re�e
t u a
ross the upperboundary segment of Ω to obtain a fun
tion that is analyti
 inside the disk de�nedby Γ1 and also in a neighborhood of Γ1. By analyti
 
ontinuation of the lower zeroboundary line we obtain u|Γ1
= 0. Therefore, the analyti
 
ontinuation of u de�nesan eigenfun
tion of (1.1) on the disk en
losed by Γ1. A nodal line of this eigenfun
tionis the upper boundary segment of Ω. But nodal lines of eigenfun
tions on a disk 
anonly be 
on
entri
 lines around the 
enter of the dis
 or straight lines emerging fromthe 
enter of the dis
, a 
ontradi
tion.Let us summarize our results in the following de�nition and theorem.De�nition A 
orner 
onsisting of two straight lines meeting at an interior angle π/k,where k ∈ N, is 
alled regular. Otherwise, it is 
alled singular.Theorem 6.2.2 If a 
orner is regular any eigenfun
tion 
an be analyti
ally 
ontinuedinto a neighborhood of it.In the following we will use the analyti
 
ontinuation results from this se
tion toestablish exponential 
onvergen
e of the MPS on 
ertain regions.6.3 Convergen
e estimate for regions with no singu-lar 
ornersIn this se
tion we establish 
onvergen
e estimates of the subspa
e angle method forregions without singular 
orners4. Before we review some results of 
omplex approx-imation let us �rst establish the 
onne
tion between the subspa
e angle method and4Exponential 
onvergen
e of the MPS on regions whose boundary is an analyti
 Jordan 
urvewas also theoreti
ally established by Still in [67℄ but without giving exa
t asymptoti
 exponential
onvergen
e rates.
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omplex approximation. For a set S ⊂ C de�ne the supremum norm ‖φ‖∞,S as
‖φ‖∞,S := sup

z∈S
|φ(z)|.Sin
e we assume that Ω is bounded the Vekua operator Re{V [φ; z0]} is bounded in

‖ · ‖∞,Ω by
‖Re{V [φ; z0]}‖∞,Ω ≤ ‖G‖∞,Ω‖φ‖∞,Ω +

∫ z

z0

‖H‖∞,Ω‖φ‖∞,Ωd|t| ≤ KV ‖Φ‖∞,Ω(see [23℄).For the equation −∆ + λu = 0 the 
onstant KV depends in addition to the region Ωalso on the parameter λ. Let us denote by VA the spa
e of all holomorphi
 fun
tions
φ asso
iated with fun
tions u ∈ A(λ) for a �xed z0 ∈ Ω.Lemma 6.3.1 Let (λk, uk) be an eigenpair of (1.1). Fix z0 ∈ Ω and let φk be theholomorphi
 fun
tion asso
iated with uk. Let u ∈ A(λk) and denote by φ ∈ VA itsasso
iated holomorphi
 fun
tion. Denote by θ(λk) the prin
ipal angle between A(λk)and D0. Then

tan θ(λk)‖u‖Ω ≤ C‖φ − φk‖∞,Ωfor a 
onstant C > 0 that depends only on λk and Ω.Proof We have
‖u‖∂Ω = ‖u − uk‖∂Ω ≤ C1‖u − uk‖∞,∂Ω = C1‖u − uk‖∞,Ω ≤ C1KV ‖φ − φk‖∞,Ωfor a 
onstant C1 > 0 that depends on Ω. Therefore, with C = C1KV

‖u‖∂Ω ≤ C‖φ − φk‖∞,Ω. (6.14)Sin
e
tan θ(λk) = inf

u∈A(λ)

‖u‖∂Ω

‖u‖Ωwe obtain
‖u‖Ω tan θ(λk) ≤ ‖u‖∂Ω.Together with (6.14) the result follows.
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e
|‖u‖Ω − ‖uk‖Ω| ≤ ‖u − uk‖Ω ≤ C‖φ − φk‖∞,Ω̄for a 
onstant C > 0 depending on Ω and λk the fa
tor ‖u‖Ω is 
lose to 1 if φ is a goodapproximation of φk and ‖uk‖Ω = 1. Hen
e, the fa
tor ‖u‖Ω has little in�uen
e. Theimportant 
onsequen
e of this lemma is that tan θ(λk) 
an be bounded by the errorof approximating φk with fun
tions φ ∈ VA, giving a link between subspa
e anglesand 
omplex approximation. In a similar form this Lemma was already proved in [23℄but without using the notion of subspa
e angles.After establishing the link between the subspa
e angle method and the approxima-tion of holomorphi
 fun
tions let us review some results of 
omplex approximationtheory whi
h we will need to establish 
onvergen
e rates. Let the error EN,K(φ) ofapproximating a holomorphi
 fun
tion φ in a 
ompa
t set K ⊂ C with polynomialsof maximal degree N be de�ned as

EN,K(φ) = min
p∈ΠN

max
z∈K

|φ(z) − p(z)|,where ΠN is the spa
e of polynomials of maximal degree N . The �rst question iswhether it is possible at all that EN,K(φ) → 0 for N → ∞, i.e. if the fun
tion φ 
anbe arbitrarily well approximated on K by polynomials. If C\K is 
onne
ted and φ isholomorphi
 on K this was shown by Runge in 1885. His result is often referred toas the beginning of 
omplex approximation theory (see [27, 53℄ for an overview of thehistory). The original theorem of Runge 
annot be applied if φ is not holomorphi
on ∂K. A more general result was proved by Mergelyan in 1951 [53℄. He showedthat EN,K(φ) → 0 if C\K is 
onne
ted and φ is holomorphi
 in the interior of K and
ontinuous on ∂K. This is a great improvement on Runge's theorem sin
e φ needsnot be holomorphi
 on ∂K any longer. The result in
ludes several previous results asspe
ial 
ases (for example, the Weierstrass approximation theorem for approximationon an interval [a, b]).The next question is the speed of 
onvergen
e of EN,K(φ), i.e. how fast does EN,K(φ)go to zero? For simpli
ity we assume that K is a simply 
onne
ted 
ompa
t setbounded by a pie
ewise analyti
 Jordan 
urve. Let C = ∂K. Then the equipotential
urves Cρ are de�ned in the following way.Equipotential 
urves Let w = Φ(z) be the 
onformal map of the exterior of K tothe exterior of the unit dis
 {w ∈ C : |w| > 1} normalized in the standard way at
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1

ρ

Cρ

C
Φ(z)

Figure 6.2: The de�nition of equipotential 
urvesin�nity5. The equipotential 
urve Cρ of radius ρ > 1 is de�ned as Cρ = {z ∈ C :

|Φ(z)| = ρ} (see Figure 6.2).Furthermore, by the 
onformal distan
e of a point z to a region Ω we denote the value
ρ su
h that z ∈ Cρ.For ρ > 1 the 
urve Cρ is always an analyti
 Jordan 
urve [84℄. The term equipotential
urve 
omes from potential theory. The fun
tion gK(z) = log |Φ(z)| is the Green'sfun
tion for K, whi
h is up to an additional 
onstant the equilibrium potential of K(see [62℄ for a beautiful introdu
tion). With this de�nition we 
an now give the �rststatement of the rate of 
onvergen
e of EN,K(φ).Theorem 6.3.2 Suppose ρ > 1 is the largest number su
h that φ is analyti
 inside
Cρ. Then

EN,K(φ) = O(R−N)holds for every R < ρ, but for no R > ρ.Proof The 
lassi
al referen
e for a proof of this theorem and its impli
ations is Walsh[84℄. A more a

essible proof is given in [27℄.We are now ready to prove exponential 
onvergen
e rates for the subspa
e anglemethod on regions without singular 
orners.5Φ(z) is of the form Φ(z) = cz + c0 + c1

z + . . . with c > 0.



CHAPTER 6. CONVERGENCE RATES 91Theorem 6.3.3 Suppose (λk, uk) is an eigenpair of (1.1) on Ω with boundary C =

∂Ω. Let ‖uk‖Ω = 1 and assume that there exists R > 1 su
h that uk is analyti
 insideand on CR. Fix z0 ∈ Ω and let
AN(λk) :=

{

N
∑

j=0

Jj(
√

λkr)(aj sin jθ + bj cos jθ) : aj, bj ∈ R

}be the spa
e of Fourier-Bessel fun
tions of maximum order N expanded around z0.Then
tan θN(λk) = O(R−N)as N → ∞, where θN(λk) is the subspa
e angle between AN(λk) and D0.Proof Although the hypothesis is di�erent, the proof is very similar to the proof ofTheorem 8.3 in [23℄. From Lemma 6.1.4 it follows with α = 1 that VA = ΠN . Let φkbe the holomorphi
 fun
tion asso
iated with uk. Then from Theorem 6.3.2 it followsthat

min
pN∈ΠN

‖pN − φk‖∞,Ω = O(R−N). (6.15)as N → ∞. Let p̃N be the best approximation of φk from ΠN . Together with Lemma6.3.1 we �nd
‖Re{V [p̃N ; z0]}‖Ω tan θN(λk) = O(R−N).We 
an estimate ‖Re{V [p̃N ; z0]}‖Ω as

‖Re{V [p̃N ; z0]}‖Ω ≥ ‖uk‖ − ‖uk − Re{V [p̃N ; z0]}‖Ω

≥ 1 − C‖uk − Re{V [p̃N ; z0]}‖∞,Ω

≥ 1 − CKV ‖p̃N − φk‖∞,Ω

= 1 − O(R−N)for a 
onstant C > 0 that depends on Ω. Therefore, ‖Re{V [p̃N ; z0]}‖Ω approa
hes 1and it follows that
tan θN(λk) = O(R−N).To �nd the maximal 
onvergen
e rate we need to know how far a
ross Ω an eigen-fun
tion uk of (1.1) 
an be analyti
ally 
ontinued. The singularity zs of the analyti

ontinuation of uk with the smallest 
onformal distan
e to the region then gives the



CHAPTER 6. CONVERGENCE RATES 92

−0.5 0 0.5 1 1.5 2 2.5
−0.5

0

0.5

1

1.5

2

2.5

Figure 6.3: The 
ir
ular L region and some of its equipotential 
urves. The dots aresingularities of the analyti
 
ontinuation of an eigenfun
tion of the region.
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Figure 6.4: Any eigenfun
tion on the 
ir
ular L region 
an be re�e
ted to �ll thewhole 
omplex plane ex
ept for an in�nite number of disks of radius 1 positioned ona regular grid. .
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onvergen
e rate of the subspa
e angle method. Let us demonstrate this with an ex-ample. Figure 6.3 shows a region Ω, whi
h is similar to the L-shaped region but with aquarter 
ir
le of radius 1 instead of the reentrant 
orner. The �gure also shows someof the equipotential lines Cρ 
omputed with Dris
oll's S
hwarz-Christo�el Toolbox[20℄. The two dots mark singularities of the analyti
 
ontinuation of an eigenfun
tion.Their positions are obtained in the following way. We 
an re�e
t any eigenfun
tion ua
ross ea
h of the straight lines of Ω. The resulting eigenfun
tion lives in the regionshown in Figure 6.4. We 
an further re�e
t it to 
over the whole 
omplex plane apartfrom an in�nite number of disks of radius 1 ordered on a regular grid. But how far
an we re�e
t an eigenfun
tion into the disk? Consider for example the two upperdisks in Figure 6.4. Let us take a point z0 lying on the straight line between thesedisks. We 
an re�e
t it a
ross the right 
ir
le and obtain a point z1 lying on the sameline but inside the upper right disk. The position of z1 is obtained from the equation
(z0 − (2 + 2i))(z1 − (2 + 2i)) = 1.Now we 
an re�e
t z1 again in the upper left 
ir
le to obtain a point z2 in that disk.Then we 
an re�e
t again in the right 
ir
le and so on. The two limit points of thisiteration are not the 
enters of the disks, but are determined by the 
ondition thatthe re�e
tion of the left limit point in the right disk is exa
tly the left limit pointand vi
e versa. Due to the symmetry of the region their distan
es to the 
enters ofthe two disks must be equal. This leads to the two limit points zL = −

√
3 + 2i inthe left disk and to zR =

√
3 + 2i in the right disk. We 
annot analyti
ally 
ontinue

u further into the two disks on the line x + 2i, x ∈ R. Therefore, the points zL and
zR are singularities of the analyti
 
ontinuation of u. By symmetry we obtain manymore singularities su
h as the point zR′ = 2+ i

√
3. The points zR and zR′ are plottedin Figure 6.3. There might be other singularities with a smaller 
onformal distan
eto Ω. But if su
h singularities exist their 
onformal distan
e will not be signi�
antlysmaller than that of zR and zR′ sin
e the upper line in Figure 6.4 is the shortest
onne
tion between two disks and therefore leads to the smallest penetration into thetwo disks by re�e
tion. For example, if we re�e
t between the lower left 
ir
le and theupper right 
ir
le we obtain two singularities whose 
onformal distan
e to the regionis larger than that of zR. With the S
hwarz-Christo�el toolbox we obtain the value

ρ ≈ 1.476 for the 
onformal distan
e of zR to Ω. Approximating with Fourier-Besselsine and 
osine fun
tions we obtain from Theorem 6.3.3
tan θN(λk) = O(1.476−N)
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Figure 6.5: The theoreti
al 
onvergen
e rate for N → ∞ (dashed) and the measured
onvergen
e (solid) on the L 
ir
le region. The measured 
onvergen
e �ts well withthe predi
ted rate.for an eigenvalue λk of (1.1) on the 
ir
ular L region, assuming zR is the singularitywith the smallest 
onformal distan
e6. In Figure 6.5 we 
ompare the 
omputed valueof tan θN(λ1) with the estimated maximal 
onvergen
e rate. For λ1 we used theapproximation λ1 ≈ 7.02025391131. The 
onvergen
e stops at N = 70 sin
e λ1 isonly known to about 12 digits of a

ura
y. The measured 
onvergen
e 
urve �rstseems to move away from the estimated straight line. But then the slope of themeasured 
onvergen
e slowly approa
hes the estimated value again and we obtain agood mat
h between the estimated slope and the measured slope. We always have tokeep in mind that the estimated 
onvergen
e rate is an asymptoti
 rate for N → ∞.The transient behavior of the measured 
urve 
an di�er from this.Another interesting example is the half annulus with radii r1 = 1 and r2 = 2 as shownin Figure 6.6, where also some equipotential 
urves are plotted. The 
losest singularityis at 0 leading to a theoreti
al 
onvergen
e rate of O(1.16−N). By in
reasing r2 we
ould make the asymptoti
 rate of 
onvergen
e arbitrarily 
lose to 1. The reasonfor this slow 
onvergen
e is that the approximation basis is not a very good one.All eigenvalues on the half annulus are also eigenvalues on the full annulus. But6In a stri
t sense, we 
an only say that tan θN (λk) = O(R−N ) for R < 1.476 if 1.476 is the exa
tmaximum radius of analyti
ity. But sin
e 1.476 is just a numeri
ally estimated value we will omitthis and just say that the rate is O(1.476−N ).
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Figure 6.6: A half annulus region and its mapping fun
tion. The dot marks the
losest singularity of an eigenfun
tion of the region.the 
orresponding eigenfun
tions are given as linear 
ombinations of Fourier-Besselfun
tions of the �rst and of the se
ond kind by
um,n =

[

Ym(km,n)Jm

(

km,nr

a

)

− Jm(km,n)Ym

(

km,nr

a

)]

[A cos mθ + B sin mθ] ,where km,n is the nth root of
Ym(k)Jm

(

kb

a

)

− Jm(k)Ym

(

kb

a

)

= 0and Ym is the mth Bessel fun
tion of the se
ond kind [44℄. Therefore, although byapproximating with Fourier-Bessel sine and 
osine fun
tions inside the half annulus weare guaranteed exponential 
onvergen
e, it is not a good basis sin
e the eigenfun
tionsalso involve Bessel fun
tions of the se
ond kind, whi
h have a singularity at 0. The
onvergen
e 
urve for tan θN(λ1) on this region is shown in Figure 6.7. It agrees verywell with the predi
ted value of O(1.16−N).
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Figure 6.7: Convergen
e of the subspa
e angle method on the half annulus region(solid). The dashed line shows the theoreti
al asymptoti
 rate of 
onvergen
e.6.4 Exponential 
onvergen
e on regions with one sin-gular 
ornerOnly in the 
ase in whi
h ∂Ω has no singular 
orner 
an we apply Theorem 6.3.3 toobtain an exponential 
onvergen
e estimate. Let us now extend this result to the 
asein whi
h ∂Ω has exa
tly one singular 
orner whose adja
ent ar
s are straight lines.In su
h a 
ase any eigenfun
tion on Ω 
an be analyti
ally 
ontinued a
ross Ω ex
ept
lose to the singular 
orner. This is for example the 
ase for the L-shaped region. Weneed the following lemma.Lemma 6.4.1 Let 0 be a 
orner of ∂Ω with interior angle π/α, whi
h is formed bytwo straight ar
s from whi
h the right one is part of the real axis as shown in Figure
2.1. Let u be an eigenfun
tion of (1.1) on Ω. Then the unique holomorphi
 fun
tion φasso
iated with u by the Vekua operator su
h that u = Re{V [φ; 0]} is purely imaginaryon the ar
s adja
ent to 0 and has the absolutely 
onvergent expansion

φ(z) =
∞
∑

k=1

ic̃kz
αk, c̃k ∈ R, z ∈ {z : |z| < R} ∩ Ωfor some R > 0.
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h that
u(r, θ) =

∞
∑

j=1

cjJαj(
√

λkr) sin αjθ (6.16)is an absolutely 
onvergent series for r < R and 0 ≤ θ ≤ π/α. Together with Lemma6.1.4 it follows that there exists real 
oe�
ients
c̃j = − cj

√
λk

αj

2αjΓ(αj + 1)
,su
h that for |z| < R we have

φ(z) =
∞
∑

j=0

ic̃jz
αj. (6.17)The absolute 
onvergen
e of this series follows from the fa
t that

|z|ν
2νΓ(ν + 1)

(1 − ǫ) ≤ |Jν(z)| ≤ |z|ν
2νΓ(ν + 1)

, |z| ≤ τfor every ǫ > 0 and ν > ν0(τ, ǫ) su�
iently large (see for example [67℄). Hen
e, theterms in (6.17) 
an be bounded by the terms in (6.16).From (6.17) it follows that φ is purely imaginary on {z : |z| < R} ∩ ∂Ω. By analyti

ontinuation along the ar
s φ is also purely imaginary on the whole of both ar
s.Using this lemma we 
an show that the singularity 
an be removed by a 
onformalmap of the region.Lemma 6.4.2 In the notation of Lemma 6.4.1, de�ne the region Ωα as
Ωα = {zα : z ∈ Ω}.Then the fun
tion φ̃(w) := φ(z) for w = zα is analyti
 on Ωα.This lemma states that by the transformation w = zα we obtain a fun
tion that isanalyti
 on the whole of Ωα and therefore in parti
ular at w = z = 0. Hen
e, by thetransformation w = zα we have removed the singularity of φ at 0.
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φ(z) =

∞
∑

j=0

ic̃jz
αj (6.18)in {z : |z| < R} ∩ Ω. Now let w = zα. Then

φ̃(w) =
∞
∑

j=0

ic̃jw
j.This is a power series in w. Its absolute 
onvergen
e for |w| < Rα follows from theabsolute 
onvergen
e of (6.18). Hen
e, φ̃ possesses a power series expansion around

w = 0 and is therefore holomorphi
 in a neighborhood of 0. Sin
e by assumption φ̃possesses no other singularities on Ωα it is holomorphi
 there.Let us now use these lemmas to determine the rate of 
onvergen
e of the MPS in aregion with one singular 
orner. Assume that Ω satis�es the hypotheses of Lemma6.4.1 and let (λk, uk) be an eigenpair of (1.1) on Ω with ‖uk‖Ω = 1. Denote by φkthe holomorphi
 fun
tion asso
iated with uk for z0 = 0 and let φ̃k be the 
onformaltransplant of φk to the region Ωα. Hen
e, φ̃k(w) = φk(z) for w = zα. From Lemma6.4.2 it follows that φ̃k is holomorphi
 on Ωα. Therefore, there exists R > 1 su
h that
min

pN∈ΠN

‖φ̃k − pN‖∞,Ωα = O(R−N).This estimate holds for all R < ρ, where ρ is the 
onformal distan
e of the 
losestsingularity of φ̃k to the region Ωα (see Theorem 6.3.2). Let
p̃N(w) =

N
∑

j=0

ckw
j, cj ∈ Cbe the best approximating polynomial in ΠN of φ̃k. Then

p̃N(z) =
N
∑

k=0

ckz
αkand

‖φk − p̃N‖∞,Ω = O(R−N)in the z�domain. The Vekua transform u = Re{V [p̃N ; 0]} of p̃N in the z�domain hasthe form
u(r, θ) =

N
∑

j=0

Jαj(
√

λkr)(aj sin αjθ + bj cos αjθ)
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oe�
ients aj and bj depending on the 
oe�
ients cj of p̃N . Now de�ne
AN(λ) := {

N
∑

j=0

Jαj(
√

λkr)(ak sin αjθ + bj cos αjθ) : aj, bj ∈ R}.We obtain as in the proof of Theorem 6.3.3
tan θN(λk) = O(R−N)for the angle between AN(λk) and D0. Let us summarize this result as a theorem.Theorem 6.4.3 Let Ω be a region with one singular 
orner with interior angle π/αas de�ned in Lemma 6.4.1 and let (λk, uk) be an eigenpair of (1.1) on this region. Let

φk be the holomorphi
 fun
tion asso
iated with uk and de�ne φ̃k by φ̃k(w) = φk(z) for
w = zα. Let

AN(λ) := {
N
∑

j=0

Jαj(
√

λkr)(aj sin αjθ + bj cos αjθ) : aj, bj ∈ R}.Then there exists R > 1 su
h that for the angle θN(λk) between AN(λk) and D0 itholds that
tan θN(λk) = O(R−N).This estimate holds for all R < ρ where ρ is the smallest 
onformal distan
e of asingularity of φ̃ to the region Ωα.Hen
e, by adapting the spa
e of parti
ular solutions to the singularity we obtainexponential 
onvergen
e for regions with one 
orner singularity. For the L-shapedregion this was also investigated by Still in [67℄. But he did not use 
onformal mappingte
hniques to 
ompute the exa
t asymptoti
 rate of 
onvergen
e but rather gavebounds on the 
onvergen
e rate by dire
tly estimating the Fourier-Bessel series.Let us use this result to determine the rate of 
onvergen
e if Ω is the L-shaped region.By re�e
tion we 
an determine all singularities around Ω and remove the singularityat the reentrant 
orner with the map w = z2/3. This is shown in Figure 6.8, where

Ω2/3 and some equipotential 
urves are plotted7. The dots mark singularities ofthe analyti
 
ontinuation of eigenfun
tions on Ω under the map to the w�domain.
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Figure 6.8: Equipotential 
urves of the L-shaped region after 
an
eling out the reen-trant 
orner at z = 0. The dots mark singularities of the analyti
 
ontinuation of aneigenfun
tion u.Computing the minimum 
onformal distan
e to Ω2/3 of the singularities leads to
ρ ≈ 1.54. A 
omparison between the measured 
onvergen
e and this estimated rateis shown in Figure 6.9. The estimated rate �ts well with the measured rate. Againthe measured 
onvergen
e is not fully identi
al to the estimated behavior for N → ∞sin
e we only observe the 
urve up to N = 60. But for large N the measured slopewill eventually approa
h the estimated rate.The 
onvergen
e plot in Figure 6.9 was 
omputed using Fourier-Bessel sine and 
osinefun
tions of the form

J 2

3
j(
√

λ1r) sin
2

3
jθand

J 2

3
j(
√

λ1r) cos
2

3
jθsin
e this 
orresponds to polynomial approximation on the region Ω2/3. But theFourier-Bessel 
osine fun
tions do not satisfy the zero boundary 
onditions on the7To 
ompute the equipotential 
urves and the 
onformal distan
e of the singularities we usedDris
oll's S
hwarz-Christo�el Toolbox after dis
retizing Ω2/3 to obtain a polygonal region. The
omputations 
an also be done on a sli
ker way without this dis
retization, but we will not go intothat here.
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Figure 6.9: Measured 
onvergen
e (solid) of tan θN(λ1) 
ompared to the estimated
onvergen
e rate (dashed) for the L-shaped region using Fourier-Bessel sine and 
osineexpansions.ar
s adja
ent to the reentrant 
orner and it seems natural to only use Fourier-Besselsine fun
tions. How does the 
onvergen
e rate 
hange in this 
ase?Approximating only with Fourier-Bessel sine fun
tions 
orresponds to approximating
φ̃(w) with polynomials that have purely imaginary 
oe�
ients. The best approxi-mating polynomial in this 
lass 
an be determined with the following Lemma.Lemma 6.4.4 Let Ω be the L-shaped region and denote by Ω̃2/3 the re�e
tion of Ω2/3at the real line as shown in Figure 6.10. Let φ be a fun
tion holomorphi
 in Ω2/3 withno singularites in Ω̃2/3 whi
h is purely imaginary on the part of ∂Ω2/3 interse
tingwith the real line. Denote by p̃N the best approximating polynomial of degree N forthe fun
tion

φ̃(z) =

{

φ(z); z ∈ Ω2/3

−φ(z); z ∈ Ω2/3in Ω̃2/3. Then p̃N has purely imaginary 
oe�
ients and is the best approximatingpolynomial for φ in Ω2/3 from the spa
e of polynomials of maximum degree N withpurely imaginary 
oe�
ients.Proof Let φ̃(z) be the re�e
tion of φ̃(z) on the real axis. Then the best approximating
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Figure 6.10: The region from Figure 6.8 but now doubled in size by an additionalre�e
tion. The dots are again singularities of the analyti
 
ontinuation of an eigen-fun
tion uk. .polynomial for this re�e
tion is p̃N(z). But it 
an be easily seen that φ̃(z) = −φ̃(z).Therefore, p̃N(z) = −pN(z). With
p̃N(z) =

N
∑

j=0

ckz
jfor 
ertain 
oe�
ients cj ∈ C we �nd

0 = p̃N(z) + p̃N(z) =
N
∑

j=0

(cj + cj)z
k =

N
∑

j=0

2Re{cj}zjand therefore Re{cj} = 0 for j = 1, . . . , N . Now let p̂N be the best approximatingpolynomial for φ in Ω2/3 from the spa
e of polynomials of maximum degree N withpurely imaginary 
oe�
ients. Sin
e the best approximating polynomial p̃N for φ̃ on
Ω̃2/3 also has purely imaginary 
oe�
ients and φ̃ is symmetri
 around the real axis itfollows that p̂N = p̃N .For the MPS on the L-shaped region with Fourier-Bessel fun
tions this result meansthat the rate of 
onvergen
e is determined by a 
onformal map of the region shownin Figure 6.10. We obtain an asymptoti
 
onvergen
e rate of O(1.44−N). Figure 6.11
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Figure 6.11: Measured and estimated 
onvergen
e of the MPS on the L-shaped regionusing only Fourier-Bessel sine fun
tions.shows the measured and the estimated 
onvergen
e behavior on the L-shaped region ifonly Fourier-Bessel sine fun
tions are used. It is interesting to note that the observedtransient rate of 
onvergen
e from Figure 6.11 seems to be about O(1.51−N), whi
h ismu
h 
loser to the asymptoti
 rate of 
onvergen
e for the 
ase that Fourier-Bessel sineand 
osine fun
tions are used. This shows that the e�e
t of omitting Fourier-Bessel
osine fun
tions from the basis is low and only be
omes signi�
ant for N → ∞. Itis also noti
eable that the 
urve in Figure 6.11 bends up slightly as in the beginningit seems to 
onverge faster than in later steps. Eventually it will settle at a rate of
O(1.44−N) for N → ∞.6.5 Convergen
e on regions with multiple singulari-tiesLet us now apply the subspa
e angle method to the eigenvalue problem (1.1) on aregion Ω with more than one singular 
orner. For regions with one 
orner singularitywe were able show exponential 
onvergen
e by 
an
eling out the singularity with a
onformal map if the 
orner is bounded by the interse
tion of two straight ar
s. Sothe �rst question is if we 
an just use the same strategy for regions with multiple
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Figure 6.12: A region with two singular 
orners at z1 and z4.singularities. We will demonstrate all results in this se
tion at the example regionshown in Figure 6.12. The four points of the quadrilateral are z1 = 0, z2 = .3 +

1/ tan(3π
8

), z3 = 0.3 + 1/ tan(3π
8

) + 1i, z4 = 1/ tan(3π
8

) + 1i. The 
orrespondinginterior angles π/αk, k = 1, . . . , 4 are de�ned by α1 = 8
3
, α2 = 2, α3 = 2, α4 = 8

5
.Hen
e, the 
orners at z1 and z4 are singular. Let uk be an eigenfun
tion of (1.1) onthe region Ω shown in Figure 6.12 and φk its asso
iated holomorphi
 fun
tion around

z1, i.e. uk = Re{V [φk; z1]}. Then from Lemma 6.4.1 it follows that
φk(z) =

∞
∑

j=1

icjz
α1j, cj ∈ R
lose to z1. But 
lose to z4 we 
annot expe
t φk to have this form. Close to that
orner the eigenfun
tion 
an be expressed as a 
onvergent series of the form

u(r, θ) =
∞
∑

j=1

ajJα4j(
√

λkr) sin α4jθ (6.19)with origin of the polar 
oordinates at z4. Together with (6.5) it follows that asymp-toti
ally
φk(z) ∼

∑

j,l≥0

cj,l(z − z4)
j+lα4 , cj,l ∈ C (6.20)as z → z4. Generally, this needs not be a 
onvergent series. One 
an show that if αis irrational φk has an asymptoti
 expansion 
lose to a 
orner π/α in the terms zj+αl
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j, l ∈ N. If α = p/q is rational with (p, q) relatively prime the asymptoti
 expansion
an also have terms of the form (zp log z)mzj+αl, j, l,m ∈ N [85℄. Let us now assumewe introdu
e the 
onformal map w = (z − z4)

α4 to straighten out the 
orner at z4.Then from (6.20) it follows that
φk(w) ∼

∑

j,l≥0

cj,lw
j

α4
+l
lose to w = 0. But this asymptoti
 series still has singular terms, whi
h are nowof the form wj/α4+l. Hen
e, although we have straightened out the 
orner at z4 wehaven't 
an
eled out the 
orresponding singularity of φk. It follows that we 
analways only 
an
el out one singularity of φk, namely the singularity zs su
h that

uk = Re{V [φk; zs]}. Due to the behavior of φk at the other singularities it is notpossible to 
an
el them out with the strategy used in the previous se
tion. But as wewill see later, by a suitable 
hoi
e of basis fun
tions we 
an redu
e the order of the
orner singularities and still obtain fast 
onvergen
e.Algebrai
 
onvergen
e estimates for the MPS were �rst analyzed by Eisenstat in 1974[23℄. This was further developed by Still [66, 67, 69℄ in the 1980's. In 1999 Melenk [52℄published algebrai
 
onvergen
e results for approximation in Sobolev spa
es. Here,we will mostly use the estimates in the form given by Still.Let Ω have 
orners at z1, . . . , zn. Denote by ω1 = π/α1, . . . , ωn = π/αn the 
or-responding interior angles. Let ω̄ be the largest interior angle and de�ne µ :=

min{1, 2 − ω̄/π}. If Ω has a reentrant 
orner then µ < 1 and µπ is the exteriorangle at the reentrant 
orner. Furthermore, we assume that Ω has no interior orexterior 
usps, i.e. 0 < ωk < 2π for k = 1, . . . , n. Let z0 ∈ Ω and de�ne
AN(λk) :=

{

N
∑

j=0

Jj(
√

λkr)(aj sin jθ + bj cos jθ) : aj, bj ∈ R

}

,where the polar 
oordinates are around z0. Still proved the following theorem, whi
hwe present for the spe
ial 
ase of the eigenvalue problem (1.1).Theorem 6.5.1 (Still [69℄) Let (λk, uk) be an eigenpair of (1.1). Let p ∈ N, 0 <

γ ≤ 1, be de�ned by p + γ = π
ω̄
. Then u ∈ Cp,γ(Ω) and for any ǫ > 0 there exists a
onstant c(ǫ) su
h that

min
uN∈AN (λ)

‖uk − uN‖∞,Ω ≤ c(ǫ)

Nµ(p+γ)−ǫ
.



CHAPTER 6. CONVERGENCE RATES 106

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

10
1

N

ta
n

θ N
(λ

1
)

Figure 6.13: The plot shows the 
onvergen
e behavior on a region with two singular
orners (solid line). The dashed line is the theoreti
al rate from Theorem 6.5.1.This result was also proved by Eisenstat in a more general setting in [23℄. Sin
e eigen-fun
tions are analyti
 around nonsingular 
orners we only need to 
onsider singular
orners for Theorem 6.5.1.Figure 6.13 shows the 
onvergen
e of the subspa
e angle method using the approx-imation spa
e A(λ1) as de�ned above. For λ1 we use the approximation λ1 ≈
48.4161682676614, whi
h is believed to be 
orre
t to all given digits. The dashedline in Figure 6.13 shows the 
onvergen
e bound from Theorem 6.5.1. The 
ornerat z4 is the singular 
orner with the largest interior angle. From Theorem 6.5.1 the
onvergen
e estimate

tan θN(λ1) ≤
c(ǫ)

N
8

5
−ǫfor all ǫ > 0 follows. The observed 
onvergen
e in Figure 6.13 is even faster thanpredi
ted by algebrai
 
onvergen
e estimates in the supremum norm. Indeed, Melenkshowed that bounding the approximation error in L2 
an lead to improved algebrai

onvergen
e rates [52℄.8 Therefore, although the error in the supremum norm is anupper bound for the tangent of the subspa
e angle, more suitable fun
tion spa
esettings might give sharper bounds in this 
ase. All algebrai
 
onvergen
e estimates8For the approximation of fun
tions that are holomorphi
 in the neighborhood of the region asdes
ribed by Theorem 6.3.2 the asymptoti
 exponential rates are the same in the supremum and L2norm.
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tions at the singular 
orners. If we 
animprove the smoothness at the 
orners, faster 
onvergen
e rates are possible. Thispossibility was investigated by Eisenstat [23℄. Consider the 
orner z4. As alreadystated in (6.19), 
lose to z4 uk has the series representation
uk(r, θ) =

∞
∑

j=1

ajJα4j(
√

λkr) sin α4jθ.By 
an
eling out lower order terms of this series we 
an improve the smoothness of ukat z4. If we enri
h the approximation spa
e by linear 
ombinations of Jα4j(
√

λkr) sin α4jθ,
j = 1, . . . , n the problem of approximating uk 
an be interpreted as the problem ofapproximating

ũk(r, θ) := uk(r, θ) −
n
∑

j=1

ajJα4j(
√

λkr) sin α4jθ =
∞
∑

j=n+1

ajJα4j(
√

λkr) sin α4jθ
lose to z4, whi
h has a mu
h weaker singularity at z4 than the fun
tion uk. If wedo the same at z1 we 
an make the fun
tion ũk as smooth at the 
orners as we wish.It 
annot be
ome analyti
 
lose to the 
orners sin
e no matter how many singularterms we use the remaining terms in the series expansions around z1 and z4 will staysingular. But still we 
an obtain high algebrai
 
onvergen
e rates. This is shown inFigure 6.14, where we 
ompare the 
onvergen
e of the subspa
e angle method if theapproximation spa
e is enlarged by the �rst two singular Fourier-Bessel terms aroundthe singularities at z1 and z4 to the 
ase of approximating just with Fourier-Besselterms in the interior of Ω as done in Figure 6.13.Just by adding four singular terms we drasti
ally in
rease the rate of 
onvergen
e whilethe additional 
omputational e�ort is negligible sin
e the number of basis fun
tionsonly grows from 201 to 205 at the step N = 100. We 
an even improve the rateof 
onvergen
e more by 
hoosing in ea
h step the same number of terms at the twosingularities as in the interior of the region. Figure 6.15 shows a double-logarithmi
and a semi-logarithmi
 plot of the resulting 
onvergen
e 
urve. It de
reases fasterthan linearly in the double-logarithmi
 plot indi
ating super-algebrai
 
onvergen
e,but de
reases slower than linearly in the semi-logarithmi
 plot, whi
h indi
ates arate slower than exponential 
onvergen
e. We a
hieve an a

ura
y 
lose to ma
hinepre
ision after N = 26, whi
h 
orresponds to 105 basis terms (26 Fourier-Bessel sineterms around ea
h of the singular 
orners, 52 Fourier-Bessel sine and 
osine termsin the interior and 1 Bessel term of order zero in the interior). In the 
ase of using
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Figure 6.14: Comparison of the subspa
e angle method on Ω by only using Fourier-Bessel terms in the interior of the region and by adding two singular terms aroundea
h of the two singular 
orners z1 and z4.only Fourier-Bessel terms in the interior of the region shown in Figure 6.13 we needed
201 terms to bring the subspa
e angle down to just about 10−4. This shows howessential it is to 
apture the 
orner singularities 
orre
tly. We 
an even redu
e thenumber of basis fun
tions more. From Theorem 6.5.1 it follows that 
lose to z1 therate of 
onvergen
e is O(N− 8

3 ), while 
lose to z4 it is O(N− 8

5 ). Hen
e, 
lose to z1 the
onvergen
e is about twi
e as fast as 
lose to z4. Therefore, it makes sense to 
hoosetwi
e as many singular terms around z4 as around z1 to make up for this di�eren
ein the 
onvergen
e rate. This rule of thumb was pointed out by Des
loux and Tolley[18℄. As a result we obtain the 
onvergen
e 
urve shown in Figure 6.16. At about
N = 14 the subspa
e angle is already 
lose to ma
hine pre
ision. This 
orresponds to
28 Fourier-Bessel terms around z4, 14 Fourier-Bessel terms around z1 and 29 Fourier-Bessel terms in the interior of the region, i.e. overall 71 terms, whi
h saves 34 basisterms 
ompared to the 
ase that we approximate with the same number of termsaround both singularities as shown in Figure 6.15.Let us summarize the results of this 
hapter. For regions with zero or one singular
orner we proved exponential 
onvergen
e (Theorem 6.3.3 and 6.4.3). Moreover, by
onformal mapping te
hniques we were able to determine the asymptoti
 exponentialrate of 
onvergen
e. For regions with multiple singularities the situation is di�erent.
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Figure 6.15: Convergen
e of the subspa
e angle method if in ea
h step the number ofterms at ea
h singularity is also N . The upper plot shows the 
onvergen
e behavioron a double-logarithmi
 s
ale while the lower plot uses a semi-logarithmi
 s
ale. The
onvergen
e appears to be faster than algebrai
 but slower than exponential.
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Figure 6.16: The rate of 
onvergen
e if twi
e as many singular terms are used around
z4 as z1.Algebrai
 
onvergen
e rates for this 
ase were previously analyzed by Eisenstat andStill and in the setting of Sobolev spa
es by Melenk. By a suitable adjustment of theapproximation spa
es high algebrai
 
onvergen
e rates 
an be a
hieved. We demon-strated numeri
ally that this 
an be further improved by approximating not only withan in
reasing number of Fourier-Bessel terms in the interior of the region but alsowith an in
reasing number of Fourier-Bessel terms at the singularities. The numer-i
al 
onvergen
e then seems better than algebrai
 but not yet exponential. This isplausible, sin
e we in
rease the smoothness of the fun
tion we wish to approximate inea
h step by adding more singular terms. Therefore, the rate of algebrai
 
onvergen
egrows with in
reasing N . But sin
e the singularities do not fully disappear we 
annotexpe
t exponential 
onvergen
e. Nevertheless, the 
onvergen
e 
an be made very fasteven in the 
ase of regions with multiple singular 
orners. The only restri
tion is thatif a singular 
orner is not formed by two straight lines but by arbitrary analyti
 
urveslogarithmi
 terms 
an appear in the expansion of φk 
lose to that 
orner. Just byusing Fourier-Bessel fun
tions we 
annot 
apture those logarithmi
 terms and they
an lead to a slow down of 
onvergen
e.
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onvergen
e of eigenvaluesWe 
on
lude this 
hapter with a note on the rate of 
onvergen
e of an eigenvalueapproximation λ to an eigenvalue λk of (1.1) in a region Ω. From Chapter 5 we knowthat
|λ − λk|

λk

≤ c tan θ(λ)for a 
onstant c > 0 that depends on Ω. Therefore, if λ is the minimum of thesubspa
e angle 
urve, then
|λ − λk|

λk

≤ c tan θ(λ) ≤ c tan θ(λk)and for a growing number of basis fun
tions λ 
onverges at least as fast as tan θ(λk).But 
an the rate of 
onvergen
e be faster than that of tan θ(λk)? If ũ is an approximateeigenfun
tion from D0 instead of A(λ) then a good eigenvalue estimate is given bythe Rayleigh quotient
ρ(ũ) =

〈ũ,−∆ũ〉Ω
〈ũ, ũ〉Ω

.If the distan
e of ũ to an eigenve
tor uk is O(ǫ), then the distan
e of ρ(ũ) to λk is
O(ǫ2) leading to a squared 
onvergen
e behavior for the eigenvalue approximations.The question is if su
h a �squared 
onvergen
e" behavior also exists for the Methodof Parti
ular Solutions. The Rayleigh quotient does not give us any new informationwhen we approximate from A(λ) sin
e if −∆u = λu, then ρ(u) = λ. However,there are several examples where we numeri
ally observe faster 
onvergen
e for theeigenvalue approximation than for the 
orresponding subspa
e angle. Figure 6.17shows the 
onvergen
e of the minimum of tan θN(λ) for a growing number N ofbasis fun
tions on the L-shaped region. The dotted 
urve shows the distan
e of the
orresponding values λ to the �rst eigenvalue λ1. Until about N = 17 the eigenvalueapproximation λ 
onverges faster than tan θN(λ). This 
hanges when tan θN(λ) ≈
10−8 at N = 17. Then both 
urves seem to de
rease with the same rate. Anotherstriking example is given in Figure 6.18. It shows the 
onvergen
e of the smallestsubspa
e angle on the half annulus region from Figure 6.6. While the subspa
e angle
onverges smoothly the 
orresponding eigenvalue approximations �rst 
onverge with afaster rate but then start os
illating and stagnate. We 
annot yet explain the speedupof the eigenvalue 
onvergen
e in these two examples. But the 
on
lusion is that if weare only interested in a 
ertain a

ura
y of an eigenvalue approximation then often weneed fewer basis terms than predi
ted from our 
onvergen
e theory for the subspa
e
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CHAPTER 6. CONVERGENCE RATES 113angle. Therefore, it is useful to look not only at the value of the subspa
e angle whenobserving the 
onvergen
e of the subspa
e angle method for growing N but also to
he
k the number of stable digits in the 
orresponding eigenvalue approximations,whi
h in some 
ases 
an be signi�
antly higher than predi
ted by the value of thesubspa
e angle.



Chapter 7
A domain de
omposition methodbased on the GSVD
The Method of Parti
ular Solutions is a global approximation method in the sensethat the basis fun
tions in A(λ) live in the whole region Ω. With the right tools fromlinear algebra this idea 
an be turned into a stable and rapidly 
onverging method,as we have seen in the previous 
hapters. We 
an prove exponential 
onvergen
e forregions with zero or one 
orner singularity and also obtain arbitrarily fast algebrai
rates for regions with more than one 
orner singularity.An alternative to global approximation methods are domain de
omposition methodsthat use parti
ular solutions in ea
h subdomain. This idea was introdu
ed by De-s
loux and Tolley in 1983 [18℄. Their method 
onverges exponentially in arbitrarypolygonal regions and also over
omes the ill-
onditioning of the basis fun
tions. In itsoriginal form, the a

ura
y of their method was limited to the square root of ma
hinepre
ision. Also, domain de
omposition methods are more 
ompli
ated to implementthan global approximation methods. The problem of the limited a

ura
y was solvedby Dris
oll in 1997 [21℄, who 
omputed the �rst 25 eigenmodes of the two isospe
-tral drums to 12 digits of a

ura
y with this method. Instead of minimizing thesmallest eigenvalue of a 
ertain parameter-dependent eigenvalue problem Dris
oll'simprovement 
omputes zeros of the derivative of an eigenvalue.In this 
hapter we present a modi�
ation of the method of Des
loux and Tolley basedon the minimization of a generalized singular value. This approa
h provides another114
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hine pre
ision problem and has the additional ad-vantages that it avoids 
omputing L2�inner produ
ts and evaluating derivatives ofpossibly ill-
onditioned eigenvalues. Like that of Des
loux and Tolley, our method iseasily adapted to planar regions other than polygons.Des
loux and Tolley used Taylor series estimates to show the exponential 
onvergen
eof their method. This has the disadvantage that it only works if an eigenfun
tion
an be expanded into a 
onvergent Taylor series on ea
h subdomain. Also, Taylorseries estimates only give optimal 
onvergen
e rates on 
ir
les. We over
ome theseproblems by using Vekua's theory and analyti
 
ontinuation to establish exponential
onvergen
e rates. These estimates are asymptoti
ally optimal and 
an be applied toa larger 
lass of regions than Taylor series estimates.7.1 The method of Des
loux and Tolley and its re-formulation as a GSVD problemLet Ω be a polygonal region. Assume that Ω is partitioned into subregions Ω1, . . . , Ωpsu
h that Ωj ∩ Ωl = ∅ for j 6= l and ∂Ωj ∩ ∂Ω either 
ontains no 
orner or 
onsistsof two straight ar
s meeting at a 
orner of ∂Ω. An example of su
h a de
ompositionis given in Figure 7.1 for the region des
ribed in Se
tion 6.5. The internal boundary
∂Ωj ∩ ∂Ωl between two subdomains Ωj and Ωl is denoted by Γjl. If Γjl 
onsists ofonly a �nite number of points (as is for example the 
ase for Γ13 in Figure 7.1) weset Γjl := ∅. The number of nonempty internal boundary segments Γjl is denoted by
n. In Figure 7.1 we have n = 4. Let π/αj be the interior angle of the 
orner of ∂Ωinterse
ting with ∂Ωj. If ∂Ωj has no su
h 
orner we de�ne a 
orner on ∂Ω∩∂Ωj withinterior angle π. Therefore, we 
an assume from now on that every boundary segment
∂Ωj 
ontains a 
orner of ∂Ω. Let zj be the position of this 
orner in ∂Ωj. Aroundea
h 
orner zj we 
an approximate an eigenfun
tion uk of (1.1) with a Fourier-Besselseries of the form

fj,Nj
(r, θ) =

Nj
∑

i=1

a
(j)
i fj,Nj ,i, (7.1)with

fj,Nj ,i(r, θ) = Jαji(
√

λr) sin αjiθ,
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Figure 7.1: A domain de
omposition for the method of Des
loux and Tolley.where the origin of the polar 
oordinates is zj. Outside Ωj we de�ne fj,Nj ,i(r, θ) := 0,
i = 1, . . . , Nj to restri
t the support of fj,Nj

to Ωj. On the boundary segments of Ωadja
ent to zk this expansion automati
ally satis�es the zero boundary 
onditions.But we need to satisfy 
ompatibility 
onditions on the internal boundary segements
Γjl between Ωj and Ωl. Let Γjl be a nonempty boundary segment. Then we need tosatisfy

fj,Nj
(x, y) = fl,Nl

(x, y), ∇fj,Nj
(x, y) = ∇fl,Nl

(x, y)for (x, y) ∈ Γjl
1. Let a = (a1

1, . . . , a
(1)
N1

, . . . , a
(p)
1 , . . . , a

(p)
Np

) be the ve
tor of all 
oe�
ientsfrom the Fourier-Bessel expansions (7.1) with length N := N1 + · · · + Np. Ea
h su
hve
tor 
an be assigned a unique basis fun
tion from the spa
e
ÃN(λ) :=

{

f ∈ C2

(

p
⋃

j=1

Ωj

)

: f |Ωj
= fj,Nj

}

,1It would be su�
ient to demand that ∂
∂nj

fj,Nj
(x, y) + ∂

∂nj
fj,Nj

(x, y) = 0 for (x, y) ∈ Γjl, where
∂

∂nj
is the outward normal derivative on Ωj . But sin
e the e�ort of 
omputing the normal derivativeis essentially the same as that of 
omputing the full derivative we will work with the full derivativeas Des
loux and Tolley did.
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ular solutions of the method of Des
loux and Tolley (on the internalboundary lines Γjl we let f unde�ned). We de�ne the two quadrati
 forms
I(λ, a) =

∑

j<l

∫

Γjl

|fj,Nj
− fl,Nl

|2 + |∇fj,Nj
−∇fl,Nl

|2ds

K(λ, a) =

p
∑

j=1

∫

Ωj

|fj,Nj
|2d(x, y),where the dependen
e on λ 
omes from the Fourier-Bessel expansions fj,Nj

on λ. Bothquadrati
 forms 
an be written as I(λ, a) = aT I(λ)a and K(λ, a) = aT K(λ)a, where
I(λ) ∈ R

N×N is symmetri
 positive semi-de�nite and K(λ) ∈ R
N×N is symmetri
positive de�nite. Therefore, the minimum of I(λ, a)/K(λ, a) over all a ∈ R

N is thesmallest eigenvalue µ1(λ) of the generalized eigenvalue problem
I(λ)x(λ) = µ(λ)K(λ)x(λ). (7.2)Des
loux and Tolley did not use the formulation as a generalized eigenvalue problem.By only evaluating K(λ, a) in a se
tor 
ontained in ea
h subdomain one 
an use thesame tri
k as in (5.10) and obtain a diagonal right-hand side matrix K(λ) whosediagonal elements are expli
itly known. Therefore, it is easy to redu
e (7.2) to thestandard eigenvalue problem K−1/2IK−1/2y(λ) = µ1(λ)y(λ). While the formulationas a generalized eigenvalue problem has the disadvantage that the two matri
es I(λ)and K(λ) 
an have a 
ommon numeri
al null-spa
e 
aused by linear dependen
ies ofthe basis fun
tions on ea
h subdomain, this problem is avoided in the formulation asa standard eigenvalue problem.As in the method of Barnett, the problem with (7.2) is that a squaring is involved,whi
h leads to a loss of a

ura
y. This e�e
t was analyzed by Dris
oll in [21℄. Fol-lowing an idea of Vavasis he repaired the method of Des
loux and Tolley by �ndingthe zero of the derivative µ′

1(λ) instead of minimizing the lo
ally quadrati
 fun
tion
µ1(λ). By di�erentiating (7.2) with respe
t to λ and multiplying on the left by x(λ)one obtains

µ′(λ) =
x(λ)(I ′(λ) − µ(λ)K ′(λ))x(λ)

x(λ)T K(λ)x(λ)
.Sin
e µ′(λ) behaves linearly around a zero of µ(λ), the a

ura
y of solving µ′(λ) = 0is 
omparable to the a

ura
y to whi
h the values µ′(λ) 
an be determined. With thismodi�ed algorithm Dris
oll 
omputed the �rst 25 eigenvalues of the GWW-isospe
traldrums to 12 digits of a

ura
y. The disadvantage of this approa
h is that in addition



CHAPTER 7. DOMAIN DECOMPOSITION GSVD 118to the value µ(λ) we have to 
ompute its derivative µ′(λ). Furthermore, we are stillworking with eigenvalue formulations, whi
h 
an be ill-
onditioned.We have found that a solution of this problem problem is to reformulate (7.2) as ageneralized singular value problem. We need the semi-norm
‖f‖Γ :=

(

∑

j<l

∫

Γj,l

|fj,Nj
(s) − fl,Nl

(s)|2 + |∇fj,Nj
(s) −∇fl,Nl

(s)|2ds

) 1

2and the norm
‖f‖Ω̃ :=

(

p
∑

j=1

∫

Ωj

|fj,Nj
(x, y)|2dxdy

) 1

2

=

(

p
∑

j=1

‖fj,Nj
‖2

Ωj

) 1

2for f ∈ ÃN(λ). These are just the square roots of the quadrati
 forms I and K. Thesemi-norm ‖ · ‖Γ is well de�ned sin
e although f is not de�ned on Γjl the restri
tion
fj,Nj

of f to the subdomain Ωj is de�ned on Γjl. Now let
σ(λ) := min

u∈Ã(λ)\{0}

‖u‖Γ

‖u‖Ω̃

. (7.3)As in Se
tion 3.5 we 
an dis
retize Ω and Γjl to turn (7.3) into a generalized singularvalue problem. Only the matri
es will be slightly more 
ompli
ated be
ause of thestru
ture of the norms used here. We dis
retize ea
h Γjl by points z
(jl)
k ∈ Γjl, k =

1, . . . ,Mjl and ea
h subdomain Ωj by points z̃
(j)
t ∈ Ωj, t = 1, . . . , Lj. Therefore, wehave M =

∑

j<l Mjl dis
retrization points on the interior boundaries between thesubdomains and L =
∑p

j=1 Lj dis
retization points in the union of all subdomains.We now de�ne the matrix A1(λ) ∈ R
3M,N as

A1(λ) =

[

F (λ)
∇F (λ)

]

,where ea
h row of F (λ) is asso
iated with one internal boundary 
ollo
ation point zjl
kon Γjl and de�ned as

[f1,N1,1(z
jl
k ), . . . , f1,N1,N1

(zjl
k ), . . . , fj,Nj ,1(z

jl
k ), . . . , fj,Nj ,Nj

(zjl
k ),

. . . ,−fl,Nl,1(z
jl
k ), . . . ,−fl,Nl,Nl

(zjl
k ), . . . ]Sin
e we restri
ted the support of a Fourier-Bessel basis fun
tion fl,Nl,k to Ωl allelements of the row whi
h are not asso
iated with basis fun
tions in Ωj or Ωl arezero. The matrix ∇F is de�ned as

∇F =

[

∂F
∂x
∂F
∂y

]

.
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e, ea
h boundary 
ollo
ation point zjl
k is assigned to two rows in ∇F . One row
onsists of the partial derivatives in the x-dire
tion of the basis fun
tions evaluatedat zjl

k and the other row 
onsists of the 
orresponding derivatives in the y-dire
tionevaluated at zjl
k , where the derivatives belonging to basis fun
tions in Ωl are as in thede�nition of F multiplied by −1. Again, we set all elements in the rows asso
iatedwith zjl

k that do not belong to basis fun
tions in Ωj or Ωl to zero. Furthermore, wede�ne a matrix A2(λ) as
A2(λ) =







G1 . . .
Gp






,where the ith 
olumn of Gj is the basis fun
tion fj,Nj ,i evaluated at the points z̃

(j)
t ∈

Ωj, t = 1, . . . , Lj. The de�nition of σ(λ) in (7.3) now be
omes
σ̂(λ) = min

x∈RN\{0}

‖A1(λ)x‖2

‖A2(λ)x‖2and σ̂(λ) is just the smallest generalized singular value of the pen
il {A1(λ), A2(λ)}.As an example, let us do this for the region Ω shown in Figure 7.1 with the de
ompo-sition into four subdomains given there. Figure 7.2 shows the value σ̂(λ) for variousvalues of λ. In ea
h subdomain we used 10 Fourier-Bessel basis fun
tions. All non-empty interior boundary lines Γjl were dis
retized with 50 equally spa
ed points andea
h subdomain Ωi was dis
retized with 20 random interior points. The 
urve hastwo minima pointing to the �rst two eigenvalues.In this example we used a division into four subdomains. But Ω only has two sin-gular 
orners at z1 and z4. Therefore, we 
ould attempt to only divide Ω into twosubdomains su
h that ea
h of the subdomains has one singular 
orner. For example,let Ω be subdivided by the straight line formed by Γ23 and Γ14. Then we need toadditionally impose the 
ondition that the norm of the approximate eigenfun
tionsis be minimized on the line from z2 to z3. But this is easily a

omplished similarlyto the subspa
e angle method by dis
retizing the boundary line from z2 to z3 with
ollo
ation points and in
luding in the matrix A1(λ) two blo
ks whi
h 
onsist of thebasis fun
tions around z1 and z4 evaluated at these additional boundary 
ollo
ationpoints. Figure 7.3 shows the value σ̂(λ1) for a growing number N of Fourier-Besselbasis fun
tions in ea
h subdomain, where λ1 ≈ 48.4161682676614 is the �rst eigen-value of (1.1) on Ω. In the 
ase of two subdomains we have an a

ura
y 
lose to
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hine pre
ision after N = 40 steps, while in the 
ase of four subdomains we havean a

ura
y of only 10−5 at N = 40. The reason for this slow 
onvergen
e in the 
aseof four subdomains is that the singularity of the eigenfun
tion at z4 is very 
lose Ω3slowing down the 
onvergen
e there. Hen
e, in the 
ase of four subdomains not onlydo we need more basis fun
tions but the 
onvergen
e rate is slower.A striking feature of both 
urves is that in 
ontrast to global approximations whose
onvergen
e on this region was dis
ussed in Se
tion 6.5, we seem to observe exponen-tial 
onvergen
e. In the next se
tion we prove that the domain de
omposition methodindeed 
onverges exponentially and 
ompute the asymptoti
 rate for the solid 
urvein Figure 7.3.7.2 Exponential 
onvergen
e of the domain de
om-position methodBased on Taylor series estimates Des
loux and Tolley proved exponential 
onvergen
eof their domain de
omposition method. However, their estimates have two (related)disadvantages. First, we need to guarantee that the subdomains are 
hosen su
h thatthe eigenfun
tion has a 
onvergent Taylor series on ea
h subdomain. Se
ond, Taylorseries estimates only deliver the true asymptoti
 
onvergen
e on 
ir
les. For otherregions Taylor polynomials are not optimal and therefore do not deliver good boundsfor the asymptoti
 
onvergen
e rate. The results in this se
tion are illustrated forthe region Ω from Figure 7.1 using a subdivision into two subdomains with internalboundary Γ := Γ12 ∪Γ14. Let us denote by Ω̂1 the subdomain below Γ and by Ω̂2 thesubdomain above Γ. Sin
e with only two subdomains we also have to minimize theerror of the approximate eigenfun
tions on the right boundary segment from z2 to z3,we introdu
e a slightly di�erent quadrati
 form Ĩ(λ, a) de�ned as
Ĩ(λ, a) =

∑

j<l

∫

Γjl

|fj,Nj
(s) − fl,Nl

(s)|2 + |∇fj,Nj
(s) −∇fl,Nl

(s)|2ds

+

p
∑

j=1

∫

∂Ω∩∂Ωj

|fj,Nj
(s)|2ds.If the domain de
omposition of Des
loux and Tolley is used, the last sum of Ĩ(λ, a)is always zero and we have Ĩ(λ, a) = I(λ, a). Therefore, this slightly more general
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h in
ludes the original method of Des
loux and Tolley as a spe
ial 
ase. Forea
h λ the method 
omputes in the non-sampled 
ase
σ(λ) = min

a∈RN{0}

Ĩ1/2(λ, a)

K1/2(λ, a)
.Let (λk, uk) be an eigenpair of (1.1) on Ω. We 
an estimate Ĩ(λ, a) as

Ĩ(λk, a) =
∑

j<l

∫

Γjl

|fj,Nj
(s) − fl,Nl

(s)|2 + |∇fj,Nj
(s) −∇fl,Nl

(s)|2ds

+

p
∑

j=1

∫

∂Ω∩∂Ωj

|fj,Nj
(s)|2ds

≤ C1

∑

j<l

[

‖fj,Nj
− uk‖2

∞,Γjl
+ ‖uk − fl,Nl

‖2
∞,Γjl

+ ‖∇fj,Nj
−∇uk‖2

∞,Γjl

+ ‖∇uk −∇fl,Nl
‖2
∞,Γjl

]

+ C2

p
∑

j=1

‖fj,Nj
− uk‖2

∞,∂Ω∩∂Ωj

≤ C1

∑

j<l

‖∇fj,Nj
−∇uk‖2

∞,Γjl
+ ‖∇fl,Nl

−∇uk‖2
∞,Γjl

+ C3

p
∑

j=1

‖uk − fj,Nj
‖2
∞,Ωj

, (7.4)where C1, C2, C3 > 0 are 
onstants whi
h depend on Ω. Hen
e, we need to estimatethe rate of 
onvergen
e of the fun
tions fj,Nj
to uk restri
ted to Ωj and the rate of
onvergen
e of the derivatives of fj,Nj

to the derivatives of uk on the internal boundarylines Γjl. Take for example the subdomain Ω̂1 from the region in Figure 7.2. The onlysingularity of uk in Ω̂1 is at z1 = 0. Let φk be the holomorphi
 fun
tion asso
iatedwith uk su
h that uk = Re{V [φk; z1]}. From Lemma 6.4.1 it follows that
φk(z) =

∞
∑

k=1

ickz
8k
3 , ck ∈ R
lose to z1, and using Lemma 6.4.2, we know that the fun
tion φ̃k(w) := φk(z) for

w = zα is holomorphi
 in a neighborhood around z1. Therefore, φ̃k is holomorphi
 on
Ω̂

8/3
1 . We 
an now pro
eed exa
tly as in the example of the L-shaped region in Se
tion6.4. The two 
losest singularities to Ω̂1 in the 
onformal sense are z4 and the point

z′1 = 2
tan 3

8
π

+ 0.6. The singularity at z′1 is obtained by re�e
tion of the eigenfun
tion
uk at the boundary line 
onne
ting z2 and z3. Sin
e we only use Fourier-Bessel sinefun
tions we have to re�e
t the region Ω̂

8/3
1 a
ross the real line before 
omputing the
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onformal distan
es of z
8/3
4 and z

′8/3
1to this re�e
ted region are then approximately given as 2.82 and 5.34. Therefore, weobtain

min
u∈ÃN (λk)

‖uk − u‖∞,Ω̂1

= O(2.82−N1),if N1 is the number of Fourier-Bessel basis terms in Ω̂1. Similarly, for approximatingwith Fourier-Bessel fun
tions around z4 in the region Ω̂2 we obtain
min

u∈ÃN (λk)
‖uk − u‖∞,Ω̂2

= O(1.86−N2),where the 
onformally 
losest singularity is z′4 = 1
tan 8

3
π
+0.6, whi
h is the image of thesingularity at z4 under re�e
tion of uk at the boundary line from z2 to z3. Combiningthese results we obtain

min
u∈ÃN (λ1)

‖uk − u‖∞,Ω = O(1.86−N)if N := N1 = N2. On arbitrary polygonal regions we obtain similarly the followingresult.Lemma 7.2.1 There exist numbers Rj > 1, j = 1, . . . , p and fun
tions uN ∈ A(λk)su
h that for their restri
tions uN |Ωj
= fj,Nj

to Ωj it holds that
‖fj,Nj

− uk‖∞,Ωj
= O(R

−Nj

j )as Nj → ∞.Proof The proof pro
eeds exa
tly as in the example given above. It is only essentialthat uk has at most one 
orner singularity in ea
h subdomain Ωj, whi
h is guaranteedby the domain de
omposition.It is now left to estimate the 
onvergen
e of the derivatives of the Fourier-Bessel basisfun
tions to ∇uk on the internal boundary line Γ. We need the following te
hni
allemma.Lemma 7.2.2 Let {f (N)} be a sequen
e of real analyti
 fun
tions de�ned in the in-terval I := [a, b] and having a holomorphi
 
ontinuation to the region Ω ⊂ C. If
‖f (N)‖∞,I = O(R−N) for N → ∞ then ‖f ′(N)‖∞,I = O((R − δ)−N) for every δ > 0.



CHAPTER 7. DOMAIN DECOMPOSITION GSVD 124Proof Fix δ > 0. Then there exists a neighborhood S of I in Ω su
h that ‖f (N)‖∞,S =

O((R − δ)−N) for N → ∞.2 Now 
hoose ǫ > 0 su
h that Kǫ := {z : |z − x0| = ǫ, z ∈
C} ⊂ S for all x0 ∈ I. Then

f ′(N)(x0) =
1

2πi

∫

Kǫ

f (N)(ξ)

(ξ − x0)2
dξfor x0 ∈ I. It follows that

|f ′(N)(x0)| ≤
1

ǫ
‖f (N)‖∞,S = O((R − δ)−N)and therefore

‖f ′(N)‖∞,I = O((R − δ)−N) (7.5)for every δ > 0.We are now able to estimate the expression ‖∇fj,Nj
− ∇uj‖∞,Γjl

. By Lemma 7.2.1there exists a sequen
e a(N) ∈ R
N and asso
iated basis fun
tions fj,Nj

, j = 1, . . . , p,
N =

∑p
j=1 Nj su
h that

‖fj,Nj
− uk‖∞,Γj,l

= O(R
−Nj

j )for all j = 1, . . . , p. Now �x δ1 > 0. Then there exists a region D su
h that Γjl ⊂ Dand
‖fj,Nj

− uk‖∞,D = O((Rj − δ1)
−Nj).Let (x0, y0) ∈ Γjl and de�ne ûNj

(x) := fj,Nj
(x, y0) − uk(x, y0) in a small interval

I := [x0 − ǫ, x0 + ǫ] for an ǫ > 0 su
h that I × y0 ∈ D. From Theorem 6.1.2 itfollows that ûNj

an be 
ontinued to a holomorphi
 fun
tion in a neighborhood of Iindependent of Nj. We 
an now use Lemma 7.2.2 and �nd that for every δ2 > 0

‖û′
Nj
‖∞,I = O((Rj − δ1 − δ2)

−Nj),whi
h implies that
∣

∣

∣

∣

∂

∂x
fj,Nj

(x0, y0) −
∂

∂x
uk(x0, y0)

∣

∣

∣

∣

= O((Rj − δ)−Nj)for δ = δ1 + δ2. Similarly, we obtain
∣

∣

∣

∣

∂

∂y
fj,Nj

(x0, y0) −
∂

∂y
uk(x0, y0)

∣

∣

∣

∣

= O((Rj − δ)−Nj).2In the 
ase of polynomial approximation this is 
alled over
onvergen
e, the e�e
t that approxi-mations to analyti
 fun
tions in a region Ω also 
onverge in a neighborhood of Ω if the fun
tion isanalyti
 there (see [84℄, �4.6�4.7).
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e (x0, y0) was 
hosen arbitrarily on Γjl we �nd
‖∇fj,Nj

−∇uk‖∞,Γjl
= O((R − δ)−Nj)for every δ > 0. Combining this result with (7.4) yields

Ĩ(λk, a
(N)) =

p
∑

j=1

O((Rj − δ)−2Nj) (7.6)for every δ > 0 and Nj → ∞. Rj is the exponential rate of 
onvergen
e of ap-proximating uk on the subdomain Ωj. If N1 = · · · = Np =: Ñ and R̃ = minj Rj,then
Ĩ(λk, a

(pÑ)) = O((R̃ − δ)−2Ñ).Let us now estimate K(λk, a
(N)). Assume that ‖uk‖Ω = 1. Then

K(λk, a
(N)) =

p
∑

j=1

‖fj,Nj
‖2

Ωj

≥
p
∑

j=1

[

‖uk‖Ωj
− ‖fj,Nj

− uk‖Ωj

]2

≥
p
∑

j=1

[

‖uk‖Ωj
− C‖fj,Nj

− uk‖∞,Ωj

]2

≥
p
∑

j=1

[

‖uk‖Ωj
− O(R

−Nj

j )
]2

→
p
∑

j=1

‖uk‖2
Ωj

= 1 (7.7)for a 
onstant C > 0 whi
h depends on Ω. Combining all results we obtain thefollowing theorem whi
h establishes exponential 
onvergen
e rates for the domainde
omposition method.Theorem 7.2.3 Let (λk, uk) be an eigenpair of (1.1) with ‖uk‖Ω = 1. Then
min
a∈RN

Ĩ(λk, a)

K(λk, a)
=

p
∑

j=1

O((Rj − δ)−2Nj)for every δ > 0 and Nj → ∞, j = 1, . . . , p. The numbers Rj are the exponential
onvergen
e rates from Lemma 7.2.1 for approximating uk on Ωj with fun
tions in
ÃN(λk).



CHAPTER 7. DOMAIN DECOMPOSITION GSVD 126Proof Let 0 < ǫ < 1. From (7.7) it follows that there exists N0 su
h thatK(λ, a(N)) ≥
1 − ǫ for Nj > N0, j = 1, . . . , p. Together with (7.6) we �nd

min
a∈RN

Ĩ(λk, a)

K(λk, a)
≤ Ĩ(λk, a

(N))

K(λk, a(N))
≤ 1

1 − ǫ
Ĩ(λk, a

(N)) =

p
∑

j=1

O((Rj − δ)−2Nj).for Nj → ∞, j = 1, . . . , p.For our example domain Ω of Figure 7.1 we 
omputed the rates of 
onvergen
e R1and R2 on the two subdomains Ω̂1 and Ω̂2 in this se
tion. They were R1 ≈ 2.82 and
R2 ≈ 1.86. If we use the same number N of Fourier-Bessel basis fun
tions on bothsubdomains it follows from Theorem 7.2.3 that

σ(λ) = min
a∈R2N

Ĩ1/2(λk, a)

K1/2(λk, a)
= O((1.86)−N).Figure 7.4 shows the measured 
onvergen
e of

σ̂(λ) ≈ σ(λ)for a growing number of basis fun
tions. This time we did not use the �xed value
λ = λ1 but the minimum of the 
urve of σ̂(λ). The dotted line is the 
onvergen
ebehavior of the position λ of the minimum of the 
urve to the �rst eigenvalue λ1 andthe dashed line is the estimated rate 1.86−N . In this plot we used the same number Nof basis fun
tions on Ω̂1 and Ω̂2. But the rate of 
onvergen
e on Ω̂1 is approximately
2.82−N and on Ω̂1 it is 1.86−N . To balan
e these di�erent 
onvergen
e rates we 
anuse di�erent numbers of basis fun
tions on the two subdomains as in Se
tion 6.5. Wewant to a
hieve 2.82−N1 = 1.86−N2 whi
h results in N2

N1
= log 2.82

log 1.86
≈ 1.67. Therefore,it is more suitable to use 3N basis fun
tions on Ω̂2 and 2N basis fun
tions on Ω̂1.The resulting 
onvergen
e 
urve is plotted in Figure 7.5. The 
urve for σ̂(λ) rea
hesits minimum in Figure 7.5 at N = 13, whi
h 
orresponds to 65 Fourier-Bessel basisfun
tions, while the minimum in Figure 7.4 is rea
hed at N = 38 
orresponding to

76 basis fun
tions.Let us 
ompare the 
onvergen
e rates 
omputed in this 
hapter with the 
onvergen
eestimates of Des
loux and Tolley. The radius ρ1 of Ω̂1 is
ρ1 = max

z∈Ω̂1

|z − z1| ≈ 0.87,
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0 5 10 15
10

−15

10
−10

10
−5

10
0

Generalized Sing. Value
|λ

1
−λ|

Figure 7.5: Convergen
e of the domain de
omposition method with 2N basis fun
tionson Ω̂1 and 3N basis fun
tions on Ω̂2.
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losest singularity is z4 with |z4| ≈ 1.08. Using Taylor series estimates asDes
loux and Tolley did we �nd ( |z4|
ρ1

)8/3 ≈ 1.78 for the exponential rate of 
onvergen
eon Ω̂1, while we 
omputed an exponential rate of R1 ≈ 2.82 on this subdomain.Similarly, Taylor series estimates deliver an exponential rate of 1.05 
ompared to our
omputed value of 1.86 on Ω̂2. Hen
e, by just using Taylor series estimates we obtaina 
onvergen
e estimate that does not have anything to do with the true 
onvergen
ebehavior, while our value 
omes 
lose to the slope of the observed 
urve in Figure 7.4and is asymptoti
ally 
orre
t for N → ∞.When is it preferable to use a domain de
omposition method and when should we useglobal approximations as in the subspa
e angle method? The obvious advantage of amethod based on global approximations is its lower programming e�ort. Furthermore,using a bad domain de
omposition 
an 
onsiderably slow down the 
onvergen
e, asshown in Figure 7.3. But �nding an optimal domain de
omposition is a nontrivialtask, if possible at all. In Se
tion 6.5 we needed at least 71 basis fun
tions to ob-tain a smallest generalized singular value 
lose to ma
hine pre
ision. In the domainde
omposition method presented here this was a
hieved by using 65 basis fun
tions(the 
ase N = 13 in Figure 7.5). However, in the domain de
omposition method wealso have to 
ompute derivatives of the basis fun
tions, resulting in an overall higher
omputational e�ort. The theoreti
al advantage of domain de
omposition methods isthat they 
onverge exponentially on polygonal regions. But as shown in the examplepresented here, this does not ne
essarily mean that the 
omputational e�ort is lowerto obtain an a

ura
y 
lose to ma
hine pre
ision.The pi
ture looks di�erent for multiply 
onne
ted regions. Consider the region Ωshown in Figure 7.6. This region has four singular 
orners with interior angles 3π
2
.Fourier-Bessel fun
tions to 
apture these singularities are of the form J 2π

3
k(
√

λr) sin 2π
3

kθ,resulting in bran
h lines that always interse
t the region. Therefore, we 
annot useglobal basis fun
tions that are adapted to the singularities. However, by using adomain de
omposition, we 
an divide Ω into four simply 
onne
ted subdomains, onwhi
h it is possible to use basis fun
tions that are adapted to the singularities, mak-ing a

urate eigenvalue 
omputations possible. In Chapter 8 we 
ompute some of theeigenvalues and eigenfun
tions of the region in Figure 7.6 using the domain de
om-position GSVD method.Another appli
ation where domain de
omposition methods are of advantage is if
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Figure 7.6: A multiply 
onne
ted region with four singular 
orners.we have several subdomains whi
h are only weakly linked and we have additionalinformation about the eigenfun
tions in ea
h subdomain. Then this approa
h 
an beused to qui
kly �nd good approximations for eigenfun
tions in the whole region.



Chapter 8
Examples of 
omputed eigenvaluesand eigenfun
tions
In this 
hapter we present a

urate 
omputations of eigenve
tors and eigenfun
tionsof several di�erent regions. Most of the examples are 
omputed with the subspa
eangle method as des
ribed in Chapter 3. If we use a di�erent approa
h like the domainde
omposition GSVD we state it in the 
orresponding se
tion. For ea
h eigenfun
tionwe print all digits that we believe to be 
orre
t. The plotted eigenfun
tions arenormalized su
h that their maximum absolute value is one and we always plot bla
klevel 
urves whi
h go from −0.9 to 0.9 in steps of 0.2. Further examples in
ludingunbounded regions 
an be found in [75℄. Se
tion 8.5 was also published in [14℄.8.1 The L-shaped regionThe L-shaped region was the 
entral example in the paper by Fox, Henri
i and Molerin 1967. At the end of the 1970's Moler used it to demonstrate the power of his new
omputer numeri
al system MATLAB. Also, every numeri
al analyst will have seenthe MATLAB logo, whi
h is a variant of the �rst eigenfun
tion of the L-shaped region.After using this famous region in all 
hapters of the thesis we �nally want to showsome of its eigenfun
tions 
omputed with the subspa
e angle method. In Figure 8.1we show six eigenfun
tions of the L-shaped region. The 3rd and the 104th eigenvalueare spe
ial. They are also eigenvalues of the unit square and have the exa
t values130
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λ3 = 2π2 and λ104 = 50π2. The 104th eigenvalue is espe
ially interesting as it is atriple degenera
y, i.e. λ103 = λ104 = λ105. This 
omes from the fa
t that

50 = 52 + 52 = 12 + 72 = 72 + 12and therefore there exist three linearly independent eigenfun
tions sin(5πx) sin(5πy),
sin(πx) sin(7πx), and sin(7πx) sin(πy). The numbers of the eigenvalues are obtainedby 
ounting the minima of the subspa
e angle 
urve. To 
ount multiple eigenvalues
orre
tly we also need the higher subspa
e angles from De�niton 3.2. The idea is thatif we have a double eigenvalue the smallest and the se
ond smallest subspa
e anglewill go to zero sin
e we have a two-dimensional eigenspa
e and therefore also a two-dimensional interse
tion between A(λ) and D0. In Figure 8.2 some higher subspa
eangle 
urves around the value λ = 50π2 are plotted. At the triple degenera
y the
urves for the smallest three subspa
e angles go to zero.8.2 The 
ir
ular L regionLet us now have a look at a slight variation of the L-shaped region. Instead ofthe reentrant 
orner we have a quarter 
ir
le of radius one. The asymptoti
 rate of
onvergen
e of the MPS on this region was 
omputed in Se
tion 6.3. Figure 8.3 showssome of the eigenvalues and eigenfun
tions of this region. As far as we are aware ofthere are no degenerate eigenvalues any longer on this region.8.3 Symmetri
 and unsymmetri
 dumbbellsIn this se
tion we 
ompare the eigenvalues and eigenfun
tions of two dumbbell shapesshown in Figure 8.4. The left dumbbell 
onsists of two squares of side length π whi
hare 
oupled by a bridge of length and width π

4
. In the unsymmetri
 dumbbell theside length of the right square is redu
ed from π to 0.9π. Let us �rst dis
uss thesymmetri
 dumbbell. Without the 
onne
ting bridge the region would 
onsist of twosquares, ea
h with eigenvalues

i2 + j2, i, j = 1, 2, . . . .
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Figure 8.1: Some eigenfun
tions of the L-shaped region.
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λFigure 8.2: Sines s1(λ), . . . , s4(λ) of the subspa
e angles θ1(λ), . . . , θ4(λ) between A(λ)and D0 for the L-shaped region. At λ = 50π2 there is a triple degenera
y.Hen
e, the eigenvalues of the two un
onne
ted squares are
2, 2, 5, 5, 5, 5, 8, 8, 10, 10, 10, 10, . . . .By introdu
ing the 
onne
tion between the squares we obtain a simply 
onne
tedregion with lower eigenvalues and with broken degenera
ies. But we 
an expe
t thatthe �rst eigenvalues of the 
onne
ted region will be 
lose to the �rst eigenvalues ofthe two un
onne
ted squares. Some of the eigenfun
tions of the symmetri
 dumbbellare plotted in Figure 8.5.If we break the symmetry the eigenfun
tions will 
hange dramati
ally. Assume thatthe bridge between the squares at the unsymmetri
 dumbbell does not exist. Thenthe eigenvalues of the left square are di�erent from the eigenvalues of the right square.Hen
e, an eigenfun
tion of the region 
onsisting of both squares is always zero on oneof the squares. If we introdu
e the 
onne
tion between the two squares we 
an expe
tthat for example the �rst eigenfun
tion on this region will be small in the right squaresin
e without the bridge it would be zero there. Correspondingly the eigenfun
tionbelonging to the se
ond eigenvalue will be small on the left square. Hen
e, theeigenfun
tions belonging to smaller eigenvalues be
ome lo
alized due to the smallperturbation that destroys the symmetry of the dumbbell. Only for higher eigenvalues
an we expe
t global eigenfun
tions to o

ur sin
e then the lo
al wavelength of an
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Figure 8.3: Some eigenfun
tions of the 
ir
ular L region.
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Figure 8.4: A symmetri
 and a nonsymmetri
 dumbbell region.eigenfun
tion be
omes smaller than the width of the bridge. Some eigenfun
tions ofthe unsymmetri
 dumbbell are plotted in Figure 8.6.Figure 8.7 
ompares the subspa
e angle 
urves for the symmetri
 and the nonsym-metri
 dumbbell. The blue and the green 
urve for the smallest and se
ond smallestsubspa
e angle are almost identi
al sin
e smaller eigenvalues are 
lustered in pairs.Close to λ = 5 all four subspa
e angle 
urves be
ome small, indi
ating a 
luster offour eigenvalues. In the unsymmetri
 
urve the eigenvalues are more separated andwe 
an observe some interesting features of the subspa
e angle 
urves. Consider forexample the �rst two eigenvalues. The blue 
urve for the smallest subspa
e anglehas minima 
lose to these eigenvalues. But between them the blue 
urve goes upagain and almost 
rosses the green 
urve belonging to the se
ond smallest subspa
eangle. In the �gure it seems that the 
urves even 
ross. Only by zooming into thegraph does it be
ome visible that the blue and the green 
urve 
ome 
lose between

λ = 2 and λ = 3 but avoid ea
h other. These avoided 
rossings were investigatedby Barnett in [8℄. It is interesting to look at the approximate eigenfun
tions be-longing to the smallest and the se
ond smallest subspa
e angle before and after theavoided 
rossing. This is shown in Figure 8.8 and 8.9. The left plot of Figure 8.8shows the approximate eigenfun
tion 
orresponding to the smallest subspa
e angle at
λ = 2.1, just before the avoided 
rossing, while the right plot shows the approximateeigenfun
tion 
orresponding to the se
ond smallest subspa
e angle at this value of λ.Figure 8.9 shows the same fun
tions but now for the value λ = 2.2, whi
h is afterthe avoided 
rossing. Before the avoided 
rossing o

urs the fun
tion asso
iated withthe smallest subspa
e angle looks like the �rst eigenfun
tion on this region while af-ter the avoided 
rossing it looks like the se
ond eigenfun
tion. The se
ond smallestsubspa
e angle shows just the opposite behavior. Thus we see that the most rapid
hange in the approximate eigenfun
tions appears at the avoided 
rossings and fur-thermore, the fun
tions asso
iated with higher subspa
e angles are approximationsto the eigenfun
tions of neighboring eigenvalues.
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Figure 8.5: Some eigenfun
tions of the symmetri
 dumbbell. The �rst eigenvaluesare 
lose to those of the square with side length π.
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Figure 8.6: Some eigenfun
tions of the nonsymmetri
 dumbbell. The �rst eigenvaluesare lo
alized. But also for some higher eigenvalues lo
alization 
an o

ur at the
orresponding eigenfun
tions.
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Figure 8.7: Subspa
e angle 
urves for the symmetri
 and the nonsymmetri
 dumbbell.
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Figure 8.8: Approximate eigenfun
tions 
orresponding to the smallest (left) and se
-ond smallest (right) subspa
e angle at the value λ = 2.1 before the avoided 
rossingo

urs.

Figure 8.9: The same plot as in Figure 8.9 but now for the 
ase λ = 2.2, after theavoided 
rossing.
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tral drumsIn 1966 Ka
 [41℄ asked the famous question �Can one hear the shape of a drum?�.This question asks if there exist two distin
t regions whi
h have the same spe
trum.A beautiful survey of this question was given by Protter in 1987 [60℄. But the answerwas �rst found by Gordon, Webb and Wolpert in 1992 [32℄ and it is no, one 
annothear the shape of a drum. Two of the simplest isospe
tral regions whi
h they foundare the GWW isospe
tral drums. However, the proof of isospe
trality does not givethe eigenvalues. Highly a

urate 
omputations of the eigenvalues were �rst done byDris
oll in 1997 [21℄. He used a modi�
ation of the domain de
omposition methodby Des
loux and Tolley (see Chapter 7 for an introdu
tion) to 
ompute the �rst 25eigenvalues of the GWW isospe
tral drums to 12 digits of a

ura
y. In Figure 8.10 wepresent some of the eigenvalues of the isospe
tral drums 
omputed with the subspa
eangle method, showing that our method is at least as a

urate as that of Des
loux,Tolley and Dris
oll.8.5 Eigenvalue avoidan
eThe phenomenon of eigenvalue avoidan
e is linked to the question of how likely it isthat a given operator has multiple eigenvalues. In 1929 von Neumann and Wigner[83℄ showed that the set of real symmetri
 N ×N matri
es with multiple eigenvalueshas 
odimension 2, whi
h means that this set has two degrees of freedom less thanthe set of all symmetri
 matri
es and is therefore unlikely to be en
ountered by
han
e. Let us look at the family of matri
es F (t) := A + tB, where A and Bare real symmetri
 N × N matri
es and t is a real parameter. If A and B arerandomly 
hosen the eigenvalues λk(t), k = 1, . . . , N of F (t) might 
ome very 
loseto ea
h other. But they will probably not interse
t sin
e we only have one degreeof freedom t but two 
onditions for a multiple eigenvalue. This eigenvalue avoidan
ephenomenon is beautifully explained by Peter Lax in his textbook Linear Algebra [46℄,and illustrated by a pi
ture on the 
over. Eigenvalue avoidan
e is not only observedfor �nite dimensional operators. Uhlenbe
k in 1976 [76℄ and Teytel in 1999 [73℄showed that these results 
an be generalized to 
ertain 
lasses of selfadjoint operators
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Figure 8.10: Some eigenfun
tions of the GWW isospe
tral drums. Both regions havethe same spe
trum.
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Figure 8.11: Eigenvalue 
urves for a parameter-dependent re
tangle. At L = 1 these
ond and third eigenvalues interse
t. Eigenvalue 
rossings for some higher eigenval-ues are also visible.a
ting on Hilbert spa
es. A beautiful analysis of eigenvalue 
rossings on triangles waspublished in 1984 by Berry and Wilkinson [13℄.In this se
tion we want to make this phenomenon visible using the subspa
e anglemethod. Consider a re
tangle with side lengths L and 1/L. If we let L take valuesfrom 0.5 to 2 then for L = 1 we obtain a square and the shapes for L = 0.5 and L = 2are identi
al. Hen
e, for the eigenvalues λk(L) on this region we have λk(0.5) = λk(2).At L = 1 the se
ond and third eigenvalue 
ross sin
e on a square we have λ2 = λ3.The eigenvalue 
urves λk(L) for the �rst eigenvalues on this region are shown in Figure8.11. Now assume that we perturb the shape slightly, i.e. the new shape is de�nedby the four points 0, L, L− p + i/L, i/L, where p > 0 is a small perturbation. Then,as in the �nite dimensional 
ase, we 
annot expe
t eigenvalue 
rossings to o

ur anymore. The eigenvalues might still 
ome 
lose but they will not interse
t. For thevalue p = 0.2 this is shown in Figure 8.12. All eigenvalue 
rossings have disappeared.It seems that the eigenvalues avoid ea
h other.If we de
rease p further then λ2(1) and λ3(1) will 
ome 
loser and eventually beequal for p = 0. How small 
an we make p and still numeri
ally dete
t that thesetwo eigenvalues are distin
t? This is a good test for the a

ura
y of the subspa
e
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Figure 8.12: Eigenvalue 
urves for a perturbed parameter-dependent re
tangle. Alleigenvalue 
rossings have disappeared. The eigenvalues avoid ea
h other.angle method. Figure 8.13 shows the subspa
e angle 
urve 
lose to 5π2 (the se
ondeigenvalue on the unperturbed square) for p = 10−13 and L = 1. The 
urve has twominima pointing to the two di�erent eigenvalues λ2 and λ3 on the perturbed region.Sin
e the subspa
e angle is of the order of magnitude of 10−14, we 
an assume thatthe minima are within a relative error of roughly 10−14 the 
orre
t eigenvalues. The
urve in Figure 8.13 is also another ni
e example for the perturbation results derivedin Chapter 4 for the subspa
e angle method. Due to ill-
onditioning in the basis the
urve shows os
illations whi
h be
ome smaller as we approa
h the minima makingit possible to dete
t the eigenvalues to high a

ura
y and therefore to distinguish λ2and λ3 even for the small perturbation p = 10−13.8.6 A region with a holeUntil now we have always 
onsidered simply 
onne
ted regions. In this se
tion wewant to give our �rst example of a multiply 
onne
ted region. It is an annulus, inwhi
h the outer and the inner 
ir
le have di�erent 
enters. The inner 
ir
le has radius
0.5 and 
enter at 0. The outer 
ir
le has radius 1 and 
enter at 0.4. As basis fun
tionswe use linear 
ombinations of Fourier-Bessel fun
tions of the �rst and of the se
ond
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Figure 8.13: The subspa
e angle 
urve for a slightly perturbed unit square. Althoughthe perturbation p has the value 10−13 two distin
t eigenvalues are re
ognizable.kind in the form
N
∑

k=0

Yk(
√

λr)
(

A
(N)
Y cos kθ + B

(N)
Y sin kθ

)

+
N
∑

k=0

Jk(
√

λr)
(

A
(N)
J cos kθ + B

(N)
J sin kθ

)

.(8.1)The idea is that this is analogous to approximating a holomorphi
 fun
tion in anannulus with a Laurent series. This approa
h 
an also be justi�ed from the fa
t thatevery solution of −∆u = λu in a 
ir
ular annulus R1 < |z| < R2 
an be expanded ina series of the form (8.1) with N → ∞ (see [80℄, �22). Figure 8.14 shows some of theeigenvalues of the annulus region.The subspa
e angle method 
an also do regions with several holes. Su
h a region isshown in Figure 8.15. The inner 
ir
le is of radius 1 and the outer 
ir
le is of radius
2. In the upper plot the small holes are of radius 0.4, while in the lower plot theradius of the right small hole is redu
ed to 0.3. The eigenfun
tions are approximatedby linear 
ombinations of Fourier-Bessel fun
tions of the �rst and se
ond kind aroundthe big 
enter hole together with Fourier-Bessel fun
tions of the se
ond kind aroundthe small holes. Similarly to the example of the dumbbell we 
an see lo
alizatione�e
ts of the eigenfun
tions if the symmetry is broken.
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Figure 8.14: Some eigenfun
tions of a 
ir
le with a hole. An interesting lo
alizatione�e
t is visible in the eigenfun
tion of λ100.



CHAPTER 8. COMPUTED EIGENVALUES AND EIGENFUNCTIONS 146

Figure 8.15: Eigenfun
tions on a 
ir
ular region with �ve holes. As in the exampleof the dumbbell the breaking of symmetry leads to lo
alization.
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tion the holes in the region did not have singular 
orners, wenow 
onsider a square with a square shaped hole. The inner boundary is a square withside length one and lower left 
orner at zero while the outer boundary is a square withside length three and lower left 
orner at −0.5 − 0.5i. The four inner 
orners of theregion are singular with interior angle 3
2
π. The outer 
orners are regular. We 
ould
ompute the eigenvalues and eigenfun
tions by 
utting the region along its symmetryaxis in two halves to obtain two simply 
onne
ted regions. The odd modes are thenobtained by 
omputing the eigenvalues on the half region with zero Diri
hlet boundary
onditions and the even modes are obtained by 
omputing the eigenvalues of the halfregion with zero Neumann 
onditions along the symmetry axis and zero Diri
hletboundary 
onditions on the other sides. But by slightly 
hanging the position of theinner square the symmetry would be lost and this would not be possible any longer.Therefore, we dire
tly use the domain de
omposition GSVD method to 
ompute theeigenvalues and eigenfun
tions on the whole region. This 
an be done by dividing theregion into four subdomains, ea
h of whi
h 
ontains one singular 
orner. Figure 8.16shows some eigenfun
tions of the region 
omputed with the domain de
ompositionGSVD. To obtain the �rst 7 digits of the presented eigenvalues around 40 basisfun
tions are needed at ea
h singular 
orner. The 
orresponding smallest generalizedsingular value is of the magnitude 10−3 whi
h shows a squared 
onvergen
e e�e
tfor the eigenvalue on this region. The exponential 
onvergen
e rate is relatively slowsin
e the eigenfun
tions have singularities inside the inner square.
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Figure 8.16: Some eigenfun
tions on the square with a square-shaped hole. Only foreigenfun
tions belonging to higher eigenvalues is the lo
al wavelength small enoughto fully penetrate the lower left part of the region.



Chapter 9
Con
lusions
This 
hapter summarizes the 
ontributions of this thesis and gives an outlook tofurther resear
h questions in numeri
al linear algebra, approximation theory and forfurther appli
ations.9.1 Numeri
al linear algebraThe �rst 
hapters of this thesis were 
on
erned with how tools from linear algebra
an be applied to the MPS in order to obtain a stable and a

urate algorithm. Theoriginal MPS of Fox, Henri
i and Moler used the determinant of square matri
es
ontaining the basis fun
tions evaluated at boundary 
ollo
ation points to determinean eigenvalue. In Chapter 2 we showed that this approa
h generally fails on more
ompli
ated regions. The method gets somewhat better behaved if one 
hooses manymore boundary 
ollo
ation points than there are basis fun
tions [54℄. In terms ofnumeri
al linear algebra this means going away from determinants of square matri-
es to singular values of re
tangular matri
es. But as we showed in Chapter 2 thefundamental problem of spurious solutions remains. We need a method whi
h alsouses information about the approximate eigenfun
tions in the interior of the region.Two su
h approa
hes are the PWDM by Heller and Barnett's method. But while the�rst one only partially solves the stability problems of the MPS the latter one is onlya

urate up to O(

√
ǫmach) and expli
itly has to deal with the ill-
onditioning in thebasis fun
tions as we showed in Se
tion 4.6.149
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ipal angles between subspa
es we developed a stable and a

uratemethod in Chapter 3. The prin
ipal idea was to introdu
e additional interior pointsand to minimize a 
ertain angle between two subspa
es. We then showed thatthis is equivalent to minimizing the smallest generalized singular value of the pen
il
{AB(λ), AI(λ)}. Hen
e, the MPS be
omes stable by going over from singular value
omputations to generalized singular values.We also showed that Barnett's approa
h 
an be interpreted as solving the generalizedeigenvalue problem

AB(λ)T AB(λ)x(λ) = µ(λ)AI(λ)T AI(λ),whi
h is just a squared formulation of our method. In Se
tion 4.6 we 
omparedthe GSVD approa
h with the formulation as generalized eigenvalue problem andshowed that the GSVD is a more stable and a

urate tool for the MPS. Again itis advantageous to use a tool for re
tangular matri
es (GSVD) rather than one forsquare matri
es (generalized eigenvalues).The GSVD and other algorithms that work on re
tangular matri
es are still lessdeveloped than square matrix methods. While there is a variety of methods for largestru
tured eigenvalue and generalized eigenvalue problems, we are only aware of twomethods for the GSVD of large and stru
tured problems [39, 87℄. Su
h methodswould espe
ially be useful for the domain de
omposition GSVD approa
h proposedin Chapter 7.Also the stability of the GSVD for matrix pen
ils {A,B} su
h that Y =

[

A
B

] is ill-
onditioned has not yet been very mu
h explored in the literature. In most arti
lesabout the GSVD it is assumed that Y is well-
onditioned. In this thesis we showedthat the GSVD 
an also deliver meaningful results for heavily ill-
onditioned prob-lems. Sin
e ill-
onditioned bases appear in a variety of appli
ations further resear
hof the GSVD in su
h situations 
an lead to new robust algorithms.Another question is that of the resolvent and pseudospe
tra for the Method of Par-ti
ular Solutions. Figure 9.1 shows an extension of Figure 3.2 into the 
omplexplane by taking 
omplex values for λ. This raises the question of how subspa
eangles are 
onne
ted to pseudospe
tra and the resolvent norm of the Lapla
ian. Let
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Figure 9.1: Extension of Figure 3.2 to the 
omplex plane. The plot shows the level
urves |s1(λ)| = 0.0.5, 0.1, 0.15, . . . for the L-shaped region.
r(λ) := (λI + ∆)−1 be the resolvent fun
tion of the Lapla
ian. The resolvent norm isde�ned as

‖r(λ)‖ := sup
u∈L2(Ω)
‖u‖Ω=1

‖r(λ)u‖Ω.For the MPS we 
an de�ne a similar fun
tion using the 
otangent of the subspa
eangle between A(λ) (here A(λ) is the spa
e of all possible parti
ular solutions asde�ned in (1.2)) and D0. Then
cot θ(λ) = sup

u∈A(λ)
‖u‖∂Ω=1

‖u‖Ω.Both fun
tions, the resolvent and cot θ(λ), have poles at the eigenvalues. Findinga meaningful 
onne
tion between both would also lead to a meaningful 
onne
tionbetween subspa
e angles and pseudospe
tra. Although the Lapla
ian is a selfadjointoperator and therefore its pseudospe
tra are simply disks around the eigenvalues, a
onne
tion to subspa
e angles 
ould lead to interesting new insights.An example is the method of Vergini and Sara
eno (see [82℄ or the introdu
tion in thethesis of Barnett [6℄). It solves a generalized eigenvalue problem that depends on theparameter λ and 
omputes from the generalized eigenvalues approximate distan
es tothe eigenvalues of (1.1) 
losest to λ. The advantage is that only one matrix de
om-position is ne
essary to obtain approximations for several eigenvalues of (1.1). Alsothe resolvent norm is a distan
e 
omputation sin
e for the Lapla
ian ‖r(λ)‖ = 1
|λ−λk| ,where λk is the eigenvalue of (1.1) 
losest to λ. But while the resolvent norm is wellunderstood there are still many open questions 
on
erning the method of Vergini and
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eno. For example, 
urrently it only works satisfa
tory on star-shaped regions.But it has many 
onne
tions to Barnett's method, whi
h 
an be regarded as a squaredversion of our subspa
e angle 
omputations. Therefore, 
onne
ting the resolvent and
cot θ(λ) might give new insight into the method of Vergini and Sara
eno.9.2 Approximation theoryAnother major aspe
t of this thesis is the approximation theory for the Methodof Parti
ular Solutions. Based on results of Vekua and Garabedian we derived inChapter 6 exponential 
onvergen
e estimates for the MPS for regions with zero orone singular 
orner and 
omputed the asymptoti
 exponential rates for several regionsusing 
onformal mapping te
hniques. For regions with multiple singular 
orners wehave numeri
al results indi
ating faster than algebrai
 
onvergen
e if an in
reasingnumber of basis fun
tions at the singular 
orners is used. In Chapter 7 we extendedour results to domain de
omposition methods and thereby improved the originalestimates of Des
loux and Tolley.But still there are several open questions 
on
erning the approximation theory ofthe MPS. We do not yet have a theoreti
al analysis of the 
onvergen
e rate shownin Figure 6.15 whi
h would give 
onvergen
e estimates of our method for regionswith multiple singularities. Also the 
onvergen
e of the MPS in the 
ase of multiply
onne
ted regions has not yet been investigated. For example, in the region shown inFigure 8.14 we observed rapid 
onvergen
e to the solution. We think that there is a
lose 
onne
tion to rational approximation in the 
omplex plane.In this thesis we always used Fourier-Bessel basis sets. These are easily adapted tore�e
t 
orner singularities of the eigenfun
tions and are dire
tly 
onne
ted to poly-nomials via the Vekua theory. However, in some appli
ations other basis sets arepreferable. For example, in the 
ase of the Bunimovi
h stadium billiard a 
ombina-tion of real plane waves and evanes
ent waves leads to very good results [6, 81℄. Howdo Fourier-Bessel basis sets 
ompare with real plane waves? Figure 9.2 
ompares the
onvergen
e behavior of the subspa
e angle method for the �rst eigenvalue on the
ir
ular L region with Fourier-Bessel fun
tions and real plane waves. Both basis setsshould lead to the same 
onvergen
e behavior as there are no 
orner singularities on
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Figure 9.2: Comparison of real plane waves and Fourier-Bessel fun
tions on the 
ir-
ular L region. Although they should both have to the same theoreti
al asymptoti
rate of 
onvergen
e the numeri
al behavior is 
ompletely di�erent.this region. But with real plane waves the 
onvergen
e stops at about 10−3 whilethe 
onvergen
e of the Fourier-Bessel basis set 
ontinues until about 10−11 (it 
annot
onverge further sin
e we know λ1 only to 12 digits of a

ura
y). Explaining thisphenomenon would lead to new insight to the question of when to use whi
h basisset.A very di�erent basis set is used in the Method of Fundamental Solutions. There,one approximates the solution of (1.1) by linear 
ombinations of singular parti
ularsolutions (in our 
ase Fourier-Bessel fun
tions of the se
ond kind), whi
h lie on a 
urveen
losing Ω (see for example [17, 51℄). In [17℄ it is stated that these basis sets behavefavorably 
ompared to Fourier-Bessel fun
tions sin
e all fundamental solutions behaveuniformly on the region. This is not true for Fourier-Bessel fun
tions whi
h be
omeexponentially small in Ω for in
reasing order. But further numeri
al experimentsare ne
essary to determine if fundamental solutions really lead to a better numeri
albehavior than Fourier-Bessel basis sets, and it is yet un
lear how 
orner singularitiesare approximated with su
h basis sets.



CHAPTER 9. CONCLUSIONS 1549.3 Further appli
ationsIn this thesis we fo
used on solutions of the Lapla
e eigenvalue problem (1.1) withDiri
hlet boundary 
onditions. Neumann boundary 
onditions 
an also easily beimplemented. Instead of the basis fun
tions evaluated at boundary 
ollo
ation pointsthe matrix AB(λ) then 
ontains the normal derivative of the basis fun
tions evaluatedat the boundary 
ollo
ation points. The algorithms des
ribed in this thesis 
an also beapplied to more general ellipti
 eigenvalue problems if parti
ular solutions are known.The numeri
al 
onstru
tion of parti
ular solutions for ellipti
 PDEs with polynomial
oe�
ient fun
tions was dis
ussed by S
hryer in [64℄. If we want to go over to threedimensional problems we 
ould similarly as in 2d use parti
ular solutions for the threedimensional Lapla
e eigenvalue problem and �nd the eigenvalues with the subspa
eangle method. Di�
ulties arise if the region has 
orners. In three dimensions 
orners
an have almost arbitrary shapes and it is a hard problem to �nd parti
ular solutionsin 3d whi
h are adapted to the 
orner singularities.Another interesting appli
ation in 2d is the extension of the subspa
e angle methodto the biharmoni
 eigenvalue problem. This would give us a tool to 
ompute Chladni�gures to high a

ura
y using parti
ular solutions1.In this thesis we have only treated interior eigenvalue problems. But also of greatinterest is the solution of Helmholtz problems in the exterior of a region. Adapting thesubspa
e angle method to su
h problems 
ould lead to many interesting appli
ationsof the MPS in s
attering theory.A fas
inating topi
 is eigenvalue problems on fra
tal drums. Computing eigenvaluesand eigenfun
tions of the Ko
h snow�ake shown in Figure 9.3 is a beautiful exampleof this [5, 45℄. Sin
e approximations of this fra
tal have thousands of 
orners theapproa
h of 
apturing 
orner singularities by singular Fourier-Bessel fun
tions doesnot seem feasible. The basis size would be too big. Currently, the most su

essfulapproa
h seems to be the one proposed in [5℄ whi
h uses a 
onformal mapping te
h-nique for regions with thousands of 
orners to transplant the eigenvalue problem onthe snow�ake into a system of nonlinear equations in a referen
e region. It would be1Napoleon would be fas
inated by this!
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Figure 9.3: The Ko
h snow�akefas
inating to also �nd a way of using parti
ular solutions for 
omputing eigenvaluesto high a

ura
y for this region.9.4 Do we have the best method for 
omputing eigen-values on planar regions?It is dangerous to ask su
h a question sin
e the best method always depends toomu
h on the spe
i�
 appli
ation. If we want general purpose solvers for arbitraryregions then methods like boundary element methods (BEM) or �nite element meth-ods (FEM) are probably the best 
hoi
e. The pi
ture looks di�erent if we fo
us onregions with pie
ewise analyti
 boundary and a small number of singular 
orners.Then the subspa
e angle method is easily implementable and at the same time highlya

urate. Certainly, we 
ould also tune general purpose methods like FEM to deliverrapid 
onvergen
e on su
h regions. But the beauty of the MPS together with the sub-spa
e angle approa
h is that writing a 
ode for a 
ertain region is often just a matterof minutes due to its simple idea. For su
h problems the subspa
e angle method isprobably the best 
hoi
e for many appli
ations. It is not only fast and a

urate butalso easily implementable. In Figure 9.4 we show Matlab 
ode that �ts on a singlepage and 
omputes the �rst three eigenvalues on the L-shaped region to 10 digits ofa

ura
y in just �ve se
onds on a modern 
omputer2. This is what we are striving2This is an example of a�Ten Digit Algorithm" as proposed by Trefethen in [74℄.
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al analysis, �nding simple and beautiful algorithms whi
h deliver fastand a

urate solutions to our problems.



CHAPTER 9. CONCLUSIONS 157% Ldrum.m Compute eigenvalues of Lapla
ian on L-shaped region% T. Bet
ke and L. N. Trefethen 9/03%% The first three eigenvalues are 
omputed by the method of% parti
ular solutions (Bet
ke & Trefethen, SIAM Review 2005).% Compute subspa
e angles for various values of lambda:N = 36; k = 1:N; % orders in Bessel expansionnp = 2*N; % no. of bndry & interior ptst1 = 1.5*pi*(.5:np-.5)'/np; % angles of bndry ptsr1 = 1./max(abs(sin(t1)),abs(
os(t1))); % radii of bndry ptst2 = 1.5*pi*rand(np,1); % angles of interior ptsr2 = rand(np,1)./max(...abs(sin(t2)),abs(
os(t2))); % radii of interior ptst = [t1;t2℄; r = [r1;r2℄; % bndry and interior 
ombinedlamve
 = .2:.2:25; S = [℄; % trial values of lamfor lam = lamve
A = sin(2*t*k/3).*...besselj(2*k/3,sqrt(lam)*r);[Q,R℄ = qr(A,0);s = min(svd(Q(1:np,:))); S = [S s℄; % subspa
e angle for this lamend% Convert to signed subspa
e angles:I = 1:length(lamve
); % all lam pointsJ = I(2:end-1); % interior pointsJ = J( S(J)<S(J-1) & S(J)<S(J+1) ); % lo
al minimaJ = J + (S(J-1)>S(J+1)); % points where sign 
hangesK = 0*I; K(J) = 1;S = S.*(-1).^
umsum(K); % introdu
e sign flipssubplot(3,1,1)hold off, plot(lamve
,S), hold on % plot signed angle fun
tionplot([0 max(lamve
)℄,[0 0℄,'-k') % plot lam axis% Find eigenvalues via 9th-order interpolation:for j = length(J):-1:1I = J(j)-5:J(j)+4;lam = polyval(polyfit(S(I)/norm(S(I)),lamve
(I),9),0);plot(lam*[1 1℄,[-1 1℄,'r')text(lam,.6,sprintf('%13.9f',lam),'
olor','r')end% Plot the first eigenfun
tion:[X,Y℄ = meshgrid(-1:.05:1,-1:.05:1); Z = X(:)+i*Y(:);p = [0 1i -1+1i -1-1i 1-1i 1℄;[in on℄ = inpolygon(real(Z),imag(Z),real(p),imag(p));zB = Z(on); zI = Z(in&~on); z = [zB;zI℄; t = mod(angle(z/i),2*pi);A = besselj(2*k/3,sqrt(lam)*abs(z)).*sin(2*t*k/3);[Q,R℄ = qr(A,0); [U,S,V℄ = svd(Q(1:length(zB),:));V = V(:,end); Q = Q*V; [t,I℄ = max(abs(Q)); Q = Q/Q(I);F = NaN*zeros(size(Z));F(in&~on) = Q(length(zB)+1:end); F(on) = Q(1:length(zB),:);F = reshape(F,length(X),length(Y)); subplot(3,1,2:3)surf(X,Y,F), view(-150,40), axis off, zlim([0 .7℄)Figure 9.4: This 
ode 
omputes the �rst three eigenvalues on the L-shaped regionto 10 digits of a

ura
y. Instead of using fminsear
h the subspa
e angle 
urve is
onverted to a 
urve whi
h has sign 
hanges 
lose to the eigenvalues. These are thendetermined by a 9th-order polynomial interpolation.



Bibliography
[1℄ E. Anderson, Z. Bai, C. Bis
hof, L. S. Bla
kford, J. Demmel, Ja
k J. Dongarra,J. Du Croz, S. Hammarling, A. Greenbaum, A. M
Kenney, and D. Sorensen. LA-PACK Users' guide (third ed.). So
iety for Industrial and Applied Mathemati
s,Philadelphia, PA, USA, 1999.[2℄ R. Bañuelos and T. Carroll. Brownian motion and the fundamental frequen
yof a drum. Duke Math. J., 75(3):575�602, 1994.[3℄ R. Bañuelos and T. Carroll. Addendum to: �Brownian motion and the funda-mental frequen
y of a drum". Duke Math. J., 82(1):227, 1996.[4℄ Z. Bai and J. W. Demmel. Computing the generalized singular value de
ompo-sition. SIAM J. S
i. Comput., 14(6):1464�1486, 1993.[5℄ L. Banjai. Eigenfrequen
ies of fra
tal drums. Preprint Nr. 11/2005, Max Plan
kInstitute for Mathemati
s in the S
ien
es, Leipzig, Germany, 2005.[6℄ A. H. Barnett. Dissipation in deforming 
haoti
 billiards. PhD thesis, Depart-ment of Physi
s, Harvard University, Cambridge, Massa
husetts, 2000.[7℄ A. H. Barnett. In
lusion of Diri
hlet eigenvalues in the semi
lassi
al limit via aboundary spetral problem. In preparation, 2004.[8℄ A. H. Barnett. Quasi-orthogonality on the boundary for Eu
lidian Lapla
e eigen-fun
tions. Submitted to Comm. Pure Appl. Math., 2004.[9℄ Z. Battles. Numeri
al Linear Algebra for Continuous Fun
tions. PhD thesis,Oxford University, Computing Laboratory, Oxford, 2005.[10℄ S. Bergman. Fun
tions satisfying 
ertain partial di�erential equations of ellipti
type and their representation. Duke Math. J., 14:349�366, 1947.158



BIBLIOGRAPHY 159[11℄ S. Bergman. Integral Operators in the Theory of Linear Partial Di�erentialEquations. Springer, Berlin, 1961.[12℄ M. V. Berry. Evanes
ent and real waves in quantum billiards and Gaussianbeams. J. Phys. A, 27:L391�L398, 1994.[13℄ M. V. Berry and M. Wilkinson. Diaboli
al points in the spe
tra of triangles.Pro
. R. So
. Lond., A392:15�43, 1984.[14℄ T. Bet
ke and L. N. Trefethen. Computations of eigenvalue avoidan
e in planardomains. Pro
. Appl. Math. Me
h., 4(1):634�635, 2004.[15℄ T. Bet
ke and L. N. Trefethen. Reviving the method of parti
ular solutions.SIAM Review, 47(3):469�491, 2005.[16℄ 
A. Björ
k and G. H. Golub. Numeri
al methods for 
omputing angles betweenlinear subspa
es. Math. Comp., 27:579�594, 1973.[17℄ A. Bogomolny. Fundamental solutions method for ellipti
 boundary value prob-lems. SIAM J. Numer. Anal., 22(4):644�669, 1985.[18℄ J. Des
loux and M. Tolley. An a

urate algorithm for 
omputing the eigenvaluesof a polygonal membrane. Comput. Methods Appl. Me
h. Engrg., 39(1):37�53,1983.[19℄ J. D. P. Donnelly. Eigenvalues of membranes with reentrant 
orners. SIAM J.Numer. Anal., 6:47�61, 1969.[20℄ T. A. Dris
oll. S
hwarz-Christo�el toolbox for MATLAB. Available athttp://www.math.udel.edu/ dris
oll/software/SC/index.html.[21℄ T. A. Dris
oll. Eigenmodes of isospe
tral drums. SIAM Rev., 39(1):1�17, 1997.[22℄ Z. Drma£. On prin
ipal angles between subspa
es of Eu
lidean spa
e. SIAM J.Matrix Anal. Appl., 22(1):173�194, 2000.[23℄ S. C. Eisenstat. On the rate of 
onvergen
e of the Bergman-Vekua method forthe numeri
al solution of ellipti
 boundary value problems. SIAM J. Numer.Anal., 11:654�680, 1974.[24℄ G. Fix and R. Heiberger. An algorithm for the ill-
onditioned generalized eigen-value problem. SIAM J. Numer. Anal., 9(1):78�88, 1972.



BIBLIOGRAPHY 160[25℄ L. Fox, P. Henri
i, and C. Moler. Approximations and bounds for eigenvalues ofellipti
 operators. SIAM J. Numer. Anal., 4:89�102, 1967.[26℄ V. Frayssé and V. Toumazou. A note on the normwise perturbation theory forthe regular generalized eigenproblem. Numer. Linear Algebra Appl., 5(1):1�10,1998.[27℄ D. Gaier. Le
tures on 
omplex approximation. Birkhäuser, Boston, 1987.[28℄ P. R. Garabedian. Appli
ations of analyti
 
ontinuation to the solution of bound-ary value problems. J. Ratl. Me
h. Anal., 3:383�393, 1954.[29℄ P. R. Garabedian. Partial di�erential equations. John Wiley & Sons, 1964.[30℄ G. H. Golub and C. F. van Loan. Matrix 
omputations - third edition. JohnsHopkins University Press, Baltimore, 1996.[31℄ G. H. Golub and H. Zha. Perturbation analysis of the 
anoni
al 
orrelations ofmatrix pairs. Linear Algebra Appl., 210:3�28, 1994.[32℄ C. Gordon, D. Webb, and S. Wolpert. Isospe
tral plane domains and surfa
esvia Riemannian orbifolds. Invent. Math., 110:1�22, 1992.[33℄ M. Gutzwiller. Quantum 
haos. S
ienti�
 Ameri
an, 1992.[34℄ E. J. Heller. Bound-state eigenfun
tions of 
lassi
ally 
haoti
 Hamiltonian sys-tems: S
ars of periodi
 orbits. Phys. Rev. Lett., 53:1515�1518, 1984.[35℄ E. J. Heller. Wavepa
ket dynami
s and quantum 
haology. In M. J. Giannoni,A. Voros, and J. Zinn-Justin, editors, Pro
eedings of the 1989 Les Hou
hes Sum-mer S
hool on �Chaos and Quantum Physi
s", pages 547�663, North-Holland,1991. Elsevier S
ien
e Publishers B. V.[36℄ P. Henri
i. A survey of I. N. Vekua's theory of ellipti
 partial di�erential equa-tions with analyti
 
oe�
ients. Z. Angew. Math. Phys., 8:169�203, 1957.[37℄ J. Hers
h. Erweiterte symmetrieeigens
haften von lösungen gewisser linearerrand- und eigenwertprobleme. J. Reine Angew. Math., 218:143�158, 1965.[38℄ N. J. Higham. A

ura
y and stability of numeri
al algorithms - se
ond edition.SIAM, 2002.



BIBLIOGRAPHY 161[39℄ M. E. Ho
hstenba
h. A Ja
obi�Davidson type method for the generalized singu-lar value problem. Preprint, Department of Mathemati
s, Case Western ReserveUniversity, Cleveland, Ohio, USA, September 2004. Submitted.[40℄ R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press,1985.[41℄ M. Ka
. Can one hear the shape of a drum? Amer. Math. Monthly, 73(4, Part2):1�23, 1966.[42℄ J. R. Kuttler. Remarks on a Steklo� eigenvalue problem. SIAM J. Numer. Anal.,9, 1972.[43℄ J. R. Kuttler and V. G. Sigillito. Bounding eigenvalues of ellipti
 operators.SIAM J. Math. Anal., 9, 1978.[44℄ J. R. Kuttler and V. G. Sigillito. Eigenvalues of the Lapla
ian in two dimensions.SIAM Review, 26(2):163�193, 1984.[45℄ M. L. Lapidus, J. W. Neuberger, R. J. Renka, and C. A. Gri�th. Snow�akeharmoni
s and 
omputer graphi
s; numeri
al 
omputation of spe
tra on fra
taldrums. Internat. J. Bifur. Chaos Appl. S
i. Engrg., 6(7):1185�1210, 1996.[46℄ P. Lax. Linear Algebra. John Wiley & Sons In
, 1996.[47℄ R. S. Lehmann. Development of the mapping fun
tion at an analyti
 
orner.Pa
i�
 J. Math., 7:1437�1449, 1957.[48℄ H. Lewy. On the re�e
tion laws of se
ond order di�erential equations in twoindependent variables. Bull. Amer. Math. So
., 65:37�58, 1959.[49℄ Renardy M. and Rogers R. An introdu
tion to partial di�erential equations.Springer, 1993.[50℄ J. C. Mason. Chebyshev polynomial approximations for the L-membrane eigen-value problem. SIAM J. Appl. Math., 15:172�186, 1967.[51℄ R. Mathon and R. L. Johnston. The approximate solution of ellipti
 boundary-value problems by fundamental solutions. SIAM J. Numer. Anal., 14(4):638�650,1977.



BIBLIOGRAPHY 162[52℄ J. M. Melenk. Operator adapted spe
tral element methods i: harmoni
 andgeneralized harmoni
 polynomials. Numeris
he Mathematik, 84(1):35�69, 1999.[53℄ S. N. Mergelyan. Uniform approximations to fun
tions of a 
omplex variable.Uspehi Mat. Nauk., 7(2):31, 122 1952. English transl., Amer. Math. So
. Transl.(1), No. 101.[54℄ C. B. Moler. A

urate bounds for the eigenvalues of the lapla
ian and appli-
ations to rhombi
al domains. Te
hni
al Report CS-TR-69-121, Department ofComputer S
ien
e, Stanford University, 1969.[55℄ C. B. Moler and L. E. Payne. Bounds for eigenvalues and eigenfun
tions ofsymmetri
 operators. SIAM J. Numer. Anal., 5:64�70, 1968.[56℄ R. Osserman. A note on hayman's theorem on the bass note of a drum. Comm.Math. Helveti
i, 52:545�555, 1977.[57℄ C. C. Paige. Computing the generalized singular value de
omposition. SIAM J.S
i. Statist. Comput., 7(4):1126�1146, 1986.[58℄ C. C. Paige and M. A. Saunders. Towards a generalized singular value de
om-position. SIAM J. Numer. Anal., 18(3):398�405, 1981.[59℄ C. C. Paige and M. Wei. History and generality of the CS de
omposition. LinearAlgebra Appl., 208/209:303�326, 1994.[60℄ M. H. Protter. Can one hear the shape of a drum? Revisited. SIAM Review,29:185�197, 1987.[61℄ Courant R. and Hilbert D. Methods of mathemati
al physi
s, volume I. Inter-s
ien
e, New York, 1953.[62℄ T. Ransford. Potential theory in the 
omplex plane, volume 28 of London Math-emati
al So
iety Student Texts. Cambridge University Press, Cambridge, 1995.[63℄ J. K. Reid and J. E. Walsh. An ellipti
 eigenvalue problem for a re-entrantregion. SIAM J. Appl. Math., 13:837�850, 1965.[64℄ N. L. S
hryer. Constru
tive approximation of solutions to linear ellipti
 boundaryvalue problems. SIAM J. Numer. Anal., 9:546�572, 1972.



BIBLIOGRAPHY 163[65℄ G. W. Stewart and J. Sun. Matrix perturbation theory. A
ademi
 Press, In
.,1990.[66℄ G. Still. Computable bounds for eigenvalues and eigenfun
tions of ellipti
 di�er-ential operators. Numer. Math., 54, 1988.[67℄ G. Still. Defektminimierungsmethoden zur Lösung elliptis
her Rand- und Eigen-wertaufgaben. Habilitation. University of Trier, 1989.[68℄ G. Still. On density and approximation properties of spe
ial solutions of theHelmholtz equation. Z. Angew. Math. Me
h., 72(7):277�290, 1992.[69℄ G. Still. Approximation theory methods for solving ellipti
 eigenvalue problems.ZAMM Z. Angew. Math. Me
h., 83(7):468�478, 2003.[70℄ Strutt, J. W., Lord Rayleigh. Theory of sound 2nd ed. Dover, New York, 1945.[71℄ J. G. Sun. Condition number and ba
kward error for the generalized singularvalue de
omposition. SIAM J. Matrix Anal. Appl., 22(2):323�341 (ele
troni
),2000.[72℄ J. Taylor. Several 
omplex variables with 
onne
tions to algebrai
 geometry andLie groups. Ameri
an Mathemati
al So
iety, 2002.[73℄ M. Teytel. How rare are multiple eigenvalues? Comm. Pure Appl. Math., 52:917�934, 1999.[74℄ L. N. Trefethen. Ten digit algorithms. Numeri
al Analysis Group Resear
hReports NA-05/13, Oxford University Computing Laboratory, Oxford, UnitedKingdom, 2005.[75℄ L. N. Trefethen and T. Bet
ke. Computed eigenmodes of planar regions. AMSContemporary Mathemati
s, to appear, 2005.[76℄ K. Uhlenbe
k. Generi
 properties of eigenfun
tions. Amer. J. Math., 98:1059�1078, 1976.[77℄ C. F. Van Loan. Generalizing the singular value de
omposition. SIAM J. Numer.Anal., 13(1):76�83, 1976.[78℄ C. F. van Loan. A generalized SVD analysis of some weighting methods forequality 
onstrained least squares. In Matrix Pen
ils, volume 973 of Le
tureNotes in Math., pages 245�262. Springer, New York, 1983.



BIBLIOGRAPHY 164[79℄ C. F. Van Loan. Computing the CS and the generalized singular value de
om-positions. Numer. Math., 46(4):479�491, 1985.[80℄ I. N. Vekua. New Methods for Solving Ellipti
 Equations. North-Holland, Ams-terdam, 1967.[81℄ E. Vergini. Estudio Cuánti
o y Semi
lási
o de Bilares Clási
amente Caóti
os.PhD thesis, Universidad de Buenos Aires, 1995.[82℄ E. Vergini and M. Sara
eno. Cal
ulation by s
aling of highly ex
ited states ofbilliards. Phys. Rev. E, 52(3):2204�2207, 1995.[83℄ J. von Neumann and E. Wigner. Über das verhalten von eigenwerten bei adia-batis
hen prozessen. Phys. Z., 30:467�470, 1929.[84℄ J. L. Walsh. Interpolation and approximation by rational fun
tions in the 
omplexdomain, 3rd edition, volume XX of Ameri
an Mathemati
al So
iety ColloquiumPubli
ations. Ameri
an Mathemati
al So
iety, 1960.[85℄ W. Wasow. Asymptoti
 development of the solution of diri
hlet's problem atanalyti
 
orners. Duke Mathemati
al Journal, 27:47�56, 1957.[86℄ P. A. Wedin. On angles between subspa
es of a �nite dimensional inner produ
tspa
e. In Matrix Pen
ils, volume 973 of Le
ture Notes in Math., pages 263�285.Springer, New York, 1983.[87℄ H. Zha. Computing the generalized singular values/ve
tors of large sparse orstru
tured matrix pairs. Numer. Math., 72(3):391�417, 1996.


