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Introduction
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CHAPTER 2

Basic concepts

This chapter reviews some basic tools from numerical analysis, and provides some pointers on
Matlab programming. Prior knowledge of the material is very much expected!

2.1. Quadrature

Consider the task of approximating the integral:

I =

∫ b

a
f(x) dx

where f is a given (reasonably smooth) function. Fix an integer n, set

h =
b− a

n

and define the points {xj}nj=0 via

xj = a+ j h.

In particular,

x0 = a, and xn = b.

One of the simplest approximations is via the trapezoidal rule:

I1 =
h

2

f(x0) + n−1∑
j=1

2 f(xj) + f(xn)

 .

If f is a C2 function, then

|I − I1| = O(h2),

as h→ 0.

A slightly better approximation is obtained from Simpson’s rule. Supposing that n is an even
number, it reads:

I2 =
h

3

f(x0) + n/2∑
j=1

(
4 f(x2j−1) + 2 f(x2j)

)
+ f(xn)


=
h

3
(f(x0) + 4 f(x1) + 2 f(x2) + 4 f(x3) + 2 f(x4) + · · ·+ 2 f(xn−2) + 4 f(xn−1) + f(xn))

If f is a C4 function, then

|I − I2| = O(h4),

as h→ 0.
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The points {xj}nj=0 are called quadrature points and the factors {wj}nj=0 multiplying them are
called quadrature weights. For instance, in Simpsons rule, we have

w0 =
h

3
, w1 =

4h

3
, w2 =

2h

3
, w3 =

4h

3
, · · · wn−1 =

4h

3
, wn =

h

3
.

Both the trapezoidal rule and the Simpson rule are examples of quadrature from the class of rules
called Newton-Cotes formulas. These are handy when the integrand is given at equispaced points.
If you can pick the quadrature points yourself, then there are more accurate methods available.
Of particular use in practical work are the so called Gaussian quadrature rules. For a given order
p, a Gaussian rule has

nodes: {xj}pj=1,

weights: {wj}pj=1.

The convergence order is very high. If f is sufficiently smooth, then for some ξ ∈ (a, b):

(2.1)

∫ b

a
f(x) dx−

p∑
j=1

wj f(xj) =
(b− a)2n+1 (n!)4

(2n+ 1)
(
(2n)!

)3 f (2n)(ξ)
If the interval I = (a, b) is large, one typically uses so called composite quadratures. We then split
I into n parts, each of length h,

h =
b− a

n
, xj = a+ h j, Ij = [xj−1, xj ],

and write the integral as a sum over the sub intervals:∫ b

a
f(x) dx =

n∑
j=1

∫ xj

xj−1

f(x) dx.

Each term in the integral is then evaluated using a p’th order Gaussian quadrature.

2.2. The FFT

The Fast Fourier Transform (FFT) is an algorithm (with many variations) for rapidly evaluating
the Discrete Fourier Transform (DFT). It was published in 1965 and has become an extremely
useful tool in computing. Curiously, it was originally discovered by Gauss around 1805.

For a vector x ∈ CN , the DFT is an N×N matrix FN (or simply F if the dimension is unambiguous)
defined via

FN,mn = e−i 2πmn/N .

Given a vector x = [x(m)]N−1
m=0 ∈ CN , its discrete Fourier transform x̂ is then defined as

(2.2) x̂(n) = [FN x](n) =
N−1∑
m=0

e−i 2πmn/N x(m), n = 0, 1, 2, . . . , N − 1.

The DFT preserves Euclidean distance up to a multiplicative factor of
√
N ,

||x̂|| = ||FN x|| =
√
N ||x||, ∀x ∈ CN ,
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where || · || is the usual Euclidean norm

||x|| =

(
N−1∑
m=0

|x(m)|2
)1/2

.

Since FN is dense, the direct evaluation of the sum (2.2) would require O(N2) operations. In
contrast, the FFT does the job in O(N logN) operations.

The inverse of the DFT is given by

x(m) = [F−1
N x̂](m) =

1

N

N−1∑
n=0

e2π imn/N x̂(n).

Remark 2.1. The inverse of F is in fact its adjoint (or the complex conjugate of its transpose).
Observe that for any unitary matrix U, it is the case that UU∗ = U∗U = I. The Fourier transform
is a unitary map up to scaling by a factor of

√
N . In other words, FF∗ = N I.

The FFT is a classical example of a divide-and-conquer algorithm. It takes a problem of size
N , and splits it into two analogous problems of size N/2, these are then split further into four
analogous problems of size N/4, etc. To see how it works, suppose that N is an even number, set
N = 2P , and split the formula for the DFT into two halves, one that includes the odd indices,
and one that includes the even indices:

x̂(n) =[FNx](n)

=

N−1∑
m=0

e−2πimn/N x(m)

=

P−1∑
m=0

e−2πi2mn/(2P ) x(2m) +

P−1∑
m=0

e−2πi(2m+1)n/(2P ) x(2m+ 1)

=
P−1∑
m=0

e−2πimn/P x(2m) + e−2πin/N
P−1∑
m=0

e−2πimn/P x(2m+ 1)

= [FN/2xeven](n) + e−2πin/N [FN/2xodd](n),

where

xeven = x(0 : 2 : (N − 2)) = [x(0), x(2), x(4), . . . , x(N − 2)]t,

xodd = x(1 : 2 : (N − 1)) = [x(1), x(3), x(5), . . . , x(N − 1)]t.

We see how the task of applying one matrix of size N×N and been reduced to the task of applying
two matrices of size (N/2)× (N/2).

How much does the FFT cost? We find that the cost is about the same on every level, and since
there are roughly logN levels, the total cost is O(N logN).

The FFT as described above is a precise algorithm — there is no approximation involved. In
practice, it will be executed in finite precision arithmetic and there will be some round-off errors.
Curiously, the output of the FFT is often more accurate than what you would get be evaluating
(2.2) directly!

Some comments:
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• The speed of a program depends greatly on how it is implemented. It often pays off to
avoid recursions if possible. The reason is that moving data is often more expensive than
executing the floating point operations.

• In the simplistic version described here, we assume that N is a power of 2. There exist
very effective versions of the method for any N . (The notion that that the performance is
poor unless N could be factored into small integers, is no longer accurate — even prime
N works fine.)

• The DFT inherently operates in complex arithmetic. There exist analogous transforms
that are purely real. For instance, in the discrete cosine transform (DCT) a vector is
represented as a sum of cosines. Fast transforms very similar to the FFT exist for the
DCT.

• The data flow can be organized as a butterfly. This is a very powerful idea for which
many areas of application have recently been found — look it up!

• The method can be generalized to form non-uniform Fourier transforms where the points
in neither physical space nor Fourier space need be equispaced.

Most important fact about the FFT: It is very fast. If you can solve a problem using the
FFT to the accuracy required, then you probably should.

Remark 2.2. The Matlab definition of FN is given by

Fmn = e−i2π(m−1)(n−1)/N .

This definition is convenient when the indices of a vector x run from 1 to N , rather than from 0
to N − 1. The difference is purely cosmetic and it is trivial to switch between the definitions.

2.3. Accuracy and complexity of an algorithm

As we saw in the section on quadratures, it is common that the error of a numerical algorithm
depends polynomially on some “discretization parameter.” For classical methods for simple tasks,
one can often derive theorems that precisely give expressions for the error. In practice, this is
sometimes very hard, or, perhaps more frequently, simply not worth the effort. We then estimate
the function numerically. Suppose that the error E is a function of a discretization parameter h
so that E = E(h). We believe that

E(h) ∼ c · hr, as h→ 0,

where c is some constant and r is some positive integer. Estimating these is in principle easy
— simply generate a table of E for some suitably chosen values of h, and plot these in a log-log
diagram. We see that

log(E) ∼ log(c) + r log(h),

so the convergence order r can be read off by estimating the slope of the graph. (In order to get
good grid spacing in the graph, it is useful to space the sample points geometrically, for instance:
h = 1, 1/2, 1/4, 1/8, 1/16, . . . ) In practice, complications may arise:

• The asymptotics might not “kick in” until h is very small, making it costly to estimate.
But this is useful information in its own right! If you don’t see the convergence until h is
extremely small, then the method is probably not very good.
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• Sometimes convergence is “too fast.” You hit round-off errors before you can determine
the slope. Well, in this case the method is typically good enough. (And who cares about
the exact order in this case?)

A quick-and-dirty way of estimating the convergence order is to cut the discretization parameter
in half and take the 2-logarithm of the results. Note that

log2

(
E(h)

E(2h)

)
∼ log2

(
c hr

c (h/2)r

)
∼ log2 (2

r) = r.

[Rewrite this section — start with a brief review of the Cauchy remainder theorem, and then
explain how this applies (or not) in practice.]

[Also comment on parallelization.]

2.4. Good programming habits

2.5. Review of the Gauss and Stokes’ theorems

2.6. Exercises:

Question 2.1. Derive the Simpson rule and prove that it has an O(h4) error.

Hint: To determine the coefficients in the rule, consider the formula∫ h

−h
f(x) dx ≈ a f(−h) + b f(0) + c f(h).

Making the formula exact for f(x) = 1, f(x) = x, f(x) = x2 yields three equations for three
unknowns. Then to estimate the error, notice that if f is any function with four continuous
derivatives, then

f(x) = f(0) + x f ′(0) +
1

2
x2 f ′′(0) +

1

6
x3 f (3)(0) +

1

24
x4 f (4)(ξ)

for some ξ such that |ξ| ≤ |x|.

Question 2.2. The purpose of this question is to demonstrate the importance of avoiding loops
when writing Matlab programs. Consider the trapezoidal rule

I ≈ h

1

2
f(x0) +

n−1∑
j=1

f(xj) +
1

2
f(xn)

 ,

where n is the number of quadrature points and

h =
b− a

n
, xj = a+ h j.

Consider the following two Matlab functions:

11



function I = trapezoidal1(f,a,b,n)

h = (b-a)/n;

I = 0.5*h*(f(a) + f(b));

for icount = 1:(n-1)

I = I + h*f(a+icount*h);

end

return

function I = trapezoidal2(f,a,b,n)

h = (b-a)/n;

w = h*[0.5,ones(1,n-1),0.5];

x = linspace(a,b,n+1);

I = sum(w.*f(x));

return

Let tj = tj(n) denote the time required for Matlab to execute “version j” of the program. Show via
numerical examples that the ratios tj(n)/n converge to some numbers cj as n grows, and estimate
these numbers.

Hint: The timing functions tic and toc will not give accurate answers when the interval between
them is very short. A way around this is to execute the function you want to time (say) 1000
times, and then divide the measured time by 1000.

Question 2.3. Implement the trapezoidal rule and the Simpson rule efficiently. Then measure the
convergence order of your functions for a variety of different (You know them, of course, but let
us measure them as an exercise.) In this exercise, you may use the built-in function

I = quad(f,a,b,tol)

to compute the “exact” answer. Use your functions to estimate the integral

I =

∫ 1

0
cos

(
1

0.01 + x2

)
dx.

Produce (loglog) graphs that plot the error in your function versus h, where h = 1/n and

n = 100, 200, 400, 800, 1600, . . . , 51 200.

How would you estimate the convergence order if you do not have a “reference” function to compute
the “exact” answer?

Question 2.4. Repeat Question 2.3, but now use Gaussian quadrature. In other words, construct
a function with calling sequence

function I = gaussquad(f,a,b,n,p)
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that uses Gaussian quadrature on n panels, with p points on each panel. Estimate computationally
the “order” of the method as n and p increase. Produce a graph that plots the accuracy of the
Simpson rule versus the accuracy of the Gaussian rule for p = 5, 10, 15, 20 (for the same number
of function evaluations).

Note: I believe that there is no built-in Matlab function for generating Gaussian quadrature nodes
and weights. On the webpage you’ll find a simple function lgwt.m that does this task.

Question 2.5. Write a function for estimating the integral

I =

∫ d

c

∫ b

a
f(x1, x2) dx1 dx2.

You may use either Gaussian or Newton-Cotes quadrature. Then estimate the integrals

I1(k) =

∫ 1

0

∫ 1

0
cos(k x1 x

2
2)

1

1 + cos(x1)
dx1 dx2,

I2(k) =

∫ 1

0

∫ 1

0
| cos(k x1 x22)|

1

1 + cos(x1)
dx1 dx2,

for different values of the positive integer k. Roughly how large can k be for you to quickly (say
within a second) get 10 accurate digits?

Question 2.6. Consider three different ways of computing the DFT:

(a) Apply it directly via the formula

x̂(n) = [FN x](n) =
N−1∑
m=0

e−i 2πmn/N x(m), n = 0, 1, 2, . . . , N − 1.

(It is strongly recommended to vectorize the matrix-vector product.)

(b) Build your own implementation of the basic FFT algorithm described in Section 2.2.
(This is the Cooley-Tukey algorithm.)

(c) Apply the built-in Matlab command FFT. (Last time I checked, Matlab used the FFTW
package, but this may have changed.)

Measure the asymptotic timing for each of the methods, and comment on what you observe.
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CHAPTER 3

The Laplace and Poisson equations — basic solution strategies

This chapter reviews some of the classical solution strategies for the Laplace and Poisson equations.
These techniques lead to extremely efficient numerical solvers when they work, but the caveat is
that they do not work very often — only for trivial geometries such as a line, a disc, a rectangle, all
of Rd, etc. We will review them anyway since learning about these methods will help us understand
basic properties of the equations, and enable us to derive equally efficient methods for more generic
situations in later chapters.

3.1. Problems on finite domains in R

3.1.1. A 1D problem with periodic boundary conditions. Consider the differential
equation

(3.1) −u′′(x) = f(x), x ∈ (−π, π)

with periodic boundary conditions

(3.2) u(−π) = u(π), u′(−π) = u′(π).

First we construct an analytic solution. Suppose

u(x) =
∞∑

n=−∞
ûn

ei n x

√
2π
,

f(x) =

∞∑
n=−∞

f̂n
ei n x

√
2π
,

where {ûn}∞n=−∞ and {f̂n}∞n=−∞ are the Fourier coefficients of u and f , respectively,

ûn =
1√
2π

∫ π

−π
e−i n x u(x) dx,

f̂n =
1√
2π

∫ π

−π
e−i n x f(x) dx.

We find that

−u′′(x) =
∞∑

n=−∞
n2 αn

ei n x

√
2π
,

so (3.1) takes the form

(3.3)

∞∑
n=−∞

n2 ûn
ei n x

√
2π

=

∞∑
n=−∞

f̂n
ei n x

√
2π
.
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We see that the solution is

(3.4) u(x) =
∑
n̸=0

f̂n
n2

ei n x

√
2π
,

where

f̂n =
1√
2π

∫ π

−π
e−i n xf(x) dx.

Next, let us discretize (2.2) using the standard difference formula

−u′′(x) = 1

h2
(
−u(x− h) + 2u(x)− u(x+ h)

)
+O(h2).

We split the interval (−π, π) into N pieces of length

h =
2π

N
,

and set
xm = −π + hm.

Further, let u, f ∈ CN denote approximations to u and f ,

u(m) ≈ u(xm),

f(m) = f(xm).

The discrete analog of (3.1) is

(3.5)
1

h2
(
−u(n− 1) + u(2n)− u(n+ 1)

)
= f(n).

Define a shift operator
[τpu](m) = u(m− p).

Observe that

[F(τpu)](n) =
N−1∑
m=0

e−i 2πmn/N u(m− p)

=
N−1∑
k=0

e−i 2π (k+p)n/N u(k)

= e−i 2π pn/N
N−1∑
k=0

e−i 2π k n/Nu(k)

= e−i 2π pn/N û(n).

In Fourier space, (3.5) takes the form

(3.6)
1

h2
(
−ei 2π n/N + 2− e−i 2π n/N

)
û(n) = f̂(n), n = 0, 1, 2, . . . , N − 1.

Now recall that for any z ∈ C:

−eiz + 2− e−iz = −(eiz/2 − e−iz/2)2 = −(i sin(z/2))2 = 4 sin2(z/2).

Consequently, (3.6) simplifies to

(3.7) σ(n) û(n) = f̂(n),

where

σ(n) =
4

h2
sin2(πn/N).
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The key point here is that the difference equation (3.5) is by the Fourier transform converted to
the algebraic equation (3.7). This equation can easily be solved,

û(n) =

{
1

σ(n) f̂(n), n ̸= 0

0 n = 0.

and then the approximation to u is recovered via the inverse Fourier transform

u(xm) ≈ u(m) = [F−1 û](m) =
1

N

N−1∑
n=0

u(n) e2π imn/N =
1

N

N−1∑
n=0

f(n)

σ(n)
e2π imn/N .

Remark 3.1. When N is large, the low frequency modes of the DFT in a sense “converge” to the
continuous Fourier transform. For instance, since h = 2π/N , we see that

σ(n) =
4

(2π/N)2
sin2(πn/N) =

N2

π2
sin2(πn/N) ≈ n2

when n/N is small. The factor “n2” is precisely what we saw for in the continuous case, cf. (3.3).

Remark 3.2. The solution formula (3.4) can be rewritten as a convolution:

u(x) =
∑
n ̸=0

1

n2
ei n x

√
2π

∫ π

−π

e−i n y

2π
f(y) dy

=

∫ π

−π

∑
n ̸=0

ei n (x−y)

2π n2

 f(y) dy

=

∫ π

−π
G(x− y) f(y) dy,

where G is the fundamental solution of the equation:

G(x) =
∑
n̸=0

ei n x

2π n2

Remark 3.3. How many Fourier modes do you need to get a requested accuracy? Suppose you
approximate u by the first N modes of the solution

(3.8) uapprox(x) =
N∑

n=−N

ûn
einx√
2π
.

Then using the Parseval formula, we see that

||u− uapprox||2L2(I) =

∫ π

−π
|u(x)− uapprox(x)|2 dx =

∑
|n|>N

|ûn|2 =
∑

|n|>N

|f̂n|2

n4
.

In other words, the error depends on how rapidly the Fourier modes of f decay — the slower the
decay, the more terms we need to achieve any given accuracy. And the speed of decay in (f̂n)

∞
n=−∞

in turn depends on how smooth f is. For instance, if f ∈ Cp(I) for some integer p, then using
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partial integration, we see that

|f̂n| =
1√
2π

∣∣∣∣∫ π

−π
einx f(x) dx

∣∣∣∣
=

1√
2π

∣∣∣∣∫ π

−π

1

inx
einx f ′(x) dx

∣∣∣∣
=

1√
2π

∣∣∣∣∫ π

−π

1

(inx)2
einx f ′′(x) dx

∣∣∣∣ = · · ·

=
1√
2π

∣∣∣∣∫ π

−π

1

(inx)p
einx f (p)(x) dx

∣∣∣∣
≤ 1√

2π

1

|n|p

∫ π

−π
|f (p)(x)| dx.

(Periodicity makes the boundary terms in the partial integrations vanish.)

Remark 3.4. We are sometimes interested in evaluating the derivative of the approximation uapprox
as defined by (3.8). In a sense, this is easy since

(3.9) u′approx(x) =

N∑
n=−N

in ûn
einx√
2π

=

N∑
n=−N

i

n
f̂n

einx√
2π
.

However, it is important to note that ||u′ − u′approx|| converges more slowly than ||u− uapprox||. In
fact:

||u′ − u′approx||2L2(I) =
∑

|n|>N

|in ûn|2 =
∑

|n|>N

|f̂n|2

n2
.

The observation that the computed derivatives are less accurate than the computed function values
is very common in the context of numerical methods for PDEs (finite elements, finite differences,
fourier methods, boundary integral equation methods, etc.). You would typically aim for approxi-
mating u well, do an OK job of approximating the first derivative, and not even hope for a good
approximation to the higher derivatives.

3.1.2. A 1D problem with homogeneous Dirichlet boundary conditions. Consider
the differential equation

(3.10)

 −u′′(x) = f(x), x ∈ (0, π),
u(0) = 0,
u(π) = 0.

This equation can also be solved via Fourier methods. A suitable basis is now

(3.11) φn(x) =

√
2

π
sin(nx), n = 1, 2, 3, . . .

We find that

(3.12)

 −φ′′
n(x) = n2 φn(x), x ∈ (0, π),

φn(−π) = 0,
φn(π) = 0.
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Moreover, (φn)
∞
n=1 is an orthonormal basis for L2(I) — the set of square integrable functions on

I = (0, π). We let (ûn) and (f̂n) again be the expansion coefficients

u(x) =

∞∑
n=1

ûn φn(x),

f(x) =

∞∑
n=1

f̂n φn(x)

where {ûn}∞n=−∞ and {f̂n}∞n=−∞ are the Fourier coefficients of u and f , respectively,

ûn =

∫ π

0
φn(x)u(x) dx,

f̂n =

∫ π

0
φn(x) f(x) dx.

The sequences (ûn) and (f̂n) can be computed via the FFT, and so can the map back to physical
space.

Remark 3.5. It seems very fortuitous that we should have such convenient sets of orthogonal
functions for expanding the solution. This is not a coincidence! Many of the differential equations
that arise are for physical reasons “self-adjoint.” And one can prove that for many self-adjoint
operators you can construct a sequence of functions that is both a orthonormal basis for the relevant
function space, and eigenfunctions of the differential operator. In fact all self-adjoint operators
admit a somewhat weaker statement: namely that there is some unitary transform that maps them
to diagonal operators. For details, look up the spectral theorem.

Remark 3.6. The eigenfunctions φn defined by (3.11) can easily be determined by considering the
differential equation  −φ′′(x) = λφ(x), x ∈ (0, π),

φ(0) = 0,
φ(π) = 0.

The solutions to the equation φ′′ + λφ = 0 depend on the sign of λ:

(1) If λ = 0, the solutions are φ(x) = A+B x.
(2) If λ = −α2, the solutions are φ(x) = Aeαx +B e−αx.
(3) If λ = α2, the solutions are φ(x) = A cos(αx) +B sin(αx).

The only solutions that satisfy the boundary conditions take the form

φ(x) = A sin(nx),

where n is a positive integer. The choice A =
√

2/π is made so that

1 = ||φ||L2(I) =

(∫ π

−π
|φ(x)|2 dx

)1/2

.

A slightly different line of attack would be to separate the issues of (i) body load and (ii) boundary
conditions. To this end, let us first construct a function v that satisfies

−v′′(x) = f(x), x ∈ I,

19



and not care about the boundary conditions. This can easily be done via Fourier methods as
outlined in Section 3.1.1. Now let us see if we can find a solution u of (3.10) by adding a correction
w to the solution v:

u = v + w.

We find that w must satisfy the equation

(3.13)

 −w′′(x) = 0, x ∈ (−π, π),
w(−π) = −v(−π),
w(π) = −v(π).

Solving this equation is easy. Since w′′ = 0, we know that w must be linear:

w(x) = Ax+B.

Using the boundary conditions, we easily determine A and B and find that

w(x) = −v(−π)− x+ π

2π
v(π).

Remark 3.7. The general technique of first finding a solution that satisfies the body load, and
then to find a “correction” that solved a homogeneous problem and that takes care of the boundary
conditions is often applicable. The function v is called a “particular” solution.

3.2. Poisson’s equation on Rd (no boundary conditions)

Next consider the equation

(3.14) −∆u(x) = f(x), x ∈ Rd.

For this equation, it is slightly tricky to formulate proper boundary conditions, but you have to
do something, otherwise the problem is not well-posed: For any given solution u of (3.14), the
function v(x) = u(x) + a+ b · x would also be a solution for any a ∈ R and b ∈ Rd. We will avoid
this discussion for now.

First we solve (3.14) via Fourier methods. The proper transform is now the continuous Fourier
transform:

û(t) = [Fu](t) = 1

(2π)d/2

∫
Rd

e−i t·x u(x) dx, t ∈ Rd.

The inverse transform is given by

u(x) = [F∗û](x) =
1

(2π)d/2

∫
Rd

ei t·x û(t) dt, x ∈ Rd.

Via partial integrations, we see that for j = 1, 2, . . . , d:

[F(∂xju)](t) =
1

(2π)d/2

∫
Rd

e−i t·x (∂xju(x)) dx = − 1

(2π)d/2

∫
Rd

(∂xje
−i t·x)u(x) dx

= − 1

(2π)d/2

∫
Rd

(−i tj) e−i t·x u(x) dx = i tj û(t).

In consequence, [F(∂2xj
u)](t) = (i tj)

2 û(t)− t2j û(t), and so

[F(−∆u)](t) = (t21 + t22 + · · ·+ t2d) û(t) = |t|2 û(t).
Now (3.14) in Fourier space takes the form

|t|2 û(t) = f̂(t), t ∈ Rd.
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This is an algebraic equation that we easily solve:

û(t) =
1

|t|2
f̂(t),

and then u is recovered via the inverse Fourier transform

u(x) = [F∗û](x) =

[
F∗ f̂(t)

t2

]
(x) =

1

(2π)d/2

∫
Rd

ei t x
f̂(t)

|t|2
dt.

Some comments:

• The utility of the Fourier method depends on how smooth f is and how rapidly it decays.

• The continuous Fourier transform can sometimes be evaluated efficiently by combining
the FFT with a quadrature rule. This requires some care when f is non-smooth, or when
f does not decay rapidly (of course, these situations make things more complicated for
any numerical method).

Alternatively, one could solve the equation via a so called fundamental solution. To get there,
recall that a multiplication in Fourier space corresponds to a convolution in physical space. In
other words, if f̂ and ĝ are the Fourier transforms of two functions f and g, and

ĥ(t) = f̂(t) ĝ(t),

then1

(3.15) h(x) = [F∗ĥ](x) = [F∗(f̂ ĝ)](x) = [f ∗ g](x) =
∫
Rd

f(x− y) g(y) dy.

(To make (3.15) mathematically rigorous, one has to either assume that f and g are both sufficiently
smooth and sufficiently decaying to make all integrals make sense in a classical way, or reinterpret
the integrals as more general linear operators.) Specifically, with

(3.16) ϕ = F∗
[

1

|t|2

]
we find that

u(x) =

[
F∗
(

1

|t|2
f̂

)]
(x) = [ϕ ∗ f ](x) =

∫
Rd

ϕ(x− y) f(y) dy.

The formula (3.16) is deceptively simple. Observe that the Fourier integral

ϕ(x) =
1

(2π)d/2

∫
Rd

eix·t
1

|t|2
dt

is not integrable (in the Lebesgue sense) for any d! (When d = 1, it is not integrable at the origin,
when d ≥ 3, it is not integrable at infinity, and when d = 2, it is integrable neither at the origin,
nor at infinity.) This problem can be overcome, and with suitable generalization of the Fourier
transform one can show that

ϕ(x) =− 1

2
|x| d = 1

ϕ(x) =− 1

2π
log |x| d = 2

ϕ(x) =
1

4π|x|
d = 3.

1There is a factor of 2π missing here - check!
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Remark 3.8 (Mathematical properties of F). The map F is a unitary transform of L2(Rd) to
L2(Rd), meaning that

F∗F = FF∗ = I.

As a consequence
||u||2L2(Rd) = (F∗Fu, u) = (Fu, Fu) = ||û||2L2(Rd).

The Fourier transform maps smooth functions to rapidly decaying functions, and vice versa:

f smooth ⇔ f̂ decays rapidly

f decays rapidly ⇔ f̂ smooth

Remark 3.9. Properly defining the Fourier transform on R takes some work since the integral in
the definition is typically not absolutely integrable. For instance, if you try to take the Fourier
transform of the function x 7→ (1/2)|x| you’ll have problems at infinity (the integrand grows!)
and if you try to take the Fourier transform of the function t 7→ 1/t2 you’ll have problems at the
origin. One way around this difficulty is to consider a class of generalized functions often called
“distributions.” Well-known distributions include:

The Dirac δ-function: The function δ is a function such that (loosely speaking) δ(x) = 0
for all x, but ∫ ∞

−∞
f(x) δ(x) dx = f(0),

for any sufficiently smooth function f .

The Heaviside function: The Heaviside function H is simply

H(x) =

{
−1 x < 0,
1 0 ≥ x.

PV(1/x): The “principal value” function of 1/x is a “function” that satisfies function sat-
isfies: ∫ ∞

−∞
PV(1/x) f(x) dx = lim

ε↘0

(∫ −ε

−∞

1

x
f(x) dx+

∫ ∞

ε

1

x
f(x) dx

)
.

The point of distribution theory is to rigorously define such functions, to specify how to compute
their derivatives, their Fourier transforms, etc. In this framework, you can properly formulate an
equation such as

−ϕ′′ = δ

and find that the solution is

ϕ(x) =
1

2
|x|.

The solution to the equation −u′′ = f is then given as

u(x) = [ϕ ∗ f ](x) =
∫ ∞

−∞
ϕ(x− y) f(y) dy

since

−u′′(x) = − d2

dx2

∫ ∞

−∞
ϕ(x− y) f(y) dy =

∫ ∞

−∞
(−ϕ′′(x− y)) f(y) dy =

∫ ∞

−∞
δ(x− y) f(y) dy = f(x).

WARNING:Most equations in this remark are “improper” in the sense that they must be inter-
preted in a distributional sense. This material is provided as an encouragement to study distribu-
tional theory; reading this remark puts you at risk of “knowing just enough to be dangerous.”
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Remark 3.10. The solution formula

u(x) =

∫
Rd

ϕ(x− y) f(y) dy

can often be evaluated directly via a quadrature rule. There is however no good “generic” quadrature
rule for this case since (a) the domain of integration is infinite, (b) the function f may or may
not be smooth, and (c) the function ϕ(x − y) is singular as y → x. However, assuming that we
have somehow resolved these issues, we would be left with the task of evaluating a sum such as

(3.17) u(xi) =

N∑
n=1

wj ϕ(x− yj) f(yj), i = 1, 2, . . . ,M

where {yj}Nj=1 are the quadrature nodes, {wj}Nj=1 are the quadrature weights, and {xi}Mi=1 is the

set of points where the solution is sought. Evaluating the sum (3.17) directly requires O(M N)
operations, which quickly gets prohibitive when M and N grow. However, this task is exactly what
the Fast Multipole Method (see Chapter 4) is designed for. It evaluates the sum in O(M + N)
operations.

3.3. Problems on finite domains in R2

3.3.1. The square. Let Ω = [0, π]× [0, π] be a square in the plane with boundary Γ = ∂Ω.
In this section, we will briefly review techniques for solving the equation{

−∆u(x) = f(x), x ∈ Ω,

u(x) = g(x), x ∈ Γ.

We consider first the two special cases where either g = 0 or f = 0.

3.3.1.1. Zero Dirichlet data. Consider the equation

(3.18)

{
−∆u(x) = f(x), x ∈ Ω,

u(x) = 0, x ∈ Γ.

Define the index set
I = {(n1, n2) : n1 and n2 are positive integers},

and the basis functions

φn(x1, x2) =
2

π
sin(n1x1) sin(n2x2), n ∈ I.

These basis functions have three important properties:

(1) The basis functions form an orthonormal set in L2(Ω):∫
Ω
φn(x)φn(x) dA(x) =

{
1 when m = n
0 when m ̸= n.

(2) The basis functions span L2(Ω) which means that any function f ∈ L2(Ω) can be written

f =
∑
n∈I

f̂n φn(x),

where f̂n are the expansion coefficients

f̂n =

∫
Ω
φn(x) f(x) dA(x).
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(3) The basis functions are eigenfunctions of (3.18):{
−∆φn(x) = (n21 + n22)φn(x), x ∈ Ω,

φn(x) = 0, x ∈ Γ.

We now look for a solution of the form

u =
∑
n∈I

ûn φn.

Since

−∆u =
∑
n∈I

(n21 + n22)ûn φn,

and

f =
∑
n∈I

f̂n φn(x),

we see that the expansion coefficients of u are

ûn =
1

n21 + n22
f̂n,

and so

u =
∑
n∈I

1

n21 + n22
f̂n φn.

Remark 3.11. How do you find the basis functions φn and the index set I? This is done by
separating variables. We look for an eigenvector φ of the form

φ(x1, x2) = ψ1(x1)ψ2(x2)

that satisfies {
−∆φ(x) = φ(x), x ∈ Ω,

φ(x) = 0, x ∈ Γ.

We find

−ψ′′
1(x1)ψ2(x2)− ψ1(x1)ψ

′′
2(x2) = λψ1(x1)ψ2(x1).

Dividing by ψ1ψ2 we obtain the equation

−ψ
′′
1(x1)

ψ1(x1)
− ψ′′

2(x2)

ψ2(x2)
= λ.

Since the first term on the LHS is the only one that depends on x1, we find that it must be constant:

−ψ
′′
1(x1)

ψ1(x1)
= α

for some α. Using also that ψ1(0) = ψ1(π) = 0, we find that (cf. Remark 3.6) α = n21 for some
positive integer, and

ψ1 = A sin(n1 x1)

for some constant A. Analogously, one of course determines that ψ2 = B sin(n2 x2) and then the
constants A and B are determined via the condition that

1 = ||φ||2L2(Ω) =

∫
Ω
|φ(x)|2 dx.
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3.3.1.2. Zero body load. Now consider the equation

(3.19)

{
−∆u(x) = 0, x ∈ Ω,

u(x) = g(x), x ∈ Γ.

Let us split the boundary data g into four separate function, one on each side (the south, east,
west, and north sides, respectively):

g(t, 0) =g(s)(t),

g(π, t) =g(e)(t),

g(t, π) =g(n)(t),

g(0, t) =g(w)(t).

Then write the solution u of (3.19) as

u = v + w

where

(3.20)



−∆v(x) = 0, x ∈ Ω,

v(0, x2) = g(w)(x), 0 ≤ x2 ≤ π

v(π, x2) = g(e)(x), 0 ≤ x2 ≤ π

v(x1, 0) = 0, 0 ≤ x1 ≤ π

v(x1, 0) = π, 0 ≤ x1 ≤ π,

and

(3.21)



−∆w(x) = 0, x ∈ Ω,

w(0, x2) = 0, 0 ≤ x2 ≤ π

w(π, x2) = 0, 0 ≤ x2 ≤ π

w(x1, 0) = g(s)(x), 0 ≤ x1 ≤ π

w(x1, π) = g(n)(x), 0 ≤ x1 ≤ π.

In order to solve (3.20), we look for a solution of the form

v(x1, x2) =

∞∑
n=1

vn(x1) sin(nx2).

We find that

0 = −∆v =

∞∑
n=1

(
−v′′n(x1) + n2 vn(x1)

)
sin(nx2)

so each vn must satisfy the differential equation

−v′′n + n2 vn = 0.

The solution is

(3.22) vn(x1) = An cosh(nx1) +Bn sinh(nx1).
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Now we need boundary conditions for vn(0) and vn(π) to determine An and Bn. To this end, not

that {sin(nx2)}∞n=1 forms an orthogonal basis for L2([0, π]), so we can expand g(w) and g(e):

g(w)(t) =
∞∑
n=1

ĝ(w)
n sin(nt),

g(e)(t) =
∞∑
n=1

ĝ(e)n sin(nt).

Inserting the boundary conditions at x1 = 0, π, we find

v(0, x2) =
∞∑
n=1

vn(0) sin(nx2) = g(w)(x2)

v(π, x2) =

∞∑
n=1

vn(π) sin(nx2) = g(e)(x2).

So the functions vn have boundary conditions

vn(0) =ĝ
(w)
n(3.23)

vn(π) =ĝ
(e)
n .(3.24)

Combining (3.22) and (3.23), we find that

vn(x1) = ĝ(w)
n cosh(nx1) +

ĝ
(e)
n − ĝ

(w)
n cosh(nπ)

sinh(nπ)
sinh(nx1).

Finally, the solution of (3.20) is

v(x1, x2) =

∞∑
n=1

(
ĝ(w)
n cosh(nx1) +

ĝ
(e)
n − ĝ

(w)
n cosh(nπ)

sinh(nπ)
sinh(nx1)

)
sin(nx2).

Of course, equation (3.21) is solved analogously.

3.3.1.3. Non-zero boundary data, and non-zero body load.

(3.25)

{
−∆u(x) = f(x), x ∈ Ω,

u(x) = g(x), x ∈ Γ.

Simply combine, let v be the solution to{
−∆v(x) = f(x), x ∈ Ω,

v(x) = 0, x ∈ Γ,

let w be the solution to {
−∆w(x) = 0, x ∈ Ω,

w(x) = g(x), x ∈ Γ,

and then set

u = v + w.

The function v can be determined using the methods of Section 3.3.1.2 and w can be determined
using the methods of Section 3.3.1.1.

Alternatively, you could find a solution v to

−∆v = f
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with periodic boundary data:

v(0, x2) =v(π, x2), 0 ≤ x2 ≤ π,

[∂1v](0, x2) =[∂1v](π, x2), 0 ≤ x2 ≤ π,

v(x1, 0) =v(x1, π), 0 ≤ x1 ≤ π,

[∂2v](x1, 0) =[∂2v](x1, π), 0 ≤ x1 ≤ π.

This is easier technically since the plain FFT applies. Then for the homogeneous problem, you’d
need to solve {

−∆w(x) = 0, x ∈ Ω,

w(x) = −v(x) + f(x), x ∈ Γ.

3.3.2. The disc. Next let Ω denote a disc with boundary Γ:

Ω ={x ∈ R2 : |x| < 1}
Γ ={x ∈ R2 : |x| = 1},

and consider the boundary value problem{
−∆u(x) = f(x), x ∈ Ω,

u(x) = g(x), x ∈ Γ,

It is now convenient to switch to polar coordinates (r, θ) which are defined by

x1 = r cos θ x2 = r sin θ.

Then we think of u as a function of r and θ, and the Laplace operator takes the form

−∆u = −∂2ru− 1

r
∂ru− 1

r2
∂2θu.

In this section, we will look for solutions of the form

(3.26) u(r, θ) =

∞∑
n=0

(
vn(r) cos(nθ) + wn(r) sin(nθ)

)
.

3.3.2.1. Zero body load. Consider the equation

(3.27)

{
−∆u(x) = 0, x ∈ Ω,

u(x) = g(x), x ∈ Γ.

We look for a solution of the form

(3.28) u(r, θ) =

∞∑
n=−∞

cn r
|n| einθ.

Then
−∆u = 0

for any numbers (cn)
∞
n=−∞ such that the sum converges sufficiently fast. To determine the numbers

(cn), we apply the boundary condition. For r = 1, we obtain

g(cos θ, sin θ) = u(1, θ) =

∞∑
n=−∞

cn e
inθ,

so the cn’s are simply the Fourier coefficients of g:

cn =
1

2π

∫ 2π

0
e−inθg(cos θ, sin θ) dθ.
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Remark 3.12. How did we know to make the Ansatz (3.28)? It can again be obtained from
separation of variables: We look for a solution of the form u(r, θ) = v(r)w(θ) that satisfies −∆u =
0. This translates to the equation

−v′′(r)w(θ)− 1

r
v′(r)w(θ)− 1

r2
v(r)w′′(θ) = 0.

Now “separate the variables” by multiplying the equation by r2/vw:

−r2 v
′′(r)

v(r)
− r

v′(r)

v(r)
=
w′′(θ)

w(θ)
.

Since the LHS depends only on r, and the RHS depends only on θ, there must be some number α
such that

(3.29)
w′′(θ)

w(θ)
= α.

The solutions to (3.29) depend on the sign of α:

(1) If α = −β2, then the solutions are w(θ) = Aeiβθ +B e−iβθ.
(2) If α = 0, then the solutions are w(θ) = A+B θ.
(3) If α = β2, then the solutions are w(θ) = Aeβθ +B e−βθ.

Since w must be 2π-periodic, the only possibility is that α = −n2 for some integer n, and the
corresponding solution is

w(θ) = e±inθ.

Returning to the separated equation, we now find that v must satisfy

−r2 v
′′(r)

v(r)
− r

v′(r)

v(r)
= −n2

for some integer n. This simplifies to the Euler equation

r2v′′(r) + r v′(r)− n2 v(r) = 0

which has solutions

v(r) = Arn +B r−n

if n is non-zero, and

v(r) = A+B log(r)

if n = 0. Using that the solution has to be bounded as r → 0 we discard the log(r) and the negative
powers of r and are left with the basis function in (3.28).

Remark 3.13. The Laplace problem on a disc can alternatively be solved very easily using complex
variables. (This remark assumes some knowledge of harmonic analysis.) If u is a function that is
continuous on Ω, and harmonic on Ω, then there is an analytic function w = w(z) such that

u(z) = Re(w(z)).

The disc is now parameterized with the complex variable z = x1 + i x2. Since w is analytic, it has
a Taylor expansion

w(z) =

∞∑
n=0

αn z
n.

Now simply observe that

Re(zn) = rn cos(nθ), Im(zn) = rn sin(nθ).
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3.3.2.2. Zero Dirichlet data. Consider the equation

(3.30)

{
−∆u(x) = f(x), x ∈ Ω,

u(x) = 0, x ∈ Γ.

The eigenfunction of (3.30) are

φn,j(x) = ei n θ J|n|(k
|n|
j r), n ∈ Z j = 1, 2, 3, . . .

where, for m = 0, 1, 2, 3, . . . the functions Jm are Bessel functions, and km1 , k
m
2 , k

m
3 , . . . are the

zeros of the m’th Bessel function. One can show that

−∆φn,j = (k
|n|
j )2.

Consequently, the solution to (3.30) is

u(r, θ) =
∑
n∈Z

∞∑
j=1

1

(k
|n|
j )2

f̂n,je
i n θ J|n|(k

|n|
j r),

where

f̂n,j =
1

||φn,j ||2L2(Ω)

∫
Ω
φn,j(r, θ) f(r, θ) dA.

Remark 3.14. How find the eigenfunctions? Again use separation of variables. Set u(r, θ) =
v(r)w(θ), then the eigenvalue problem

−∆u = λu

takes the form

−r2 v
′′(r)

v(r)
− r

v′(r)

v(r)
− w′′(θ)

w(θ)
= λ r2.

As earlier, we find that by enforcing periodic boundary conditions on w, the only possible solutions
are w(θ) = e±i n θ, and so the equation for v reduces to

−r2 v
′′(r)

v(r)
− r

v′(r)

v(r)
+ n2 = λ r2,

which simplifies to the Bessel differential equation:

−r2 v′′(r)− r v′(r) +
(
n2 − λ r2

)
v(r) = 0.

The solutions are
v(r) = AJn(

√
λ r) +B Yn(

√
λ r),

where Jn and Yn are Bessel functions. Using that v should be bounded on Ω, we drop the Yn’s.
From the boundary value v(1) = 0, we finally find that the eigenvalues λ are determined by the
equation

Jn(
√
λ) = 0.

3.4. Green’s functions

For the case of free space problems such as

−∆u = f Rd,

we saw in Section 3.2 that the solution can be written as a convolution:

u(x) = [ϕ ∗ f ](x) =
∫
Rd

ϕ(x− y) f(y) dy.
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For a boundary value problems such as

(3.31)

{
−∆u(x) = f(x), x ∈ Ω,

u(x) = 0, x ∈ Γ,

the corresponding result is that there exists a so called Green’s functions F = F (x, y) with the
property that the solution to (3.31) is given by

u(x) =

∫
Ω
F (x, y) f(y) dy.

If we know the eigenfunctions of (3.31), we can actually write an explicit formula for F . To this
end, note that

u(x) =
∞∑
n=1

1

λn
(φn, f)φn(x)

=
∞∑
n=1

1

λn

(∫
Ω
φn(y) f(y) dy

)
φn(x)

=

∫
Ω

( ∞∑
n=1

1

λn
φn(y)φn(x)

)
, f(y) dy,

so

(3.32) F (x, y) =

∞∑
n=1

1

λn
φn(x)φn(y).

Evaluating F via the sum (3.32) is not easy computationally. However, for many simple geometries,
analytic expressions for F are known, and the Green’s function can in these contexts be very useful.

There also exists Green’s function G = G(x, y) for the homogeneous problem

(3.33)

{
−∆u(x) = 0, x ∈ Ω,

u(x) = g(x), x ∈ Γ.

The function G constructs a solution to (3.33) via

u(x) =

∫
Γ
G(x, y) g(y) dy.

The solution to an equation with both a body load and boundary data

(3.34)

{
−∆u(x) = f(x), x ∈ Ω,

u(x) = g(x), x ∈ Γ

is of course directly obtained via superposition

(3.35) u(x) =

∫
Ω
F (x, y) f(y) dy +

∫
Γ
G(x, y) g(y) dy.

Remark 3.15. While the concept of a fundamental solution is very restrictive (they exist only for
constant coefficient problems with no boundary data), the concept of a Green’s function is very
general. Solution formulas such as (3.35) exist even for many variable coefficient problems such
as

(3.36)

{
−∇ · (a(x)∇u(x)) + b(x) · ∇u(x) + c(x)u(x) = f(x), x ∈ Ω,

u(x) = g(x), x ∈ Γ

30



where a, b, and c are functions on Ω. (The key condition is that the function a has to be a positive
definite matrix.) Of course, this is not much help computationally since determining G and H is
in general much harder than solving (3.34)! (However, there have been exciting developments in
this direction recently. . . )

3.5. Time-dependent problems

If you know the eigenfunctions of the Laplace operator, you can very easily solve time-dependent
equations such as the heat equation

(3.37) ∆u =
∂u

∂t
and the wave equation

(3.38) ∆u =
∂2u

∂t2
.

To illustrate how this works, suppose that we know an orthonormal basis (φn)
∞
n=1 of eigenvectors

for the Laplace operator on some domain Ω{−∆φn = λn φn, on Ω,

φn = 0 on Γ.

The eigenvalues satisfy
λn → ∞, as n→ ∞.

The idea is now simply to look for a solution to the time-dependent problem of the form

(3.39) u(x, t) =

∞∑
n=1

αn(t)φn(x).

3.5.1. The heat equation. Insert (3.39) into (3.37) to find that
∞∑
n=1

−λn αn(t)φn(x)︸ ︷︷ ︸
=∆u

=
∞∑
n=1

α′
n(t)φn(x)︸ ︷︷ ︸
= ∂u

∂t

We see that αn must satisfy
−λn αn = α′

n

and so
αn(t) = cn e

−λnt.

The constants cn are determined via an initial condition given at time t0:

u(x, t0) = v(x).

We find that

u(x, t) =

∞∑
n=1

v̂n e
−λn(t−t0) φn(x),

where

v̂n =

∫
Ω
φn(x) v(x) dx.
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3.5.2. The wave equation. Plug (3.39) into (3.38) to find that

∞∑
n=1

−λn αn(t)φn(x)︸ ︷︷ ︸
=∆u

=
∞∑
n=1

α′′
n(t)φn(x)︸ ︷︷ ︸
= ∂2u

∂t2

We see that αn must satisfy

−λn αn = α′′
n

and so

αn(t) = an cos(ωn t) + bn sin(ωn t),

where

ωn =
√
λn.

The constants an and bn are again determined via an initial conditions given at time t0:

u(x, t0) =v(x).

ut(x, t0) =w(x).

We find that

u(x, t) =

∞∑
n=1

(
v̂n cos(ωn (t− t0)) +

ŵn

ωn
sin(ωn (t− t0))

)
φn(x),

where

v̂n =

∫
Ω
φn(x) v(x) dx, and ŵn =

∫
Ω
φn(x)w(x) dx.

3.6. Some remarks on eigenfunctions and Fourier methods

Many of the techniques in this chapter are based on computing the eigenfunctions of a differential
operator such as the Laplace operator. This is conceptually a very gratifying approach, and is
a reasonably general technique in the sense that many problems of practical interest in principle
can be solved using eigen-expansions. However, it is in practice often very hard to compute these
functions. Say you need 1000 modes to approximate a solution to reasonable accuracy; then the
cost of computing the eigenfunctions is 1000 times as large as the cost of solving a single problem.
Moreover, the larger the eigenvalue, the harder the eigenvector is to compute accurately. (Note
that in all examples we have seen, the eigenvectors start to oscillate more and more rapidly as the
eigenvalue increases — this is true for almost all “Laplace-like” eigenvalue problems.)

For the basic task of solving a given boundary value problem, it is rare that computing the
eigenvectors is the best way to go about it. However, there are many situations in which computing
eigenvectors is actually the problem one wants to solve. Examples include:

• Acoustics.
• Design of optical devises such as fibre optic cables.
• Quantum physics (each eigenvector is a “state”).
• Mechanics (each eigenvector is a “buckling mode”).
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Ω̃

Ω

Figure 3.1. A general domain Ω is enclosed by a square Ω̃. We solve the Poisson
equation with periodic boundary conditions on Ω̃ using the FFT (very rapidly!).

While constructing eigenfunctions that satisfy boundary conditions on a “general” domain Ω is
quite hard, it is much easier to construct transforms that handle only the differential operator
while ignoring the boundary conditions. This is how Fourier methods are often used. To illustrate,
suppose we seek to solve the equation

(3.40)

{
−∆u(x) = f(x), x ∈ Ω,

u(x) = 0, x ∈ Γ,

on some domain Ω with boundary Γ. We can then enclose Ω is a box Ω̃, cf. Figure 3.1, and solve
the equation

(3.41) −∆v(x) = g(x), x ∈ Ω̃,

where g is a function on Ω̃ such that f(x) = g(x) for x ∈ Ω. The equation (3.41) can then be
solved using the FFT to very rapidly construct the function v. The final step is then to construct
a “correction” w that satisfies

(3.42)

{
−∆w(x) = 0, x ∈ Ω,

w(x) = −v(x), x ∈ Γ,

whence

u = v + w.

This strategy is often used in practice. Note however that the construction of the extension g of
f is not trivial. You could of course just define

g(x) = χΩ(x) =

{
f(x) x ∈ Ω,

0 x /∈ Ω.

The drawback is that this function g is discontinuous even when f is smooth (unless of course f
is zero near Γ) which means that the Fourier series will converge slowly.

Remark 3.16. Techniques for computing large collections of eigenvectors of a given differential
operator are presently in a rapid state of development. This is a very exciting and active are of
research.
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3.7. Variational formulations

3.8. Energy minimizing formulations

3.9. Conformal maps

3.10. Exercises

Question 3.1. Solve (analytically) the Laplace equation with Dirichlet boundary data on a domain
exterior to a unit disc. In other words, let Ω and Γ be defined by

Ω ={x ∈ R2 : |x| > 1}
Γ ={x ∈ R2 : |x| = 1},

and consider the boundary value problem{
−∆u(x) = 0, x ∈ Ω,

u(x) = g(x), x ∈ Γ.

You may assume that g ∈ L1 ∩ L2, that∫ 2π

0
g(cos θ, sin θ) = 0,

and then require the solution u to decay at infinity.

Question 3.2. In this problem, we will numerically solve the equation

(3.43)

 −u′′(x) = f(x), x ∈ (0, π),
u(0) = 0,
u(π) = 0,

for a few different right hand sides. For each given f , compute the solution using either the basis
functions {

√
2/π sin(nx)}∞n=1, or the basis functions {

√
1/π e2inx}n∈Z (with appropriate correc-

tions for the boundary conditions). Investigate how rapidly the partial Fourier sums converge.
Consider the following choices of f :

(a) f(x) = e(sinx)2 .

(b) f(x) = e
√
x.

(c) f(x) = cos(100x).
(d) f(x) = cos(100.1x).
(e) f(x) = |x− 1|−0.25.

(f) f(x) =

 0 0 < x ≤ 1
1 1 < x ≤ 2
2 1 < x < π

Optional extra questions: Can you construct an analytic solution for any of the given functions?
Check how quickly the derivatives of the partial Fourier series converge. Can you think of some
other “interesting” choices of body loads?
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Question 3.3. Consider the Poisson equation

(3.44) −∆u(x) = f(x), x ∈ Ω

where

f(x) =

{
x1 e

−1/(1−|x|2), |x| < 1,

0 |x| ≥ 1,

and where
Ω = (−π, π)2.

(a) Use the FFT to construct computationally a function u that solves (3.44).
(b) Find (numerically) a solution to (3.44) that also satisfies homogeneous Dirichlet boundary

conditions.

Question 3.4. Consider the Poisson equation

(3.45) −∆u(x) = f(x), x ∈ R2

where

f(x) =

{
x1 e

−1/(1−|x|2), |x| < 1,

0 |x| ≥ 1.

As a boundary condition, require u to converge to zero at infinity (observe that
∫
f = 0).

(a) Switch to polar coordinates, and solve (numerically or otherwise) the equations you ob-
tain.

(b) Can you devise a solution strategy based on the FFT that works for any smooth compactly
supported body load?

Question 3.5. Pick a simple domain Ω in the plane (say either a square or a circle) and solve the
equation

−∆u+ c u =f Ω,

u =0 Γ.

where f is a “point source” placed at some interesting point in the domain. Solve the equation
using Fourier methods for different values of c (positive or negative, large or small in magnitude).
Plot some representative solutions.

Optional extra question: How would you handle

−∆u+ b · ∇u+ c u =f Ω,

u =0 Γ.

Question 3.6. Construct a program that uses Fourier methods to solve the wave equation

(3.46)


d2u
dx2 = d2u

dt2
, x ∈ (0, π), t > 0,

u(0, t) = 0, t > 0
u(π, t) = 0, t > 0
u(x, 0) = v,
ut(x, 0) = w,

where v and w are given function (play with different choices). Use the Matlab movie function to
create an animation of the solution as t increases.

Harder version: Generalize to the wave equation on a square or a disc.
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CHAPTER 4

The Fast Multipole Method and other tree codes

4.1. Problem formulation

In this chapter, we describe fast methods for rapidly evaluating the sum

(4.1) ui =

N∑
j=1

G(xi, xj) qj , i = 1, 2, . . . , N,

where {xi}Ni=1 is a given set of points in a square Ω in the plane, where {qi}Ni=1 is a given set of
real numbers which we call charges, and where {ui}Ni=1 is a set of real numbers we seek to compute
(potentials). The kernel G is given by

(4.2) G(x, y) =

{
− 1

2π log |x− y|, when x ̸= y
0 when x = y.

Using straight-forward summation techniques, the evaluation of the sum (4.1) requires O(N2)
floating point operations.

We will describe two techniques for evaluating the sum (4.1) to within a given preset precision ε.
The first is a simple technique which is a version of the so called Barnes-Hut method that evaluates
the sum in O(N log(N) log(1/ε)) floating point operations, see Section 4.5. The second one is a
version of the Fast Multipole Method. This method is slightly more elaborate, but solves the task
in O(N log(1/ε)) floating point operations, see Section 4.7. Before we describe either method,
however, we describe in Section 4.3 an accelerated technique for solving a much simpler problem
in which the charges are contained in one set, and the potentials to be evaluated are in a different
one. The techniques used to solve this toy problem form a core part of the more sophisticated
summation techniques in Section 4.5 and 4.7.

[... discuss electric charges / gravity / Stokes / other potentials ...]

4.2. Multipole expansions

A multipole expansion is an efficient way of representing a harmonic potential. To be precise,
suppose that a box shaped domain Ω holds a set of N sources with charges {qj}Nj=1 at locations

{yj}Nj=1 ⊂ Ω. At a point x, the electric potential u(x) caused by these charges is given by

u(x) =
N∑
j=1

G(x, yj) qj ,

where G is the kernel defined in (4.2). A very simple approximation to the potential u(x) is
obtained by evaluating the potential caused by a single charge at the center yc of the box,

(4.3) u(x) ≈ q̂0 log |x− yc|.
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In (4.3), q̂0 is simply the net charge of the box,

(4.4) q̂0 =
N∑
j=1

qj .

The approximation error in (4.3) tends to zero as |x− yc| → ∞, but can be quite large when x is
close to the box Ω. The approximation can be improved by adding a dipole charge at yc so that

(4.5) u(x) ≈ q̂0 log |x− yc| − d · x− yc
|x− yc|2

.

The optimal dipole charge vector d is given by

d =

N∑
j=1

qj
(
yj − yc

)
.

The approximations (4.3) and (4.5) form the first two terms in the so called multipole expansion
of the harmonic function u. The full expansion is conveniently expressed using polar coordinates

(4.6) x− yc = r (cos θ, sin θ), y − yc = r′ (cos θ′, sin θ′).

Then

(4.7) u(x) = q̂0 log r +

∞∑
p=1

(
q̂2p−1

cos(p θ)

rp
+ q̂2p

sin(p θ)

rp

)
,

where q̂0 is defined by (4.4), and for p ≥ 1

q̂2p−1 =−
N∑
j=1

qj (r
′)p

1

p
cos(p θ′),

q̂2p =−
N∑
j=1

qj (r
′)p

1

p
sin(p θ′).

The sum in (4.7) converges exponentially fast whenever |x− yc| >
√
2 a. Specifically,

(4.8)

∣∣∣∣∣∣u(x)− q̂0 log r −
P∑

p=1

(
q̂2p−1

cos(p θ)

rp
+ q̂2p

sin(p θ)

rp

)∣∣∣∣∣∣ ∼
( √

2 a

|x− yc|

)P

.

This claim follows directly from the following lemma about the logarithmic kernel:

Lemma 4.2.1. Let x, y, and yc be vectors in R2 such that |x−yc| > |y−yc|. Let for p = 0, 2, 3, . . .

the functions B̃p and Cp be defined by

B̃0(x, yc) = log r,(4.9)

B̃2p−1(x, yc) = r−p cos(p θ),(4.10)

B̃2p(x, yc) = r−p sin(p θ),(4.11)

and

C0(y, yc) = 1,(4.12)

C2p−1(y, yc) = −ρp cos(p θ′)/p,(4.13)

C2p(y, yc) = −ρp sin(p θ′)/p,(4.14)
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6a 2a yc

y1

y2

y3

x1

x2

x3

x4

Ω

Figure 4.1. Geometry of Section 4.2. Any point on or outside of the dashed square
is well-separated from Ω. Consequently, the points x2, x3, and x4 are well-separated
from Ω, but x1 is not.

where polar coordinates (r, θ) and (r′, θ′) are defined by (4.6). Let P be a positive integer. Then∣∣∣∣∣log |x− y| −
2P∑
r=0

B̃r(x, yc)Cr(yc, y)

∣∣∣∣∣ ≤ K

(
r′

r

)P

,

where K = · · · .

A proof of Lemma ?? is given in Appendix ?.

In what follows, we will often replace the potential induced by a source collection by a truncated
multipole expansion of the form

(4.15) u(x) ≈ q̂0 log r +

P∑
p=1

(
q̂2p−1

cos(p θ)

rp
+ q̂2p

sin(p θ)

rp

)
.

To ensure that accuracy is maintained, we will use the approximation only for points x that are
adequately removed from Ω, which we define as follows:

Definition 4.1. Let Ω be a square with side length 2 a. we say that a point x is well-separated
from Ω if it is outside of the (open) box of side-length 6 a concentric to Ω, see Figure 4.1.

When y ∈ Ω we have ρ ≤
√
2a, and when x is well-separated from Ω, we have r ≥ 3a and ρ, so

Lemma 4.2.1 assures us that

(4.16)

∣∣∣∣∣∣u(x)− q̂0 log r −
P∑

p=1

(
q̂2p−1

cos(p θ)

rp
+ q̂2p

sin(p θ)

rp

)∣∣∣∣∣∣ ≤ K

(√
2

3

)P

.

Choosing

P ∼ log(ε)/ log(
√
2/3)

we see that the approximation error remains bounded by ε. [Add details.]

We refer to the truncated vector q̂ = [q̂j ]
2P
j=0 as the multipole expansion of the charge distribution.

It contains all the information required to evaluate the potential to within precision ε at any point
that is well-separated from Ω.
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Remark 4.1. The multipole expansion can also represent continuum charge distributions. Given
a charge distribution q(y) in Ω, and a harmonic potential

u(x) =

∫
Ω
log |x− y| q(y) dA(y),

we find that u satisfies (4.7) if we define the multipole coefficients q̂j via the formulas

q̂0 =

∫
Ω
q(y) dA(y),

q̂2p−1 =

∫
Ω
q(y)C2p−1(y, yc) dA(y) = −

∫
Ω
q(y) (r′)p

1

p
cos(p θ′) dA(y),

q̂2p =

∫
Ω
q(y)C2p(y, yc) dA(y) = −

∫
Ω
q(y) (r′)p

1

p
sin(p θ′) dA(y).

4.3. Separation of variables and the Outgoing Expansion

The multipole expansion in Section 4.2 provides an approximation of the kernel G(x, y) of the form

(4.17) G(x, y) ≈
P∑

p=1

fp(x) gp(y).

The sum in (4.17) is made up of a sum of products in which one factor depends only on x and one
depends only on y; we call such an approximation a separation of variables, or a tensor product
approximation of the kernel. For the specific case when G(x, y) = log |x−y|, Lemma 4.2.1 provides
the form of the functions, but similar expansions can be constructed for a wide range of kernels.
Appendix ?? lists some known analytic expansions, and we describe in Chapter ? techniques for
numerically constructing the functions.

We illustrate the value of a separation of variables such as (4.17) by a simple model problem.
Suppose that for some given kernel G admitting an approximation (4.17), we seek to evaluate the
sum

(4.18) ui =

N∑
j=1

G(xi, yj) qj , i = 1, 2, . . . , M,

where {qj}Nj=1 is a given set of sources, and we week to evaluate the potentials {ui}Mi=1. We suppose

that the source locations {yj}Nj=1 are contained in a box Ωτ that is separate from a box Ωσ that

holds the target locations {xi}Mi=1, see Figure ?. Using straight-forward summation, evaluating
(4.18) requires O(M N) operations. Now suppose that we replace the kernel in (4.18) with the
approximation (4.17) and seek to compute the numbers

uapproxi =

N∑
j=1

 P∑
p=1

fp(xi) gp(yj)

 qj .

We observe that by interchanging the summation order, we can evaluate the vector {uapproxi }Mi=1
in two steps: We first evaluate the numbers

(4.19) q̂p =

N∑
j=1

qj gp(yj), p = 1, 2, . . . , P,
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at cost O(P N), and then evaluate

(4.20) uapproxi =
P∑

p=1

q̂p fp(x), i = 1, 2, . . . , M,

at cost O(P M). We see that the cost is now O(P (M+N)), instead of O(M N). If P is significantly
smaller than M and N , the savings can be substantial. The number of terms P controls the
accuracy: Higher P leads to a lower accuracy, but a higher cost.

The vector q̂ = [q̂p]
P
p=1 is the outgoing expansion of the box τ . The potential generated by the

charges in τ can (to a given precision) be constructed from the information contained in q̂τ alone
at any point sufficiently far removed from the source box. In this book, the condition “sufficiently
far removed” will almost always mean that every point in the target box is well-separated from
the source box in the sense described in Definition 4.1.

Remark 4.2. It will be convenient to express the various operations performed using matrix no-
tation. The sum (4.18) is simply a matrix-vector multiplication

uσ = Aσ,τ qτ ,

where Aσ,τ is the M ×N matrix whose ij entry is given by

Aσ,τ (i, j) = G(xi, yj).

Lemma 4.2.1 implies that Aσ,τ admits a factorization

Aσ,τ ≈ B̃σ,τ Cτ ,
M ×N M × P P ×N

where B̃σ,τ is an M × P matrix whose ip entry is given by

B̃σ,τ (i, p) = Bp(xi, yτ ).

Analogously, Cτ is an P ×N matrix whose pj entry is given by

Cτ (p, j) = Cp(yτ , yj).

The acceleration is now obtained by first evaluating

q̂τ = Cτ qτ

at a cost of N R operations, and then evaluating

uapproxσ = B̃σ,τ q̂τ ,

at a cost of M R operations. Then clearly

uapproxσ = B̃σ,τ q̂τ = B̃σ,τ Cτ qτ ≈ Aσ,τ qτ = uσ.

4.4. A basic tree structure

The separation of variables in the kernel that was described in Section 4.3 is as we saw sufficient for
effectively evaluate a potential field whenever the set of target locations is well-separated from the
set of source locations. When the two sets are identical, we need to tessellate the box containing
them into smaller boxes, and use the expansion only for interactions between boxes that are. In
this section, we describe the simplest such tessellation.

Suppose that we are given a set of points {xi}Ni=1 in a box Ω. Given an integer n0, we pick the
smallest integer L such that when the box Ω is split into 4L equisized smaller boxes, no box holds

41



Level ℓ = 0

Box τ = 1

Level ℓ = 1

Box τ = 2

Box τ = 3

Box τ = 4

Box τ = 5

Level ℓ = 2

τ = 6
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τ = 9
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τ = 17
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Level ℓ = 3

22

23

24

25

Figure 4.2. A binary tree with 4 levels of uniform refinement.

more than n0 points. These 4L equisized small boxes form the leaves of the tree. We merge the
leaves by sets of four to form 4L−1 boxes of twice the side-length, and then continue merging by
pairs until we recover the original box Ω, which we call the root.

The set consisting of all boxes of the same size forms what we call a level. We label the levels
using the integer ℓ = 0, 1, 2, . . . , L, with ℓ = 0 denoting the root, and ℓ = L denoting the leaves.
See Figure 4.2.

Definition 4.2. Let τ be a box in a hierarchical tree.

• The parent of τ is the box on the next coarser level that contains τ .
• The ancestors of τ is the set Lanc

τ consisting of the parent of τ , the parent of the parent,
etc.

• The children of τ is the set Lchild
τ of boxes whose parent is τ .

• The neighbors of τ is the set Lnei
τ of boxes that are on the same level as τ and are directly

adjacent to it.
• The interaction list of τ is the set Lint

τ of all boxes σ such that:
(1) σ and τ are on the same level.
(2) σ and τ are not directly adjacent.
(3) The parents of σ and τ are directly adjacent.
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Example 4.1. For the tree shown in Figure 5.1, we have, e.g.,

Lanc
56 = {1, 4, 14},

Lchild
14 = {54, 55, 56, 57},
Lnei
23 = {22, 24, 25, 26, 28},

Lnei
59 = {36, 37, 48, 58, 60, 61, 70, 72},

Lint
7 = {11, 13, 14: 21},

Lint
37 = {22: 29, 30: 33, 38: 41, 47, 49, 54: 57, 60, 61, 71, 72, 73}.

For the moment, we are assuming that the given point distribution is sufficiently uniform that all
the leaves hold roughly the same number of points. In this case, one easily sees that

L ∼ log
N

n0
.

For non-uniform distributions of points, a uniform subdivision of Ω into 4L boxes of equal length
would be inefficient since many of the leaves would hold few or no points. In such cases, adaptive
subdivisions should be used, see Chapter ?. This chapter also contains a description of algorithms
for determining all lists.

4.5. The Barnes-Hut Method

In this section, we describe a relatively simple scheme for rapidly evaluating the sum (4.1). This is
a harder problem than the simple one considered in Section 4.3 since the sets of source points and
target points are not well-separated (in fact, they are identical). The scheme uses only the simple
multipole expansions described in Section 4.2 to reduce the asymptotic complexity of evaluating
(4.1) from O(N2) to O(N logN). The material in this section is included primarily for illustrative
purposes since it forms a slight deviation from the main narrative of the chapter; the algorithm
described is simple and somewhat useful in certain contexts, but is far less powerful than the full
FMM, which will be described in Sections 4.6 and 4.7. That presentation is largely independent
of the material in this section.

The first step of the Barnes-Hut algorithm is to organize the points into a hierarchical tree as
described in Section 4.4. Then the potentials ui are evaluated via three steps: (1) Compute the
outgoing expansion for every box. (2) Evaluate all interactions between well-separated boxes from
the outgoing expansions. (3) Evaluate the near-field interactions via direct computation.

We will describe the three steps in details, but first we introduce some notation. For each box τ ,
the index vector Jτ marks all points contained in the box τ . In other words:

j ∈ Jτ ⇔ xj ∈ Ωτ .

Next we split the potential into a far-field and a near-field part. To be precise, for a point xi in a
leaf box τ , we set

ui = uneari + ufari ,

where uneari is the potential caused by charges that are not well-separated from τ .
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Step 1 — compute the outgoing expansions: For each box τ in the tree, we compute its outgoing
expansion q̂τ ∈ RP via the formula

(4.21) q̂τ (p) =
∑
j∈Jτ

Cp(yτ , xj) qj , p = 1, 2, . . . , P.

(We recall that the information in q̂τ is sufficient to evaluate the potential induced by the charges
in τ at all points that are well-separated from τ .) The calculation (4.21) can be expressed using
matrix notation as

(4.22) q̂τ = Cτ q(Jτ ),

where Cτ is the matrix with entries Cτ (p, j) = Cp(yτ , xj).

Step 2 — evaluate long range interactions: Fix a leaf node τ , fix a point xi ∈ Ωτ , and let τL, τL−1,
. . . , τ2 be an enumeration of the ancestors of τ so that τL = τ , and τℓ−1 is the parent of τℓ. Now
observe that every charge xj that is well-separated from τ is contained in the interaction list of
precisely one of the ancestors of τ . Consequently,

(4.23) ufari =

L∑
ℓ=2

∑
σ∈Lτℓ

∑
j∈Jσ

G(xi, xj) qj .

In (4.23), all kernel evaluations are performed for points in boxes that are well-separated. Conse-
quently, we can to within precision ε replace them with multipole expansions,

ufari =

L∑
ℓ=2

∑
σ∈Lτℓ

∑
j∈Jσ

P∑
p=1

B̃p(xi, ŷσ)Cp(xj , ŷσ) qj

=

L∑
ℓ=2

∑
σ∈Lτℓ

P∑
p=1

B̃p(xi, ŷσ) q̂σ(p).(4.24)

The expression (4.24) can be written compactly as

ufarτ ≈
L∑

ℓ=2

∑
σ∈Lτ

B̃τ,σ q̂σ,

where B̃τ,σ is the matrix with entries B̃τ,σ(i, p) = B̃p(xi, yσ).

Step 3 — evaluate short range interactions: Fix a leaf node τ , and a point xi ∈ Ωτ . The near field
uneari has contributions from charges both in τ itself, and in its direct neighbors. Consequently,

(4.25) uneari =
∑
j∈Jτ

G(xi, xj) qj +
∑

σ∈Lnei
τ

∑
j∈Jσ

G(xi, xj) qj .

Using matrix notation, we express (4.25) compactly as

unearτ = A(Jτ , Jτ )q(Jτ ) +
∑

σ∈Lnei
τ

A(Jτ , Jσ)q(Jσ).

In a final (fourth?) step, we simply loop over all leaf nodes τ , and combine the far field and the
near field,

u(Jτ ) = ufarτ + unearτ .
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Compute the outgoing expansions on all boxes:

loop over all boxes τ
q̂τ = Cτ q(Jτ )

end loop

Evaluate the far field potentials. Each box τ broadcasts its outgoing representation to all boxes in
its interaction list:

u = 0
loop over all boxes τ

loop over all σ ∈ Lτ

u(Jσ) = u(Jσ) + B̃σ,τ q̂τ
end loop

end loop

Evaluate the near field interactions:

loop over all leaf boxes τ
u(Jτ ) = u(Jτ ) + A(Jτ , Jτ )q(Jτ ) +

∑
σ∈Lnei

τ
A(Jτ , Jσ)q(Jσ)

end

Figure 4.3. The Barnes-Hut algorithm.

The Barnes-Hut algorithm is summarized as Algorithm 4.3. For simplicity, the steps have been
slightly rearranged from the presentation above, but it is easily seen that the output is exactly the
same.

It only remains to estimate the cost of the Barnes-Hut algorithm. We let Tj denote the cost of
Step j. Then

T1 ∼ N LP,

since in Step 1 each of the N particles broadcasts P pieces of information to L boxes. In Step 2,
we need to evaluate the sum (4.24) for each of the N particles. There are at most 27 boxes in each
list Lτℓ , so

T2 ∼ 27N LP.

Finally, Step 3 involves the evaluation of the sum (4.25) for each of the N particles. Since each
box τ has at most 8 neighbors, and since each box contains at most n0 particles, we find that

T3 ∼ 9N n0.

Recalling that L ∼ log(N/n0), and that n0 is a small fixed number (say n0 = 100), we find that
the total cost Ttotal = T1 + T2 + T3 satisfies

T ∼ N log(N) log(1/ε).

as N → ∞ and ε→ 0.

4.6. Incoming Expansions and Translation Operators

A reason for the O(N log(N)) asymptotic cost of the Barnes-Hut algorithm is that every one of
the N charges directly communicates its contribution to all of the O(log(N)) boxes that contain it.
We can eliminate the log(N) factor in the cost of computing the outgoing expansions by computing
them recursively, as follows:
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On level L:: Compute the outgoing expansions directly using (4.21).
On level ℓ = L− 1, L− 2, . . . , 2:: Compute the outgoing expansion for each box τ on level
ℓ by aggregating the outgoing expansions of the four children of τ on level ℓ+ 1 using a
so called outgoing-to-outgoing translation operator.

The potentials will be calculated via an analogous process in which incoming expansions (to be
defined shortly) are aggregated in a dual sweep from coarser to finer levels. In this section, we
introduce the incoming expansion, and describe a number of operators for shifting expansions from
one box to another.

To introduce the concepts of an incoming expansion and a translation operator, let us return to
the model problem described in Section 4.3 in which we were given two well-separated boxes Ωσ

and Ωτ , a set of source points {yj}Nj=1 with associated charges {qj}Nj=1 in Ωτ and a set of target

points {xi}Mi=1 in Ωσ. Our task is to rapidly evaluate the map

(4.26) uσ = Aσ,τ qτ ,

where the M ×N matrix Aσ,τ has entries

Aσ,τ (i, j) = G(xi, yj).

The purpose of Section 4.3 was to demonstrate that the map (4.26) could be evaluated rapidly via
the approximate factorization

Aσ,τ ≈ B̃σ,τ Cτ ,

where the M × P matrix B̃σ,τ and the P ×N matrix Cτ are defined in Remark 4.2. The process
is illustrated by the following diagram:

qτ
Aσ,τ //

Cτ
��

uσ

q̂τ
B̃σ,τ

;;wwwwwwww

We first evaluate the outgoing expansion q̂ via application of the map Cτ at a cost of N P op-
erations. Then the potential on σ is evaluated via application of the map B̃σ,τ at a cost of M P
operations. In this section, we will add one more leg to the diagram:

(4.27) qτ
Aσ,τ //

Cτ
��

uσ

q̂τ Zσ,τ

// ûσ

Bσ

OO

The vector ûσ is the incoming expansion on σ. In our model problem it will be a vector of P
numbers {ûσ(p)}Pp=1 such that

ui ≈ ûσ(0) +

P/2∑
r=1

ûσ(2p− 1) (r′)p cos(p θ) + ûσ(2p) (r
′)p sin(p θ).

In other words, the numbers ûσ(p) are the coefficients in a harmonic expansion of u, and we see
that the M × P matrix Bσ has coefficients

Bσ(i, p) = · · ·

We can now state our goals for this section:
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(1) Demonstrate that there exists a matrix Z, called the “outgoing-to-incoming translation
operator” such that A ≈ BZC.

(2) Demonstrate that if all the source points in τ are contained in a box ν that is contained
in τ , and if the outgoing expansion q̂ν for ν is known, then there is a linear map F such
that q̂τ ≈ F q̂ν . We call the map F the “outgoing-to-outgoing translation operator”.

(3) Demonstrate that if all target points in σ are contained in a box ν that is fully contained
in σ, and if the incoming expansion for σ is known, then there is a linear map E such that
ûν ≈ E ûσ. We call the map E the “incoming-to-incoming translation operator”.

We start with a theorem asserting the existence of the outgoing-to-incoming translation operator.

Lemma 4.6.1. Let Ωσ and Ωτ be two well-separated intervals on the line with centers xσ and yτ ,
respectively. Let {yj}Nj=1 be a set of source points in Ωτ , and let {xi}Mi=1 be a set of target points
in Ωσ. Let A be the M ×N matrix with entries

Aij = |xi − yj |−1.

Then A admits the approximate factorization A ≈ BZC where

Bis = (xi − xσ)
s−1,

Zsr = (−1)s−1

(
r + s− 2

r − 1

)
1

|xσ − yτ | (xσ − yτ )
r+s−2

,

Crj = (yj − yτ )
r−1.

Specifically, for any i, j,

|Aij − [BZC]ij | ≤ · · · (1/3)R.

Proof. It is sufficient to demonstrate that for any x ∈ Ωσ, and for any y ∈ Ωτ , we have∣∣∣∣∣ 1

|x− y|
−

R∑
s=1

(x− xσ)
s−1

R∑
r=1

Zsr (y − yτ )
r−1

∣∣∣∣∣ ≤ · · ·
(
1

3

)R

.

To this end, note that

1

|x− y|
=

1

|(x− yτ )− (y − yτ )|
=

1

|x− yτ |
1∣∣∣1− y−yτ
x−yτ

∣∣∣ .
Since |y − yτ | < |x− yτ |, and

(1− t)−1 =

∞∑
s=1

ts−1, whenever |t| < 1,

we find that

(4.28)
1

|x− y|
=

1

|x− yτ |

∞∑
r=1

(
y − yτ
x− yτ

)r−1

=
∞∑
r=1

1

|x− yτ |(x− yτ )
r−1

(y − yτ )
r−1.
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Set κ = Sign(xσ − yτ ). Then

1

|x− yτ |(x− yτ )
r−1

= κ (x− yτ )
−r = κ

(
(xσ − yτ )− (xσ − x)

)−r

= κ (xσ − yτ )
−r

(
1− xσ − x

xσ − yτ

)−r

.

Next we note that |xσ − x| < |xσ − yτ | and that

(1− t)−r =

∞∑
s=1

(
r + s− 2

r − 1

)
ts−1 whenever |t| < 1.

It follows that

(4.29)
1

|x− yτ |(x− yτ )
r−1

= κ (xσ − yτ )
−r

∞∑
s=1

(
r + s− 2

r − 1

)(
xσ − x

xσ − yτ

)s−1

=

∞∑
s=1

(−1)s−1

(
r + s− 2

r − 1

)
κ

(xσ − yτ )
r+s−1︸ ︷︷ ︸

=Zsr

(x− xσ)
r−1.

Combining (4.28) and (4.29), and noting that since the sums are absolutely convergent, we can
interchange the order of summation, we find that

1

|x− y|
=

∞∑
s=1

(x− xσ)
s−1

∞∑
r=1

Zsr (y − yτ )
r−1.

It remains to bound the errors introduced by truncation.
FILL IN DETAILS... �

Next we prove the existence of the “outgoing-to-outgoing translation operator”:

Lemma 4.6.2. Let yτ and yν denote two points on the line. Let {yj}Nj=1 denote a number of source

locations with associated charges {qj}Nj=1. Define for r = 1, 2, . . . , R the “outgoing expansions”

q̂τr =

N∑
j=1

qj (yj − yτ )
r−1, and q̂νr =

N∑
j=1

qj (yj − yν)
r−1.

Let F denote the R×R lower triangular matrix defined by

Frs =

{ (
r−1
s−1

)
(yν − yτ )

r−s, when s ≤ r,

0 when s > r.

Then

(4.30) q̂τ = F q̂ν .
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Proof. The equation (4.30) follows directly from the binomial identity:

q̂τr =

N∑
j=1

qj (yj − yτ )
r−1 =

N∑
j=1

qj
[
(yj − yν) + (yν − yτ )

]r−1

=

N∑
j=1

qj

r∑
s=1

(
r − 1

s− 1

)
(yj − yν)

s−1 (yν − yτ )
r−s

=

r∑
s=1

(
r − 1

s− 1

)
q̂νs (yν − yτ )

r−s.

�

The construction of the incoming-to-incoming operator is almost entirely analogous:

Lemma 4.6.3. Let xσ and xν denote two points on the real line. Suppose that {ûσr }Rr=1 is a given
vector of coefficients in a polynomial expansion around xσ. Define the R × R upper triangular
matrix E via

Esr =

{ (
r−1
s−1

)
(xν − xσ)r−s, when r ≥ s,

0, when r < s,

and define the vector ûν via
ûν = E ûσ.

Then for any x,
R∑

r=1

ûσr (x− xσ)
r−1 =

R∑
s=1

ûνs (x− xν)
s−1.

Proof. A simple application of the binomial identity yields

R∑
r=1

ûσr (x− xσ)
r−1 =

R∑
r=1

ûσr
[
(x− xν) + (xν − xσ)

]r−1

=

R∑
r=1

ûσr

r∑
s=1

(
r − 1

s− 1

)
(x− xν)

s−1 (xν − xσ)
r−s

=

R∑
s=1

{
R∑

r=s

(
r − 1

s− 1

)
(xν − xσ)

r−s ûσr

}
︸ ︷︷ ︸

=ûν
s

(x− xν)
s−1.

�
Remark 4.3. The manipulation of the kernel at the beginning of this subsection constitutes an
analytic proof that the matrix A has approximate rank R. It also provides explicit formulas for
the factors B and C. As an alternative approach, one can construct the matrix A first, and then
numerically derive factors B and C such that ||A − BC|| ≤ ε. This approach has the advantage
that detailed information about the kernel is not required à priori, and moreover, that the rank R
used is optimal. (The analytic derivation above gives only an upper bound for the rank R — it
does not say that other factorizations cannot do better.) Against these advantages stands the cost
of first constructing the full matrix A at a cost of M N kernel evaluations, and then decomposing
it at a cost of O(M N R) floating point operations. This amount of work can be justified if the
evaluation problem (4.18) is to be evaluated for many charge distributions {qj}Nj=1 for a given set
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of source and target locations. In practice, hybrid methods that exploit both analytic knowledge and
numerical compression are frequently the method of choice.

4.7. The Classical FMM in Two Dimensions

In this section, we will describe modifications to the Barnes-Hut method described in Section 4.5
that improve the asymptotic CPU time requirement from O(N log(N)) to O(N). The problem
considered is the same (fast evaluation of the sum (4.1)), and the basic methodology is very similar:
we start with organizing the points in a tree structure, we construct outgoing expansions for all
boxes, and evaluate all long-range interactions via these expansions. A key difference is how the
outgoing expansions are computed. In the Barnes-Hut method, every point directly broadcasts
its contribution to the O(log(N)) boxes that contain it. In contrast, in the FMM, each point
contributes directly only to the outgoing expansions on the leaves. The outgoing expansions on
the next coarser level are constructed from the outgoing expansions on the leaves. The process
then continues upwards through the tree with the outgoing expansion for any box being computed
from the outgoing expansions of its two children. This process reduces the cost of computing the
outgoing expansions from O(N log(N)) to O(N). The analogous reduction in cost in computing
the potentials is obtained by similarly aggregating “incoming expansions” for each box τ .

We start the detailed description of the method by describing the process by which the outgoing
expansions are computed hierarchically. Using the “outgoing-to-outgoing translation operators”
introduced in Section 4.6, this is straightforward. Let τ denote a non-leaf node whose children are
listed in Lchild

τ . Then Lemma 5.4.3 demonstrates that there exists matrices Fτ,σ such that

(4.31) q̂τ =
∑

σ∈Lchild
τ

Fτ,σ q̂σ.

In order to derive the corresponding formula for hierarchically computing the incoming expansions,
we first define for each box τ its far-field potential ufarτ as the part of the potential caused by all
sources that are well-separated from τ :

ufarτ (x) =
∑

j∈J far
τ

G(x, xj) qj , x ∈ Ωτ ,

where J far
τ is an index vector marking the source points that are well-separated from τ :

j ∈ J far
τ ⇔ xj is well-separated from τ.

The incoming expansion for τ is then a vector ûτ = [ûτr ]
R
r=1 such that

ufarτ (x) ≈
R∑

r=1

ûτr (x− xτ )
r−1.

Now observe that if ν is the parent of τ , then the far-field potential for τ has two terms:

(4.32) ufarτ (x) = ufarν (x) +
∑
σ∈Lτ

∑
j∈Jσ

G(x, xj) qj .

The first term in (4.32) represents the contributions to the potential from all charges that are
well-separated from both τ and its parent ν. The second term in (4.32) represents contributions
from points that are well-separated from τ , but not from ν. According to Lemma 5.4.2, these
contributions can all be evaluated from the outgoing expansions on the boxes in Lτ ,∑

σ∈Lτ

∑
j∈Jσ

G(x, xj) qj ≈
∑
σ∈Lτ

Bτ Zτ,σ q̂σ.
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Letting Eτ,ν denote the incoming-to-incoming translation operator defined by Lemma 5.4.4, we
find that equation (4.32) can be expressed

ûτ = Eτ,ν ûν +
∑
σ∈Lτ

Zτ,σ q̂σ.

The Fast Multipole Method is now obtained by modifying the Barnes-Hut method to use equations
(4.31) and (4.7) to hierarchically compute all incoming and outgoing expansions. The full algorithm
is given in Figure 4.4.

4.8. The General Structure of an FMM

4.9. The Classical FMM in Three Dimensions

4.9.1. Problem formulation.

4.9.2. Translation operators.

4.9.3. Tree structure.

4.9.4. The Algorithm.

4.10. FMMs for other Kernel Functions

4.10.1. Stokes Equation.

4.10.2. The equations of linear elasticity.

4.10.3. Helmholtz equation.

4.11. Bibliographical notes
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Compute the outgoing expansion on each leaf:

loop over all leaf nodes τ
q̂τ = Cτ q(Jτ )

end loop

Computing the outgoing expansions on all parents by merging the outgoing expansions of their
children by applying the “outgoing-to-outgoing translation operators”:

loop over levels ℓ, finer to coarser, l = L : (−1) : 2
loop over all nodes τ on level ℓ

q̂τ =
∑

σ∈Lchild
τ

Fτ,σ q̂σ
end loop

end loop

For every box τ , collect the contribution to its incoming potential that is due to boxes on the same
level as itself (that is, all boxes that are well-separated from it, but are not well-separated from its
parent). This is done by applying the “outgoing-to-incoming translation operators” to the outgoing
expansions for all boxes σ in the “interaction list” of box τ :

loop over all boxes τ
ûτ =

∑
σ∈Lτ

Zτ,σ q̂σ
end loop

Complete the computation of the incoming expansions for every box by adding to the contribution
from boxes in its interaction list (computed in the previous step) the contribution from its parent.
Practically, we loop over all parent boxes τ , and broadcast the incoming expansion of τ to its
children σ1 and σ2 via the application of “incoming-to-incoming translation operators”:

loop over levels ℓ, coarser to finer, l = 2 : L
loop over all nodes τ on level ℓ

loop over all children σ of τ
ûσ = ûσ + Eσ,τ ûτ .

end loop
end loop

end loop

Compute the potential on every leaf τ by expanding its incoming potential and then adding the
contributions from charges in τ itself and its adjacent neighbors via direct evaluation:

loop over all leaf nodes τ
u(Jτ ) = Bτ ûτ + A(Jτ , Jτ )q(Jτ ) +

∑
σ∈Lnei

τ
A(Jτ , Jσ)q(Jσ)

end loop

Figure 4.4. The Classical Fast Multipole Method in 2D.
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Compute the outgoing expansion on each leaf via application of the particle-to-outgoing operator:

loop over all leaf nodes τ
q̂τ = Cτ q(Jτ )

end loop

Compute the outgoing expansion of each parent by merging the expansions of its children via application
of the outgoing-to-outgoing operators:

loop over levels ℓ, from the finest to the coarsest
loop over all nodes τ on level ℓ

q̂τ =
∑

σ∈Lchild
τ

Fτ,σ q̂σ
end loop

end loop

Compute the incoming expansion for every box by combining the incoming expansion of its parent
(mapped via the incoming-to-incoming operator) with the contributions from the outgoing expansions
of all boxes in its interaction list (transferred via the outgoing-to-incoming operator):

û1 = 0
loop over levels ℓ, from level ℓ = 1 to the finest

loop over all nodes τ on level ℓ
Let ν denote the parent of τ .
ûτ = Eτ,ν ûν +

∑
σ∈Lτ

Zτ,σ q̂σ.
end loop

end loop

Compute the potential on every leaf by expanding its incoming potential (via the incoming-to-particle
operator) and then adding the contributions from its near field via direct evaluation:

loop over all leaf nodes τ
u(Jτ ) = Bτ ûτ + A(Jτ , Jτ )q(Jτ ) +

∑
σ∈Lnei

τ
A(Jτ , Jσ)q(Jσ)

end loop

Figure 4.5. The Classical Fast Multipole Method.

AAA
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CHAPTER 5

A Linear Algebraic Interpretation of the FMM

5.1. Introduction

This chapter provides an alternative derivation of both the Barnes-Hut and the Fast Multipole
Methods. These derivations are focused on expressing the algorithms as matrix factorizations.
The chapter is self-contained, and overlaps the presentation in Chapter 4. [Excessively so at the
moment, this will be fixed later.] However, our treatment in this chapter is quite terse. A reader
unfamiliar with FMMs is encouraged to read Chapter 4 first.

To enable us to explicitly show the structure of certain blocks matrices, we consider a problem in
one dimension in this chapter. However, the presentation directly generalizes to higher dimensions.

5.2. Problem formulation

In this section, we describe fast methods for rapidly evaluating the sum

(5.1) ui =

N∑
j=1

G(xi, xj) qj , i = 1, 2, . . . , N,

where {xi}Ni=1 is a given set of real numbers, {qi}Ni=1 is a given set of real numbers which we call
charges, {ui}Ni=1 is a set of real numbers we seek to compute called potentials, and the kernel G is
given by

(5.2) G(x, y) =

{ 1
|x−y| , when x ̸= y

0 when x = y.

Using straight-forward summation techniques, the evaluation of the sum (4.1) requires O(N2)
floating point operations.

It is convenient to express the summation operation in (5.1) as a matrix-vector multiplication. To
this end, we define A as the M ×N matrix with ij entry

aij = G(xi, xj).

Setting q = [qj ]
N
j=1 and u = [ui]

M
i=1, formula (5.1) can be expressed

u = Aq.
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Level 3

Level 2
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8 9 10 11

20 21 24 26 3116 17 18 19 22 23 25 27 28 29 30

14 1512 13

4

2 3

Level 0

Level 1

Level 4

Figure 5.1. A binary tree with 4 levels of uniform refinement.

5.3. Hierarchical subdivisions of the line

Suppose that we are given a set of points {xi}Ni=1 in an interval, or box, Ω on the line. In this
section, we describe the most basic way of organizing these points into a hierarchical structure
of subintervals: Given an integer n0, we pick the smallest integer L such that when the given
interval is subdivided into 2L subintervals of equal length, no subinterval holds more than n0
points. These 2L subintervals form the leaves of the tree. We next merge the leaves by pairs to
form 2L−1 intervals of twice the size, and then continue merging by pairs until we recover the full
interval, which we call the root.

A set consisting of all boxes of the same size forms what we call a level. We use the index ℓ to
number the levels so that level ℓ = L consists of all the leaves, and level ℓ = 0 is the root box. See
Figure 5.1.

The terms parent, child, neighbor, etc are defined as in Definition 4.2.

Example 5.1. For the tree shown in Figure 5.1, we have, e.g.,

Lchild
2 = {4, 5}, Lchild

14 = {28, 29},

Lanc
10 = {1, 2, 5}, Lanc

29 = {1, 3, 7, 14}.

Lnei
2 = {3}, Lnei

10 = {9, 11}, Lnei
17 = {16, 18}.

Lint
4 = {6, 7}, Lint

13 = {10, 11, 15}, Lint
17 = {19},

Algorithms for constructing the various lists are given in Chapter ??. This chapter also describes
techniques for handling non-uniform point distributions.
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5.4. Translation operators

5.4.1. Problem formulation. Let us consider a simplified model problem in which we are
given two separated sets, one containing charges, and one containing target points, and we seek to
evaluate the potential caused by the charges at all the target points. Specifically, suppose that we
are given a set of charge locations {yj}Nj=1 in an interval Ωτ and a set of target locations {xi}Mi=1

in a set Ωσ. Given a set of charges {qj}Nj=1 we now seek to evaluate the sum

(5.3) ui =

N∑
j=1

G(xi, yj) qj .

In matrix notation, we set q = [qj ]
N
j=1, u = [ui]

M
i=1, whence the sum (5.3) takes the form

(5.4) u = Aq,

where the M ×N matrix A has entries

aij = G(xi, yj).

5.4.2. Outgoing expansion. We will first demonstrate that the matrix A admits an approx-
imate factorization

(5.5) A ≈ B̃ C,

where the product on the right hand side has rank R. The factorization (5.5) allows us to rapidly
evaluate (5.4) via the diagram

q
A //

C
��

u

q̂
B̃

<<yyyyyyyy

Lemma 5.4.1. Let Ωσ and Ωτ be two separated intervals on the line with centers xσ and yτ . Suppose
that x ∈ Ωσ and y ∈ Ωτ , and that the kernel G is defined by (5.2). Let R be a positive integer. Set

B̃r(x, yτ ) =
1

|x− yτ | (x− yτ )
r−1

, and Cr(yτ , y) = (yj − yτ )
r−1.

Then ∣∣∣∣∣G(x, y)−
R∑

r=1

Br(x, yτ )Cr(yτ , y)

∣∣∣∣∣ ≤ C αR,

were C = · · · and

α =
|y − yτ |
|x− xτ |

.

Now just set

B̃ir =
1

|xi − yτ | (xi − yτ )
r−1

, and Crj = (yj − yτ )
r−1,

and observe that if Ωσ and Ωτ are well-separated, then α ≤ 1/3.
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5.4.3. The incoming expansion. We next add one more leg to the diagram:

(5.6) q
A //

C
��

u

q̂
Z

// û

B

OO

The vector û is the incoming expansion on σ. In our model problem it will be a vector of R
numbers {ûr}Rr=1 such that

ui ≈
R∑

r=1

ûr (xi − xσ)
r−1.

In other words, the numbers ûr are the coefficients in a polynomial expansion of u, and we see
that the M ×R matrix B has coefficients

Bir = (xi − xσ)
r−1.

We can now state our goals for this section:

We can alternatively formulat (5.6) as a matrix approximation as

A ≈ BZC.

The existence of such a factorization is assured by the following result:

Lemma 5.4.2. Let Ωσ and Ωτ be two well-separated intervals on the line with centers xσ and yτ ,
respectively. Let {yj}Nj=1 be a set of source points in Ωτ , and let {xi}Mi=1 be a set of target points
in Ωσ. Let A be the M ×N matrix with entries

Aij = |xi − yj |−1.

Then A admits the approximate factorization A ≈ BZC where

Bis = (xi − xσ)
s−1,

Zsr = (−1)s−1

(
r + s− 2

r − 1

)
1

|xσ − yτ | (xσ − yτ )
r+s−2

,

Crj = (yj − yτ )
r−1.

Specifically, for any i, j,

|Aij − [BZC]ij | ≤ · · · (1/3)R.

Proof. It is sufficient to demonstrate that for any x ∈ Ωσ, and for any y ∈ Ωτ , we have∣∣∣∣∣ 1

|x− y|
−

R∑
s=1

(x− xσ)
s−1

R∑
r=1

Zsr (y − yτ )
r−1

∣∣∣∣∣ ≤ · · ·
(
1

3

)R

.

To this end, note that

1

|x− y|
=

1

|(x− yτ )− (y − yτ )|
=

1

|x− yτ |
1∣∣∣1− y−yτ
x−yτ

∣∣∣ .
Since |y − yτ | < |x− yτ |, and

(1− t)−1 =

∞∑
s=1

ts−1, whenever |t| < 1,
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we find that

(5.7)
1

|x− y|
=

1

|x− yτ |

∞∑
r=1

(
y − yτ
x− yτ

)r−1

=
∞∑
r=1

1

|x− yτ |(x− yτ )
r−1

(y − yτ )
r−1.

Set κ = Sign(xσ − yτ ). Then

1

|x− yτ |(x− yτ )
r−1

= κ (x− yτ )
−r = κ

(
(xσ − yτ )− (xσ − x)

)−r

= κ (xσ − yτ )
−r

(
1− xσ − x

xσ − yτ

)−r

.

Next we note that |xσ − x| < |xσ − yτ | and that

(1− t)−r =

∞∑
s=1

(
r + s− 2

r − 1

)
ts−1 whenever |t| < 1.

It follows that

(5.8)
1

|x− yτ |(x− yτ )
r−1

= κ (xσ − yτ )
−r

∞∑
s=1

(
r + s− 2

r − 1

)(
xσ − x

xσ − yτ

)s−1

=

∞∑
s=1

(−1)s−1

(
r + s− 2

r − 1

)
κ

(xσ − yτ )
r+s−1︸ ︷︷ ︸

=Zsr

(x− xσ)
r−1.

Combining (4.28) and (4.29), and noting that since the sums are absolutely convergent, we can
interchange the order of summation, we find that

1

|x− y|
=

∞∑
s=1

(x− xσ)
s−1

∞∑
r=1

Zsr (y − yτ )
r−1.

It remains to bound the errors introduced by truncation.
FILL IN DETAILS... �

Next we prove the existence of the “outgoing-to-outgoing translation operator”:

Lemma 5.4.3. Let yτ and yν denote two points on the line. Let {yj}Nj=1 denote a number of source

locations with associated charges {qj}Nj=1. Define for r = 1, 2, . . . , R the “outgoing expansions”

q̂τr =

N∑
j=1

qj (yj − yτ )
r−1, and q̂νr =

N∑
j=1

qj (yj − yν)
r−1.

Let F denote the R×R lower triangular matrix defined by

Frs =

{ (
r−1
s−1

)
(yν − yτ )

r−s, when s ≤ r,

0 when s > r.

Then

(5.9) q̂τ = F q̂ν .
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Proof. The equation (5.9) follows directly from the binomial identity:

q̂τr =

N∑
j=1

qj (yj − yτ )
r−1 =

N∑
j=1

qj
[
(yj − yν) + (yν − yτ )

]r−1

=

N∑
j=1

qj

r∑
s=1

(
r − 1

s− 1

)
(yj − yν)

s−1 (yν − yτ )
r−s

=
r∑

s=1

(
r − 1

s− 1

)
q̂νs (yν − yτ )

r−s.

�

The construction of the incoming-to-incoming operator is almost entirely analogous:

Lemma 5.4.4. Let xσ and xν denote two points on the real line. Suppose that {ûσr }Rr=1 is a given
vector of coefficients in a polynomial expansion around xσ. Define the R × R upper triangular
matrix E via

Esr =

{ (
r−1
s−1

)
(xν − xσ)r−s, when r ≥ s,

0, when r < s,

and define the vector ûν via

ûν = E ûσ.

Then for any x,
R∑

r=1

ûσr (x− xσ)
r−1 =

R∑
s=1

ûνs (x− xν)
s−1.

Proof. A simple application of the binomial identity yields

R∑
r=1

ûσr (x− xσ)
r−1 =

R∑
r=1

ûσr
[
(x− xν) + (xν − xσ)

]r−1

=

R∑
r=1

ûσr

r∑
s=1

(
r − 1

s− 1

)
(x− xν)

s−1 (xν − xσ)
r−s

=

R∑
s=1

{
R∑

r=s

(
r − 1

s− 1

)
(xν − xσ)

r−s ûσr

}
︸ ︷︷ ︸

=ûν
s

(x− xν)
s−1.

�

5.5. Barnes-Hut

In this section, we derive the Barnes-Hut algorithm as a multi-level matrix factorization.

Fix a level ℓ in the hierarchical tree. The index sets Jτ on level ℓ form a disjoint partitioning of
the full index set [1, 2, . . . , N ]. We let D(ℓ) denote a block tri-diagonal matrix corresponding to

60



this partitioning. The non-zero blocks of D(ℓ) are identical to the corresponding blocks of A.. To
be precise, D(ℓ) is an N ×N matrix whose entries are all zeros, except that for any τ on level ℓ,

D(ℓ)(Jτ , Jτ ) = A(Jτ , Jτ ),

and for every σ ∈ Lnei
τ (that is, for every neighbor σ of τ):

D(ℓ)(Jσ, Jτ ) = A(Jσ, Jτ ).

Using the short-hand

Aσ,τ = A(Jσ, Jτ ),

we have, for instance,

D(2) =


A(4,4) A(4,5) 0 0
A(5,4) A(5,5) A(5,6) 0
0 A(6,5) A(6,6) A(6,7)

0 0 A(7,6) A(7,7)

 .
and

D(3) =



A(8,8) A(8,9) 0 0 0 0 0 0
A(9,8) A(9,9) A(9,10) 0 0 0 0 0
0 A(10,9) A(10,10) A(10,11) 0 0 0 0
0 0 A(11,10) A(11,11) A(11,12) 0 0 0
0 0 0 A(12,11) A(12,12) A(12,13) 0 0
0 0 0 0 A(13,12) A(13,13) A(13,14) 0
0 0 0 0 0 A(14,13) A(14,14) A(14,15)

0 0 0 0 0 0 A(15,14) A(15,15)


.

It follows that

D(2) −D(3) =



0 0 A(8,10) A(8,11) 0 0 0 0
0 0 0 A(9,11) 0 0 0 0

A(10,8) 0 0 0 A(10,12) A(10,13) 0 0
A(11,8) A(11,9) 0 0 0 A(11,13) 0 0

0 0 A(12,10) 0 0 0 A(12,14) A(12,15)

0 0 A(13,10) A(13,11) 0 0 0 A(13,15)

0 0 0 0 A(14,12) 0 0 0
0 0 0 0 A(15,12) A(15,13) 0 0


.

The blocks in the formula above are precisely the blocks whose interactions are dealt with at level
ℓ. The non-zero blocks of column τ are precisely the blocks in the interaction list of τ . (For
instance, Lint

10 = {8, 12, 13}.) Recalling that if σ is in the interaction list of block τ , then

Aσ,τ ≈ B̃σ,τ Cτ ,

we find that

(5.10) D(ℓ−1) −D(ℓ) ≈ B̃
(ℓ)

C(ℓ),

provided that we define C(ℓ) as the block diagonal matrix obtained by placing the 2ℓ matrices Cτ

corresponding to boxes τ on level ℓ on the diagonal. For instance,

C(3) =


C8 0 · · · 0
0 C9 · · · 0
...

...
...

0 0 · · · C15

 .
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Moreover we define B̃
(ℓ)

as a matrix with 2ℓ × 2ℓ blocks. Each column corresponds to a given box
τ on level ℓ. The non-zero blocks on this level are filled with the matrices B̃σ,τ for boxes σ that
are in the interaction list of τ . For instance,

B̃
(3)

=



0 0 B̃8,10 B̃8,11 0 0 0 0

0 0 0 B̃9,11 0 0 0 0

B̃10,8 0 0 0 B̃10,12 B̃10,13 0 0

B̃11,8 B̃11,9 0 0 0 B̃11,13 0 0

0 0 B̃12,10 0 0 0 B̃12,14 B̃12,15

0 0 B̃13,10 B̃13,11 0 0 0 B̃13,15

0 0 0 0 B̃14,12 0 0 0

0 0 0 0 B̃14,12 B̃14,13 0 0


.

Since A = D(1), the Barnes-Hut method now follows from the identity

D(1) =
(
D(1) −D(2)

)
+
(
D(2) −D(3)

)
+ · · ·+

(
D(L−1) −D(L)

)
+D(L).

In view of (5.10) we get

(5.11) A ≈ B̃
(2)

C(2) + B̃
(3)

C(3) + B̃
(4)

C(4) +D(4).

The matrices C(ℓ) are of size 2ℓR × N and have at most R non-zero elements in each column.

Applying C(ℓ) to a vector therefore requires RN operations. Similarly, applying B̃
(ℓ)

to a vector
requires at most 3RN operations. Since there are L ∼ log(N) terms in (5.11) that relate to
far-field interactions, the cost of evaluating the far-field via formula (5.11) is O(RN log(N)).

5.6. The Fast Multipole Method

Before we proceed to describe the Fast Multipole Method, we note that the formula (5.11) can
be symmetrized by expressing it in terms of both outgoing and incoming expansions, via the
factorization provided by Lemma 5.4.2. Then

(5.12) A ≈ B(2) Z(2) C(2) + B(3) Z(3) C(3) + B(4) Z(4) C(4) +D(4).

The matrices B(ℓ) are block-diagonal matrices whose diagonal blocks are formed by all matrices
Bτ for all boxes τ on level ℓ. For instance,

B(3) =


B8 0 · · · 0
0 B9 · · · 0
...

...
...

0 0 · · · B15

 .
The matrices Z(ℓ) are analogous to B̃

(ℓ)
but are formed by the matrices Zτ,σ instead of the matrices

B̃τ,σ. For instance,

Z(3) =



0 0 Z8,10 Z8,11 0 0 0 0
0 0 0 Z9,11 0 0 0 0

Z10,8 0 0 0 Z10,12 Z10,13 0 0
Z11,8 Z11,9 0 0 0 Z11,13 0 0
0 0 Z12,10 0 0 0 Z12,14 Z12,15

0 0 Z13,10 Z13,11 0 0 0 Z13,15

0 0 0 0 Z14,12 0 0 0
0 0 0 0 Z14,12 Z14,13 0 0


.
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The Fast Multipole Method can be said to achieve its acceleration over the Barnes-Hut method
by expressing the matrices B(ℓ) and C(ℓ) in telescoping factorizations. To obtain the factorization
for the operators C(ℓ) we start by considering two ways of constructing the outgoing expansion q̂τ
for a non-leaf node τ . First we do it directly from the vector q via the formula

(5.13) q̂τ = Cτ q(Jτ ).

Next we note that (??) provides a way of computing q̂τ from the outgoing expansions of the
children σ1 and σ2 of τ ,

(5.14) q̂τ = Fτ,σ1 q̂σ1
+ Fτ,σ2 q̂σ2

= Fτ,σ1Cσ1 q(Jσ1) + Fτ,σ2Cσ2 q(Jσ2)

= [Fτ,σ1 Fτ,σ2 ]

[
Cσ1 0
0 Cσ2

]
q(Jτ ).

Since (5.13) and (5.14) must hold for any vector q, it follows that

Cτ = [Fτ,σ1 Fτ,σ2 ]

[
Cσ1 0
0 Cσ2

]
.

Letting F(ℓ) denote the block diagonal matrix whose diagonal is formed by the blocks Fτ for all
τ ’s on level ℓ, we find that

(5.15) C(L−1) = F(L−1) C(L), C(L−2) = F(L−2) F(L−1) C(L), etc.

To obtain the analogous expressions for the matrices B(ℓ), let τ be a box with children σ1 and
σ2. Let u denote a potential caused by charges that are all well-separated from τ . (This last
assumption is made so that we do not have to worry about contributions from the second term in
(4.32).) We then find that

u(Jτ ) = Bτ ûτ ,

and that

u(Jτ ) =

[
u(Jσ1)
u(Jσ2)

]
=

[
Bσ1 ûσ1

Bσ2 ûσ2

]
=

[
Bσ1 Eσ1,τ ûτ
Bσ2 Eσ2,τ ûτ

]
[
Bσ1 0
0 Bσ2

] [
Eσ1,τ

Eσ2,τ

]
ûτ .

It follows that

Bτ =

[
Bσ1 0
0 Bσ2

] [
Eσ1,τ

Eσ2,τ

]
,

and defining E(ℓ) as the block diagonal matrix whose diagonal blocks are the matrices Eτ for all
τ ’s on level ℓ, we find that

(5.16) B(L−1) = B(L) E(L−1), B(L−2) = B(L) E(L−1) E(L−2), etc.

Inserting (5.15) and (5.16) into the terms arising in (5.12), we find that

B(3) Z(3) C(3) = B(4) E(3) Z(3) F(3) F(4),

B(2) Z(2) C(2) = B(4) E(3) E(2) Z(2) F(2) F(3) C(4).

This implies that (5.12) can be expressed in telescoping form as

(5.17) A ≈ B(4)
(
E(3)

(
E(2) Z(2) F(2) + Z(3)

)
F(3) + Z(4)

)
C(4) +D(4).

The advantage of the expression (5.17) over (5.12) is that the factors get exponentially smaller as
we proceed towards coarser levels. This means that the cost of processing level ℓ is now O(2ℓR2),
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which should be compared to the constant O(2LR2) cost of processing level ℓ in the Barnes-Hut
method.
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CHAPTER 6

Boundary Integral Equation methods: How to very rapidly solve
Laplace’s equation on a general domain

Summary: We describe a set of methods for computing approximate solutions to linear boundary value

problems. The foundation of these methods is a reformulation of the partial differential equation as an

integral equation. In many cases, the resulting integral equation can rapidly be solved to very high accuracy,

and in an entirely stable manner. The computational speed of these methods compares favorably with other

numerical techniques for partial differential equations. The most dramatic speed-up occurs for problems that

can be reformulated as integral equations defined on the boundary alone.

6.1. Introduction

6.1.1. The basic idea. The set of methods described in this note are applicable to a wide
range of linear boundary value problems. For simplicity, we suppose that the BVP we are interested
in solving takes the form

Au = 0 on Ω,(6.1)

u = f on Γ,(6.2)

where A is a linear elliptic partial differential operator with constant coefficients, where Ω is a
domain in Rd with boundary Γ, and where f is a pre-scribed function on Γ.1 It is in many cases
possible to reformulate a BVP such as (6.1), (6.2) as a boundary integral equation of the form

(6.3) v(x) +

∫
Γ
k(x, y) v(y) dl(y) = g(x),

where k is a kernel function derived from the fundamental solution associated with the operator A,
and g is a data function derived from the boundary data f (a specific example is given in Section
6.3.1). There typically exist several different BIE formulations of the same BVP; choosing the
“right” one is important, cf. Remark 6.1.

Upon discretization, the BIE (6.3) turns into a system of N linear algebraic equations that we
write

(6.4) v + Av = g,

where A is a matrix approximating the integral operator in (6.3). An apparent obstacle to solving
(6.4) rapidly is that the matrix A is almost always dense. However, this matrix typically has
properties that allow the computation of products w 7→ Aw cheaply. For instance, there exist
Fast Multipole Methods (FMMs) for a wide variety of kernels that perform such matrix-vector
multiplications in O(N) arithmetic operations, with a small constant. Then iterative solvers (such
as GMRES) can be used to determine an approximate solution of (6.4) very rapidly.

1For BVP such as (6.1), (6.2), the equivalent integral equations are defined on the boundary alone. This is the
environment in which FIEM has the strongest competitive advantage. However, it can profitably be applied to a
wide range of other problems as well, including problems with a body load, see Section 6.1.3.
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Remark 6.1. The number of iterations required to achieve an accurate solution of (6.4) using an
iterative solver depends strongly on the choice of boundary integral equation formulation. Leaving
the details to Section ?, we simply mention here that it is almost always a good idea to use a BIE
of the form (6.3), in which the integral operator is compact in some function space. An equation
of this form is called a second kind Fredholm equation. As shown in Section 6.3, such formulations
can lead to extra-ordinarily rapid convergence (double precision accuracy in the linear solve in 15
iterations or less).

In some environments, there also exist O(N) numerical techniques that do not rely on iterative
solvers, but directly compute a representation of the inverse of the operator in (6.3).

Remark 6.2 (Terminology). In this note, the term “fast” has a precise technical meaning: We say
that a numerical method is fast if its execution time scales close to linearly with problem size. To be
precise, if it has O(N(logN)r) complexity for some real number r. (In practice, r = 0 can often be
achieved, and we rarely need r larger than 2.) The term “Fast Integral Equation Method” (FIEM)
is then taken to refer to a combination of an integral equation formulations and a fast solver. Our
usage of the term “fast” is standard in this context, but the acronym FIEM is introduced purely
for the purposes of this note.

6.1.2. Benefits. When a BVP can be rewritten as a second kind Fredholm equation on the
boundary, FIEM has several advantages:

(1) The condition number of the numerical problem is typically similar to the condition num-
ber of the actual “physics” of the problem. This is in contrast to discrete systems arising
from discretizations of differential equations, which typically have very large condition
numbers. (High condition numbers lead to several difficulties; loss of accuracy being
one.)

(2) The computational complexity is asymptotically optimal in the sense that the number of
floating point operations required scales linearly with the true complexity of the problem.
In the example in Section 6.1.1, it scales linearly with the number of degrees of freedom
required to discretized the boundary of the domain. The data provided is defined on a
set of dimension d− 1 so we should not have to discretize a set of dimension d.

(3) The construction of discretization schemes that are both stable and of high order is
somewhat easier in the integral equation environment than it is in the differential equation
environment.

(4) Handling exterior problems where the domain Ω is the region outside some given contour
or surface Γ is quite hard when discretizing the differential equation. Typically some
artificial external boundary is introduced. In contrast, in the FIEM environment, the
equation is inherently formulated on the finite domain Γ, and no such difficulties arise.

As a consequence of points 1 and 3, FIEM has the capacity to produce solutions of unparalleled
accuracy; even on complicated problems, relative errors of 10−10 or less can be obtained.

It is worth emphasizing that FIEM is fast not only in the theoretical sense that it scales linearly
with the complexity of the problem; the constant of proportionality is often small. For BVP’s
involving constant coefficient operators, and no body loads, FIEM can be orders of magnitude
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faster than other methods. The only real competitor in this environment are methods based on
the FFT (or spectral methods more generally), but such methods are limited in that they typically
achieve high performance only on simple domains. They also tend to be limited in the extent to
which they can handle adaptivity, and non-uniform grids more generally.

6.1.3. Generalizations. FIEM has a profound competitive advantage when applied to BVPs
that can be reformulated as integral equations defined on the boundary. With some exceptions,
this happens when the partial differential operator has constant coefficients, and when there is no
body load. However, it is occasionally advantageous to use FIEM for problems involving body
loads, and / or non-constant coefficients as well. In such environments, one must use integral
equations that involve volume integrals which implies a higher computational cost. However, the
unrivaled stability and accuracy of an integral equation formulation can sometimes justify the cost;
for instance when dealing with scattering problems close to resonant frequencies. These matters
are discussed further in Sections 6.9 and 6.10.

6.1.4. When to use FIEM. Generally speaking, FIEM works for elliptic linear BVPs in-
volving partial differential operators whose highest order term has constant coefficients. However,
they are particularly appealing for situations involving any of the following:

• Constant coefficient differential operators.
• No body load.
• Exterior problems defined on infinite domains.
• Relatively ill-conditioned physics (thin domains, scattering at short wave-lengths, etc.)
• Very high accuracy is required.

As a more practical consideration, the set-up costof using an FIEM is typically higher than that of
using say a finite element discretization so in situations where you are only interested in a one-off
solve at moderate accuracy, FIEM might not be the best choice. (The hardest part is usually
to find a good integral equation formulation. In most standard situations, this has already been
done, but if you have unusual boundary conditions, multiple types of physics going on, strange
boundaries in 3D, etc., then finding the right integral equation could be a lot of work.)

In addition to the “fundamental limitations” described in the previous paragraph, there is also an
issue of availability of software. There is any number of software packages available for solving
PDEs using finite element, finite difference, or finite volume methods — some commercial and some
free. Some packages are very user friendly with GUIs, the ability to import geometry information
from a CAD program, the ability to handle2 almost any differential equation thrown at them, etc.
In contrast, there are relatively few packages available for discretizing and solving an equation via
FIEM, and what is available is often raw Fortran code.

6.1.5. Outline of chapter.

6.2. Notation, orientation of boundaries, etc

Unless otherwise noted, Ω will in this section denote a simply connected boundary domain in the
plane with smooth boundary Γ. For x ∈ Γ, n(x) denotes a unit normal that points out from Ω.
We let Ψ denote the domain exterior to Γ. See Figure 6.1 for an illustration.

2The term “handle” does not necessarily imply that the output is particularly close to the correct solution
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Ω

Γ

Ψ

n(x)

x

Figure 6.1. Notation for geometries. Γ is a smooth contour in the plane. Ω is
the domain interior to Γ and Ψ is the exterior domain. n(x) denotes the outwards
pointing unit normal.

6.3. A model problem

In this section, we demonstrate how FIEM can be used to solve a specific problem: The Laplace
equation on a bounded smooth domain in R2 with Dirichlet boundary data. The objective is to
demonstrate the entire solution procedure for a particularly simple example. We will then return
to different points in later sections and describe how to generalize the techniques to other equations
and to other geometries.

6.3.1. Reformulation of a Boundary Value Problem as a Boundary Integral Equa-
tion. We consider the BVP

−∆u = 0 on Ω,(6.5)

u = f on Γ,(6.6)

where Ω is a simply connected open set in R2 with smooth boundary Γ, and where f is a prescribed
function on Γ. We seek to rewrite (6.5, 6.6) as an equation defined on Γ only. To this end, we
make the Ansatz

(6.7) u(x) =

∫
Γ

n(x′) · (x− x′)

2π|x− x′|2
σ(x′) dl(x′), for x ∈ Ω,

where n(x′) is the unit outwards pointing normal of Γ at x′, and where σ is an unknown function
on Γ. Note that for any σ, the function u defined by (6.7) satisfies (6.5).3 Equation (6.6) is satisfied
if and only if the function u defined by (6.7) satisfies

(6.8) lim
y→x, y∈Ω

u(y) = f(x), ∀ x ∈ Γ.

A simple evaluation of the limit (6.8) (see Section 6.5) yields

(6.9) −1

2
σ(x) +

∫
Γ

n(x′) · (x− x′)

2π|x− x′|2
σ(x′) dl(x′) = f(x), for x ∈ Γ.

In a strong sense, the BVP (6.5, 6.6) is equivalent to the BIE (6.9).

3Conversely, it is known from classical potential theory that any solution of (6.5, 6.6) can be written in the form
(6.7) for some function σ.
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6.3.2. Parameterization of BIE. We next seek to approximate the BIE (6.9) by a set of
linear algebraic equations. To this end, we parameterize Γ via a function G(t) = (G1(t), G2(t))
such that

(6.10) Γ = {G(t) : t ∈ [0, T ]}.
Causing hopefully not too much confusion, we think of any functions defined on Γ as functions of
the parameter t:4

u = u(t), σ = σ(t), f = f(t).

We can also express the double layer kernel in terms of parameter values:

(6.11) D(t, t′) =
n(t′) ·

(
G(t)−G(t′)

)
2π|G(t)−G(t′)|2

=
G′

2(t
′)
(
G1(t)−G1(t

′)
)
−G′

1(t
′)
(
G2(t)−G2(t

′)
)

2π
(
(G′

1(t
′))2 + (G′

2(t
′))2
)1/2 (

(G1(t)−G1(t′))2 + (G2(t)−G2(t′))2
) ,

where we used that

n(t′) =

(
G′

2(t
′), −G′

1(t
′)
)

(G′
1(t

′))2 + (G′
2(t

′))2
.

Inserting the parameterization into (6.9) we obtain

(6.12) −1

2
σ(t) +

∫ T

0
D(t, t′)σ(t′) |G′(t′)| dt′ = f(t), for τ ∈ [0, T ].

(Observe that the formulas can be simplified slightly since the term |G′(t′)| appears in the de-
nominator of D(t, t′). This would be beneficial for now, but would cause problems later when we
consider more general quadratures.)

Remark 6.3. In most cases, the kernel in a BIE is singular as t′ → t, and at first glance it appears
the the kernel D(t, t′) in (6.11) is singular as well. However, it turns out that when the contour is
smooth, we have n(x′) · (x− x′) = O(|x− x′|2) since the angle between n(x′) and x− x′ approach
π/2. In consequence, the singularities in the numerator and the denominator precisely cancel, and
the kernel is in fact a smooth function. Using l’Hôpital’s rule twice, we find that

lim
t′→t

D(t, t′) =
G′

2(t)G
′′
1(t)−G′

1(t)G
′′
2(t)

4π|G′(t)|3
.

6.3.3. Discretization of BIE. We discretize (6.12) using the Nyström method, as follows:
First we discretize the integral in (6.12) using a quadrature rule with weights (wj)

N
j=1, and quad-

rature points (tj)
N
n=1 ⊂ [0, T ], and obtain the approximate equation

(6.13) −1

2
σ(t) +

N∑
j=1

wj D(t, tj) |G′(tj)|σ(tj) = f(t), for t ∈ [0, T ].

To obtain a discrete equation from (6.13), we require that (6.13) should hold for at the quadrature
points, i.e. when t = t1, . . . , tN . This results in the system of equations

(6.14) −1

2
σ(ti) +

N∑
j=1

wj D(ti, tj) |G′(tj)|σ(tj) = f(ti), for i = 1, 2, . . . , N.

4To be mathematically rigorous, we should have defined a new function U = u ◦G (so that U(t) = u(G(t))), a
new function Σ = σ ◦G, and a new function F = f ◦G. Then u, σ, and f would have been functions defined on Γ,
and U , Σ, and F would have been functions defined on [0, T ].

69



We write (6.14) in matrix form as

(6.15)

(
−1

2
I+ B

)
σ = f,

where f is a vector of pointwise samples from f , f(i) = f(ti), and where σ is a vector approximating
the exact solution σ, σ(i) ≈ σ(ti), and where B has the entries

B(i, j) = D(ti, tj) |G′(tj)|wj .

Finally, we note that since the integrand in this particular case is smooth and periodic, the trape-
zoidal rule (wi = T/N , ti = i T/N) achieves superpolynomial convergence rates; and find that

B(i, j) =
T

N
D(ti, tj) |G′(tj)|.

6.3.4. Post-processing: The numerical method described so far yields as its result the dipole
distribution σ, which is generally not the quantity sought. However, any other quantity of interest
can be computed via the formulas:

u(x) =− 1

2
σ(x) +

∫
Γ
D(x, x′)σ(x′) dl(x′), x ∈ Γ(6.16)

u(x) =

∫
Γ
D(x, x′)σ(x′) dl(x′), x ∈ Ω.(6.17)

The kernel in the first formula is smooth and it can easily be evaluated upon discretization via
the trapezoidal rule. The kernel in the second formula can also be evaluated very easily whenever
the target point x is not that close to the boundary. However, if x is close to the boundary, then
D(x, x′) has very sharp derivatives when x′ approaches x and some care must be exercise.

The evaluations of the layer potentials (6.16) and (6.17) can be accelerated by the Fast Multipole
Method if the potential is sought at a large number of target points.

6.4. Review of the Green identities

Recall that if f is a vector valued C1 function on Ω, then the Gauss theorem reads∫
Ω
∇ · f =

∫
Γ
n · f ,

where n is the outward pointing unit normal to Γ. Now suppose that u and v are two C2 scalar
value functions. Applying the Gauss theorem to f = u∇v and f = (∇u)v we find∫

Ω

(
u∆v +∇u · ∇v

)
=

∫
Γ
u
∂v

∂n
(6.18) ∫

Ω

(
∆u v +∇u · ∇v

)
=

∫
Γ

∂u

∂n
v.(6.19)

Subtracting (6.19) from (6.18), we find∫
Ω

(
u∆v −∆v u

)
=

∫
Γ

(
u
∂v

∂n
− ∂u

∂n
v

)
.

Now fix a point x ∈ Ω and set

v(y) = − 1

2π
log |y − x|.
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Further, assume u satisfies

−∆u = 0 in Ω,

let ε be a small number (smaller than dist(Γ, x)), set

Ωε = Ω\Bε(x)

and observe that

∂Ωε = Γ ∪ Γε

where

Γε = ∂Bε(x).

Now note that ∆u(y) = ∆v(y) for y ∈ Ωε to obtain

(6.20) 0 =

∫
Γ

(
u
∂v

∂n
− ∂u

∂n
v

)
+

∫
Γε

(
u
∂v

∂n
− ∂u

∂n
v

)
.

We next seek to evaluate the limit as ε→ 0. For y ∈ Γε, we find

v(y) =− 1

2π
log |x− y| = − 1

2π
log ε

∂v

∂n
(y) =n(y) · ∇v(y) = x− y

|x− y|
x− y

2π|x− y|2
=

1

2π|x− y|
=

1

2πε
.

Since u ∈ C(Ω) we find

lim
ε→0

∫
Γε

u(y)
∂v

∂n
(y) dl(y) = lim

ε→0

∫
Γε

u(y)
1

2πε
dl(y) = u(x).

Since u ∈ C1(Ω) we know that for some finite M , we have |∇u(y)| ≤M and so

lim
ε→0

∣∣∣∣∫
Γε

∂u

∂n
(y) v(y) dl(y)

∣∣∣∣ ≤ lim sup
ε→0

∫
Γε

M
1

2π
| log ε| dl(y) = lim sup

ε→0
M ε | log ε| = 0.

Taking the limit ε→ 0 in (6.20) we obtain

(6.21) u(x) =

∫
Γ

n(y) · (y − x)

2π|y − x|2
u(y) dl(y)−

∫
Γ

1

2π
log |y − x|un(y) dl(y).

We introduce two integral operators called layer potentials via

The single layer operator: [S w](x) =

∫
Γ

−1

2π
log |x− y|w(y) dl(y),(6.22)

The double layer operator: [Dw](x) =

∫
Γ

n(y) · (x− y)

2π|x− y|2
w(y) dl(y).(6.23)

Then (6.21) takes the form

(6.24) u(x) = −[Du](x) + [S un](x) x ∈ Ω.

An entirely analogous computation shows that

(6.25)
1

2
u(x) = −[Du](x) + [S un](x) x ∈ Γ.
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6.5. Derivation of BIEs for Laplace’s equation

6.5.1. The direct formulation. We first derive a BIE for the Dirichlet problem{
−∆u(x) = 0, x ∈ Ω,

u(x) = g(x), x ∈ Γ.

From (6.25) we find that

(6.26)
1

2
g(x) + [Dg](x) = [S un](x) x ∈ Γ.

Equation (6.27) can be solved for the unknown boundary function un. Once un has been deter-
mined, the potential u can be recovered from (6.24).

Next consider the Neumann problem{
−∆u(x) = 0, x ∈ Ω,

un(x) = h(x), x ∈ Γ.

From (6.25) we find that

(6.27)
1

2
u(x) + [Du](x) = [S h](x) x ∈ Γ.

Equation (6.27) can be solved for the unknown boundary function u|Γ. Once u|Γ has been deter-
mined, the potential u can be recovered from (6.24).

Remark 6.4. The so called “direct” formulation for works very well for the Neumann problem
since the operator (1/2)I + D is an invertible second kind Fredholm operator. It works less well
for the Dirichlet problem since S is compact, and the inverse of a compact operator is unbounded.
The difficulties involved can all be resolved, but it takes some effort.

6.5.2. The indirect formulation. Consider the Dirichlet problem{
−∆u(x) = 0, x ∈ Ω,

u(x) = g(x), x ∈ Γ.

We look for a solution of the form
u(x) = [Dσ](x),

where σ is an unknown boundary potential. A well-conditioned equation for σ is obtained from
the formula

lim
z∈Ω, z→x

[Dσ](z) = −1

2
σ(x) + [Dσ](x), x ∈ Γ.

We find

−1

2
σ(x) + [Dσ](x) = g(x).

Next consider the Neumann problem{
−∆u(x) = 0, x ∈ Ω,

un(x) = h(x), x ∈ Γ.

We look for a solution of the form
u(x) = [Sσ](x),
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where σ is an unknown boundary potential. For x ∈ Γ, we find

un(x) = lim
z∈Ω, z→x

n(x) · ∇[Sσ](z) =
1

2
σ(x) + [D∗σ](x),

where D∗ is the adjoint of the double layer potential,

[D∗σ](x) =

∫
Γ

−n(x) · (x− y)

2π |x− y|2
ds(y).

(Observe that the normal is evaluated at the target point x, not at the integration variable y.) We
find that the equation for σ reads

(6.28)
1

2
σ(x) + [D∗σ](x) = h(x), x ∈ Γ.

The operator (1/2)I +D∗ is a second kind Fredholm operator, but it has a one-dimensional null-
space, and a one-dimensional co-range. This is very natural, since we know (1) that the Neumann
problem does not determine u other than up to translation, and (2) that the Neumann problem is
not well-posed unless ∫

Γ
h(x) ds(x) = 0.

Some care must be exercised in solving (6.28). An easy way of handling this is to modify the
Ansatz to read

(6.29) u(x) = [Sσ](x)− 1

2π
log |x− x̂|

∫
Γ
σ(x) ds(x),

where x̂ is a point chosen in the interior of Ω. Then the new equation for σ is

(6.30)
1

2
σ(x) + [D∗σ](x)− n(x) · (x− x̂)

2π|x− x̂|2

∫
Γ
σ(x) ds(x) = h(x), x ∈ Γ.

Integrating (6.30) over Γ, we find∫
Γ

(
1

2
σ(x) + [D∗σ](x)

)
ds(x)︸ ︷︷ ︸

=0

−
∫
Γ

n(x) · (x− x̂)

2π|x− x̂|2
ds(x)︸ ︷︷ ︸

=−1

∫
Γ
σ(x) ds(x) =

∫
Γ
h(x) ds(x)︸ ︷︷ ︸

=0

.

In other words, when (6.30) holds, we have∫
Γ
σ(x) ds(x) = 0,

which implies that the “new” term in (6.29) vanishes.

Remark 6.5. The exterior Neumann problem is easier to handle. Consider the equation

(6.31)

{
−∆u(x) = 0, x ∈ Ψ,

un(x) = h(x), x ∈ Γ.

Note that we do not need h to integrate to zero for (6.31) to have a solution. We still have a
problem in that the solution is not uniquely determined unless we specify some decay condition at
infinity. Observing that the total charge that generates u is

∫
Γ h, it is natural to require u to satisfy

u(x) =
1

2π
log

1

|x|

∫
Γ
h(x′) ds(x′) +O(1/|x|), as |x| → ∞.

Formally, we couple (6.31) with

(6.32) lim
R→∞

sup
|x|=R

∣∣∣∣u(x)− 1

2π
log

1

|x|

∫
Γ
h(x′) ds(x′)

∣∣∣∣ = 0.
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Condition (6.32) is automatically satisfied if we look for a solution of the form

u(x) = [Sσ](x),

where σ is an unknown boundary potential. The relevant equation for σ is now

(6.33) −1

2
σ(x) + [D∗σ](x) = h(x), x ∈ Γ.

The operator −(1/2)I +D∗ is a second kind Fredholm operator that is onto and one-to-one.

6.6. Discretization of BIEs

6.6.1. The Nyström method.

6.6.2. Collocation.

6.6.3. Galerkin.

6.7. Quadrature rules for smooth contours

6.8. Quadrature rules for contours with corners

6.9. FIEM for problems involving body loads

In Section 6.1.1, we described how FIEM works for a linear BVP with no body load. It is in
principle trivial to extend the method to a problem with a body load by simply splitting the
problem into two parts: First a particular solution that satisfies the PDE but not the boundary
condition is determined, and then a homogeneous solution that corrects the boundary condition
is determined using the ideas described in Section 6.1.1. However, some numerical complications
may arise, as illustrated below.

Suppose that we wish to solve the equation

Au = h on Ω,(6.34)

u = f on Γ,(6.35)

where h is a given body load. The first step is to construct a “particular solution”, up , with the
property that

Aup = h, on Ω.

Setting uh = u− up, we find that uh satisfies

Auh = 0 on Ω,

uh = f on Γ.

Since uh satisfies a homogeneous problem, it can be determined using the boundary integral tech-
nique described in Section 6.1.1.
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Now, if Ω is a rectangle (or some other simple geometrical shape), and if h is a smooth function
on h, then one can easily compute a particular solution up via

up(x) =

∫
Ω
G(x, y)h(y) dA(y).

When h is smooth, but Ω is not a simple geometric shape, it may be easier to compute an integral
over some extension Ω̄ of Ω,

up(x) =

∫
Ω̄
G(x, y) h̄(y) dA(y),

where h̄ is a smooth extension of h from Ω to Ω̄, see [?]. Another alternative, which is attractive
when h is not easily integrable, is to use the FFT or some other fast Poisson solver so solve the
equation

Aup = h on Ω̄,(6.36)

up = f on ∂Ω̄.(6.37)

FIEM for problems involving body loads are discussed in [Greengard and Etheridge, Biros, etc].

6.10. FIEM for problems involving partial differential operators with non-constant
coefficients
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CHAPTER 7

Iterative solvers
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CHAPTER 8

Extensions to other equations

Helmholtz

Maxwell

Elasticity

Stokes
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CHAPTER 9

Computing in the real world

3D problems

human time vs computer time
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APPENDIX A

Translation operators of the classical Laplace FMM in R2

1.0.1. The outgoing from sources translation operator. Let τ denote a box with center
cτ and side length 2a. It holds sources qτ = [qτj ]

J
j=1 at locations Xτ = [xτj ]

J
j=1. Consider the

potential

u(y) =
J∑

j=1

qτj log(y − xτj ).

The potential admits the multipole expansion

u(y) = q̂τ0 log(y − cτ ) +
∞∑
i=1

q̂τi
1

(y − cτ )i
,

where

q̂τ0 =
J∑

j=1

qτj ,

q̂τi =

J∑
j=1

−qτj
1

i
(xτj − cτ )

i.

1.0.2. The outgoing from outgoing translation operator. Suppose that a child σ of a
box τ holds a source distribution represented by the outgoing expansion q̂σ,

u(y) = q̂σ0 log(y − cσ) +
∞∑
j=1

q̂σj
1

(y − cσ)j
,

Then this field can alternatively be represented

u(y) = q̂τ0 log(y − cτ ) +
∞∑
i=1

q̂τi
1

(y − cτ )i
,

where

q̂τ0 = q̂σ0 ,

q̂τi = −q̂σ0
1

i
(cσ − cτ )

i +

i∑
j=1

q̂σj

(
i− 1

j − 1

)
(cσ − cτ )

i−j .
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1.0.3. The incoming from outgoing translation operator. Suppose that τ and σ are two
well-separated boxes, and that σ holds a source distribution represented by an outgoing expansion
q̂σ. Then the field in τ caused by these sources can be represented by an incoming expansion ûτ ,

u(x) =
∞∑
i=0

ûτi (x− cτ )
i,

where

ûτ0 = q̂σ0 log(cτ − cσ) +
∞∑
j=1

q̂σj (−1)j
1

(cσ − cτ )j
,

ûτi = −q̂σ0
1

i(cσ − cτ )i
+

∞∑
j=1

q̂σj (−1)j
(
i+ j − 1

j − 1

)
1

(cσ − cτ )i+j
.

1.0.4. The incoming from incoming translation operator. Suppose that τ is the child
of a box σ. Suppose further that the incoming expansion ûσ represents a potential in σ caused by
sources that are all well-separated from σ. Then these sources are also well-separated from τ , and
the potential in τ can be represented via an incoming expansion ûτ so that

u(x) =
∞∑
i=0

ûτi (x− cτ )
i,

where

ûτi =

∞∑
j=i

ûσj

(
j

i

)
(cτ − cσ)

j−i.

1.0.5. The targets from incoming translation operator. Suppose that τ is a box whose
incoming potential is represented via the incoming representation ûτ . Then the potential at the
actual target points are constructed via

u(xτi ) =
∞∑
j=0

ûτj (x
τ
i − cτ )

j .
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