Math 126 Numerical PDEs: Homework 7-debriefing

February 29, 2012

1. $[8 \mathrm{pts}=1+3+4]$
(a) Always good to do a geometry plot to check.
(b) Rank increases to roughly 21 plus or minus one or two, by $N=100$. Here's a cute vectorized way to fill the matrix given y a row vector of N sources as complex numbers, and z similarly for targets.
```
d = repmat(y, [N 1]) - repmat(z.', [1 N]);
A = -log(abs(d))/(2*pi);
```

(c) Using ratio $b / R=3 / \sqrt{2}$, get $p=31$ multipole degree needed for $\varepsilon=10^{-10}$, using $p \geq$ $\log (1 / \varepsilon) / \log (b / R)$. If you included the total charge as a prefactor, you got a slightly higher p.
2. $[8 \mathrm{pts}=2+4+2]$ See Brad's code.
(a) Just reading in the file and setting up targets.
(b) You should use the $p=31$ from previous question, since these sources and targets lie in the same box geometries. Taylor did a nice convergence plot here showing p can be a bit less than this.
(c) Norm is 9721.39640360853 to around 13 digits. I gave you the integer part so that you could debug (e.g. it's common to be off by 2π).

Brad did a nice timing test, measuring 13000 times faster than naive algorithm in his implementation. Taylor reminds us that the naive calc would take several days!

