## Math 116 Numerical PDEs: Homework 4

due Mon Feb 6, 9am

Please heed the advice in the HW3 debriefing. Spread out the work and seek help or collaborate before spending lots of time stuck. A mix of analysis and coding, apt for a computational mathematician.

- 1. [quick analysis ones]
  - (a) Prove that all of the roots of polynomial which defines the nodes for an (n + 1)-node Gaussian quadrature are simple—we never showed this in lecture. [Hint: Look at the proof in notes showing you can't integrate exactly all polynomials of degree 2n + 2.]
  - (b) Prove that the 2-norm of an integral operator K is bounded by the 2-norm of its kernel function on the square  $[a, b]^2$ . [Hint: Cauchy-Schwarz]
- 2. Solve analytically the second-kind integral equation,

$$u(t) + \int_0^1 t s^3 u(s) ds = 1, \quad \text{for } t \in [0, 1]$$
(1)

[Hint if stuck: u is the RHS plus something in the range of K, the integral operator]. Compute  $||K||_{\infty}$ . Is K compact, and why?

3. [the main one] Code up the 1D Nyström method in a way that allows you to switch easily between different quadrature schemes (*e.g.* by setting a switch variable at the start of your code). Apply it to the second-kind Fredholm equation

$$u(t) + \int_0^1 e^{ts} u(s) ds = e^t + \frac{1}{t+1} (e^{t+1} - 1) \quad \text{for } t \in [0, 1]$$
(2)

which you can check has unique solution  $u(t) = e^t$ .

- (a) Produce plots that show the convergence vs N, the number of nodes, of the maximum error magnitude in u over the nodes, for the two schemes: i) composite trapezoid, and ii) Gaussian quadrature. (If you like, N = n+1 since we labeled our nodes 0 to n for these schemes in lecture.) Categorize the convergence in each case and relate it to that of the quadrature scheme. What N is required in each case to reach an error smaller than  $10^{-5}$ ?
- (b) How does the condition number of the linear system you are solving change with N? (You don't need to plot this, just describe).
- (c) At N = 5 for Gaussian quadrature, produce a plot of the difference between the Nyström interpolated solution function  $u_n(t)$  and the exact solution, on a fine grid on the interval [0, 1]. (Don't show the two functions, just subtract them). Overlay the errors at just the 5 nodes onto your graph as blobs. Is the true error sup norm of the solution reflected by the maximum error magnitude in u over the nodes, as you assumed in the part (a)?
- 4. Here you explore analytically Fredholm equations involving a "periodic convolution operator", that is, an operator acting on functions on  $[0, 2\pi)$  with kernel of the form  $k(s, t) = (1/2\pi)\tilde{k}(t-s)$ , where  $\tilde{k} : \mathbb{R} \to \mathbb{C}$  is a  $2\pi$ -periodic function. They also have applications in signal and image processing. You will show that they become very simple to solve in the Fourier basis.

- (a) Let K be such an operator. Show that  $e^{imt}$ , for any  $m \in \mathbb{Z}$ , is an eigenfunction of K, and find its eigenvalue  $\lambda_m$ .
- (b) By substituting a Fourier series  $f(s) = \sum_{m \in \mathbb{Z}} f_m e^{-ims}$  and similar for u and  $\tilde{k}$ , convert the firstkind Fredholm equation Ku = f into a set of simple algebraic relations involving the Fourier coefficients  $\{f_m\}, \{u_m\}$  and  $\{\tilde{k}_m\}$ . [Hint: you'll need orthogonality of  $\{e^{imt}\}$  on  $[0, 2\pi)$ ]
- (c) What is  $||K||_2$ ? [Hint: go into a Fourier basis and use (b)]
- (d) If  $\tilde{k}$  is in  $L^2(0, 2\pi)$  then its Fourier coefficients decay as  $|m| \to \infty$ , by Parseval's equality. What then is the *condition number* of the 1st-kind problem Ku = f? [Hint: what does  $K^{-1}$  do?] What is the condition number of the 2nd-kind problem u Ku = f? BONUS: What also can you say about compactness of K?
- 5. The fundamental solution for Laplace's equation in 2D is  $\Phi(x, y) = (1/2\pi) \ln 1/|x y|$ , where y is a source point in  $\mathbb{R}^2$ , and x a target point also in  $\mathbb{R}^2$ . Here you examine its directional derivative, a "dipole source".
  - (a) Make a function which returns  $\partial \Phi(x, y) / \partial n_y$ , the derivative with respect to source location in the direction  $n_y$ , given vectors  $x, y \in \mathbb{R}^2$  and a unit vector  $n_y \in \mathbb{R}^2$ . Generalize your routine so that it handles multiple x vectors (*e.g.* a 2-by-n matrix of coordinates of n such vectors), and returns the corresponding list of outputs. (Be sure to test it on known inputs!)
  - (b) Use the above to produce a contour plot of  $\partial \Phi(x, y)/\partial n_y$  for y = (0.5, -0.2),  $n_y = (1/2, \sqrt{3}/2)$ , for x varying over the square  $[-1, 1]^2$ . This should now be a 3-line program.