Math 116 Numerical PDEs: Homework 4

due Mon Feb 6, 9am

Please heed the advice in the HW3 debriefing. Spread out the work and seek help or collaborate before spending lots of time stuck. A mix of analysis and coding, apt for a computational mathematician.

1. [quick analysis ones]
(a) Prove that all of the roots of polynomial which defines the nodes for an $(n+1)$-node Gaussian quadrature are simple - we never showed this in lecture. [Hint: Look at the proof in notes showing you can't integrate exactly all polynomials of degree $2 n+2$.]
(b) Prove that the 2 -norm of an integral operator K is bounded by the 2-norm of its kernel function on the square $[a, b]^{2}$. [Hint: Cauchy-Schwarz]
2. Solve analytically the second-kind integral equation,

$$
\begin{equation*}
u(t)+\int_{0}^{1} t s^{3} u(s) d s=1, \quad \text { for } t \in[0,1] \tag{1}
\end{equation*}
$$

[Hint if stuck: u is the RHS plus something in the range of K, the integral operator]. Compute $\|K\|_{\infty}$. Is K compact, and why?
3. [the main one] Code up the 1D Nyström method in a way that allows you to switch easily between different quadrature schemes (e.g. by setting a switch variable at the start of your code). Apply it to the second-kind Fredholm equation

$$
\begin{equation*}
u(t)+\int_{0}^{1} e^{t s} u(s) d s=e^{t}+\frac{1}{t+1}\left(e^{t+1}-1\right) \quad \text { for } t \in[0,1] \tag{2}
\end{equation*}
$$

which you can check has unique solution $u(t)=e^{t}$.
(a) Produce plots that show the convergence vs N, the number of nodes, of the maximum error magnitude in u over the nodes, for the two schemes: i) composite trapezoid, and ii) Gaussian quadrature. (If you like, $N=n+1$ since we labeled our nodes 0 to n for these schemes in lecture.) Categorize the convergence in each case and relate it to that of the quadrature scheme. What N is required in each case to reach an error smaller than 10^{-5} ?
(b) How does the condition number of the linear system you are solving change with N ? (You don't need to plot this, just describe).
(c) At $N=5$ for Gaussian quadrature, produce a plot of the difference between the Nyström interpolated solution function $u_{n}(t)$ and the exact solution, on a fine grid on the interval $[0,1]$. (Don't show the two functions, just subtract them). Overlay the errors at just the 5 nodes onto your graph as blobs. Is the true error sup norm of the solution reflected by the maximum error magnitude in u over the nodes, as you assumed in the part (a)?
4. Here you explore analytically Fredholm equations involving a "periodic convolution operator", that is, an operator acting on functions on $[0,2 \pi)$ with kernel of the form $k(s, t)=(1 / 2 \pi) \tilde{k}(t-s)$, where $\tilde{k}: \mathbb{R} \rightarrow \mathbb{C}$ is a 2π-periodic function. They also have applications in signal and image processing. You will show that they become very simple to solve in the Fourier basis.
(a) Let K be such an operator. Show that $e^{i m t}$, for any $m \in \mathbb{Z}$, is an eigenfunction of K, and find its eigenvalue λ_{m}.
(b) By substituting a Fourier series $f(s)=\sum_{m \in \mathbb{Z}} f_{m} e^{-i m s}$ and similar for u and \tilde{k}, convert the firstkind Fredholm equation $K u=f$ into a set of simple algebraic relations involving the Fourier coefficients $\left\{f_{m}\right\},\left\{u_{m}\right\}$ and $\left\{\tilde{k}_{m}\right\}$. [Hint: you'll need orthogonality of $\left\{e^{i m t}\right\}$ on $[0,2 \pi)$]
(c) What is $\|K\|_{2}$? [Hint: go into a Fourier basis and use (b)]
(d) If \tilde{k} is in $L^{2}(0,2 \pi)$ then its Fourier coefficients decay as $|m| \rightarrow \infty$, by Parseval's equality. What then is the condition number of the 1st-kind problem $K u=f$? [Hint: what does K^{-1} do?] What is the condition number of the 2nd-kind problem $u-K u=f$? BONUS: What also can you say about compactness of K ?
5. The fundamental solution for Laplace's equation in 2 D is $\Phi(x, y)=(1 / 2 \pi) \ln 1 /|x-y|$, where y is a source point in \mathbb{R}^{2}, and x a target point also in \mathbb{R}^{2}. Here you examine its directional derivative, a "dipole source".
(a) Make a function which returns $\partial \Phi(x, y) / \partial n_{y}$, the derivative with respect to source location in the direction n_{y}, given vectors $x, y \in \mathbb{R}^{2}$ and a unit vector $n_{y} \in \mathbb{R}^{2}$. Generalize your routine so that it handles multiple x vectors (e.g. a 2-by- n matrix of coordinates of n such vectors), and returns the corresponding list of outputs. (Be sure to test it on known inputs!)
(b) Use the above to produce a contour plot of $\partial \Phi(x, y) / \partial n_{y}$ for $y=(0.5,-0.2), n_{y}=(1 / 2, \sqrt{3} / 2)$, for x varying over the square $[-1,1]^{2}$. This should now be a 3 -line program.

