Math 126 Numerical PDEs, Winter 2012: Homework 1

due Monday 9am Jan 16

Ideally you should start to use $L^{A} T_{E} X$ to write this up, then post it to your webpage with your codes. A good thing to do this weekend is to get both those set up (make a baby webpage and a baby $E^{4} T_{E} X$ document.) Codes should be short with explanatory comments if needed. See honor code in syllabus.

1. If \mathbf{u} and \mathbf{v} are m-vectors, the matrix $A=I+\mathbf{u v}^{*}$ is known as a rank-one perturbation of the identity. Show that if A is non-singular, then its inverse has the form $A^{-1}=I+\alpha \mathbf{u v}^{*}$ for some scalar α, and give an expression for α. For what \mathbf{u} and \mathbf{v} is A singular? If it is singular, what is Nul A ? [NLA Ex 2.6]
2. The spectral radius $\rho(A)$ of a square matrix A is the magnitude of its largest eigenvalue. Prove that $\rho(A) \leq\|A\|_{2}$. [NLA Ex 3.2]
3. Use the in-class worksheet on the following $m \times m$ bidiagonal matrix to answer the below.

$$
A=\left[\begin{array}{llll}
1 & 2 & & \\
& 1 & 2 & \\
& & 1 & \ddots \\
& & & \ddots
\end{array}\right]
$$

(a) find a nontrivial lower bound on the condition number $\kappa(A)$
(b) predict the smallest m such that roughly all significant digits will be lost in the solution \mathbf{x} to a linear system $A \mathbf{x}=\mathbf{b}$ in double precision.
(c) demonstrate your last claim in a couple of lines of code, by starting with a known \mathbf{x}, computing \mathbf{b} then solving via mldivide. [Hint: look up the toeplitz command to construct the matrix rather than use a loop. You need to choose a b that causes floating-point rather than exact integer arithmetic to be used!]
4. How many nested loops are implied by each of the following MATLAB commands? (i.e. how many loops would you need to write to code the equivalent in C or fortran?) $\mathrm{A}=\operatorname{rand}(100,100)$; $\mathrm{x}=$ 1:100; b = A*x'; B = A*A;
5. Give an exact formula, in terms of β and t, for the smallest positive integer n that does not belong to the floating-point system \mathbf{F}, and compute n for IEEE single- and double-precision. Give one line of code, and its output, which demonstrates this is indeed the case for double-precision. [NLA Ex 13.2]
6. Measure how the time to compute the singular values of a random real dense $m \times m$ matrix scales with m, focusing on the range $10^{2} \leq m \leq 10^{3}$. Produce a $\log -\log$ graph of time vs m, and the simple power law to which it is asymptotic. BONUS: for what large m would you expect this to break down and why?
7. Consider the polynomial $p(x)=(x-2)^{9}=x^{9}-18 x^{8}+144 x^{7}-672 x^{6}+2016 x^{5}-4032 x^{4}+5376 x^{3}-$ $4608 x^{2}+2304 x-512$. [NLA Ex 13.3]
(a) plot $p(x)$ for $x=1.920,1.921,1.922, \ldots, 2.080$ evaluating p via its coefficients $1,-18,144, \ldots$..
(b) overlay on your plot the same computed using $(x-2)^{9}$
(c) explain, including the size of the effect!

