Math 11
Fall 2016
Exam II Practice Problems

1. TRUE or FALSE? (Graded on answer only; you need not show your work.)
(a) If (a, b) is a critical point of $f(x, y)$, the second partial derivatives of f are continuous, and

$$
f_{x x}(a, b)=2 \quad f_{x y}(a, b)=2 \quad f_{y x}(a, b)=2 \quad f_{y y}(a, b)=2
$$

then (a, b) cannot be a local maximum point of f.
(b) For any differentiable functions f and g from \mathbb{R}^{2} to \mathbb{R}, we have $\nabla(f+g)=\nabla f+\nabla g$.
(c) If f is a continuous function with continuous partial derivatives defined on the unit disc D given by $x^{2}+y^{2} \leq 1$, and $\nabla f(1,0)=\langle 1,1\rangle$, then it is possible that f attains its maximum value on D at the point $(1,0)$.
(d) If f is a continuous function with continuous partial derivatives and $\nabla f(0,0)=$ $\langle 1,0\rangle$, then for any unit vector \vec{u} we have

$$
\frac{\partial f}{\partial \vec{u}}(0,0) \leq \frac{\partial f}{\partial x}(0,0)
$$

(e)

$$
\int_{0}^{1} \int_{0}^{y} x^{2} d x d y=\int_{0}^{y} \int_{0}^{1} x^{2} d y d x
$$

2. Short answer questions. Parts (a) and (b) have nothing to do with each other. (Graded on answer only; you need not show your work.)
(a) Rewrite

$$
\iint_{D}(x+y) d A
$$

where D is the parallelogram with vertices $(0,0),(2,1),(3,4)$, and $(1,3)$, as an integral in the form

$$
\int_{a}^{b} \int_{c}^{d} f(u, v) d u d v
$$

by using a suitable change of variables.
(b) Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a continuous function with continuous partial derivatives, and $\nabla f(1,2)=\langle 3,4\rangle$.
i. What is the directional derivative of f at $(1,2)$ in the direction given by $\langle-4,3\rangle$?
ii. What is the minimum possible value of a directional derivative $D_{\vec{u}} f(1,2)$?
3. Find the absolute maximum and absolute minimum values of

$$
h(x, y, z)=x^{2}+y^{2}-4 x+6 y+2 z^{2}-6
$$

on the region

$$
R=\left\{(x, y): x^{2}+y^{2}+z^{2}=4\right\}
$$

4. Find all critical points of the function $f(x, y)=x^{3}-3 x y+y^{3}$, and classify them as local maxima, local minima, or saddle points.
5. Find

$$
\iint_{D} x y d A
$$

where D is the region in the first quadrant between the curves $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.
6. Two surfaces S and T are given in spherical coordinates by

$$
\begin{gathered}
\text { surface } S: \quad \phi=\frac{\pi}{3} \\
\text { surface } T: \quad \rho=4 \cos \phi
\end{gathered}
$$

(a) Describe the surfaces S and T.
(b) Find the volume of the solid that lies above S and below T.
7. Sketch the region of integration, and rewrite the integral, first with the opposite order of integration, and then as an integral in polar coordinates.

$$
\int_{0}^{\frac{1}{2}} \int_{\frac{\sqrt{3}}{2}}^{\sqrt{1-y^{2}}} \frac{1}{\sqrt{x^{2}+y^{2}}} d x d y
$$

8. Evaluate the triple integral

$$
\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{x^{2}+y^{2}}^{2-x^{2}-y^{2}} \sqrt{x^{2}+y^{2}} d z d y d x
$$

9. Short answer question. (Graded on answer only; you need not show your work.)

The picture shows the contour plot of a function $f(x, y)$. In the region $x>5, y<-5$, both f_{x} and f_{y} are positive.
Does $f_{x x}(10,-15)$ appear to be positive or negative?
Does $f_{y y}(10,-15)$ appear to be positive or negative?

