Math 11
Fall 2016
Practice Exam I Solutions

1. TRUE or FALSE? (No partial credit; you need not show your work.)
(a) There exists a vector \vec{v} such that $\langle 2,1,2\rangle \times \vec{v}=\langle 1,-5,2\rangle$.

FALSE. (Use the dot product to check that $\langle 2,1,2\rangle$ and $\langle 1,-5,2\rangle$ are not orthogonal.)
(b) For any vectors \vec{w} and \vec{v} we have $\vec{w} \times \operatorname{proj}_{\vec{w}}(\vec{v})=\overrightarrow{0}$ (where $\operatorname{proj}_{\vec{w}}(\vec{v})$ denotes the vector projection).
TRUE. (The vectors \vec{w} and $\overrightarrow{\operatorname{Proj}}_{\vec{w}}(\vec{v})$ are parallel, so their cross product is zero.)
(c) Any smooth parametrization of the circle $x^{2}+y^{2}=1$ gives unit tangent vector at $(1,0)$ equal to $\vec{T}=\langle 0,1\rangle$.
FALSE. $(\vec{T}=\langle 0,-1\rangle$ is also possible. $)$
(d) If $\lim _{x \rightarrow 0} f(x, 0)=2$ and $\lim _{y \rightarrow 0} f(0, y)=2$, then $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=2$.

FALSE. (Checking two lines of approach is not sufficient.)
(e) It is possible for the intersection of the graph of f with the plane $x=1$ to have a horizontal tangent line at $(1,2,4)$, and the intersection of the graph of f with the plane $y=2$ to have a horizontal tangent line at $(1,2,4)$, but for the graph of f not to have a horizontal tangent plane at $(1,2,4)$.
TRUE. (It may have no tangent plane at all.)
2. Short answer questions. (No partial credit; you need not show your work.)
(a) Determine whether the lines L_{1} with parametric equations

$$
x=6 t \quad y=9 t \quad z=-3 t+2
$$

and L_{2} with parametric equations

$$
x=-4 t-4 \quad y=-6 t+3 \quad z=2 t
$$

are skew, nonparallel but intersecting, parallel, or the same line.
Solution: They are parallel. The direction vectors $\langle 6,9,-3\rangle$ and $\langle-4,6,2\rangle$ are parallel, since they are scalar multiples of each other. The point $(0,0,2)$ is on L_{1}, but it is not on L_{2}. so they are not the same line. (The point on L_{2} with $z=2$ corresponds to $t=1$, since $z=2 t$, but when $t=1$ we have $x=-8$, not $x=0$.)
(b) Find the arc length of the curve parametrized by $\vec{f}(t)=\left\langle\cos \left(t^{2}\right), \sin \left(t^{2}\right)\right\rangle$ for $0 \leq t \leq \sqrt{2 \pi}$.

Solution: 2π. (The curve is the unit circle.)
(c) A moving object is traveling along the parabola $y=x^{2}$ in \mathbb{R}^{2}, in the direction of increasing x-coordinate, at a constant speed of 2 . When the object is at the point $(0,0)$, what is its velocity?
Solution: $\vec{v}=\langle 2,0\rangle$. (Magnitude is speed, direction is tangent to curve.)
3. Find the area of the triangle with vertices $P_{0}=(-1-1,0), P_{1}=(0,1,1)$, and $P_{2}=$ $(0,0,3)$.

Solution: This is half the parallelogram with edges $\overrightarrow{P_{0} P_{1}}$ and $\overrightarrow{P_{0} P_{2}}$, so its area is

$$
\frac{1}{2}\left|\overrightarrow{P_{0} P_{1}} \times \overrightarrow{P_{0} P_{2}}\right|=\frac{1}{2}|\langle 1,2,1\rangle \times\langle 1,1,3\rangle|=\frac{1}{2}|\langle 5,-2,-1\rangle|=\frac{\sqrt{30}}{2}
$$

4. Find all points (x, y) at which the graphs of the functions $f(x, y)=x^{2}-3 y^{2}$ and $g(x, y)=2 x+2 y^{3}$ have parallel tangent planes.

Solution: For the tangent plane to be parallel, the partial derivatives must be the same.

$$
f_{x}(x, y)=2 x \quad f_{y}(x, y)=-6 y \quad g_{x}(x, y)=2 \quad g_{y}(x, y)=6 y^{2}
$$

Therefore we are looking for points at which $2 x=2$ and $-6 y=6 y^{2}$. The first equation gives $x=1$ and the second gives $y=0, y=-1$, so we have two solutions, $(x, y)=(1,0)$ and $(x, y)=(1,-1)$.
5. Let L be the line containing the point $(1,1,1)$ and perpendicular to the plane $3 x+$ $4 y-z=6$. Find the distance from the point $(2,0,0)$ to the line L.

Solution: The normal vector to the plane $\vec{n}=\langle 3,4,-1\rangle$ is parallel to L. We can find the distance from $P=(2,0,0)$ to L by letting Q be $(1,1,1)$ and R be the point on L closest to $(2,0,0)$. The distance we want is the distance between P and R, which we may write as $|P R|$.

In the pictured triangle, the angle at R is a right angle (since the shortest distance from P to L is the perpendicular distance), so $|P R|=|Q P| \sin \theta$, where θ is the angle at Q.

$$
|P R|=|Q P| \sin \theta=\frac{|\vec{n}||Q P| \sin \theta}{|\vec{n}|}=\frac{|\vec{n} \times \overrightarrow{Q P}|}{|\vec{n}|}=
$$

$$
\frac{|\langle 3,4,-1\rangle \times\langle 1,-1,-1\rangle|}{|\langle-5,2,-7\rangle|}=\frac{|\langle-5,2,-7\rangle|}{|\langle 3,4,-1\rangle|}=\frac{\sqrt{78}}{\sqrt{26}}=\sqrt{3}
$$

6. A spaceship is traveling with position function $\vec{r}(t)=\left\langle\ln (t), \sqrt{2} t, \frac{t^{2}}{2}\right\rangle$.
(a) How far does the spaceship travel during the time interval $\frac{1}{2} \leq t \leq 1$?

Solution: $\vec{r}^{\prime}(t)=\left\langle\frac{1}{t}, \sqrt{2}, t\right\rangle$, so

$$
\begin{gathered}
\frac{d s}{d t}=\sqrt{\frac{1}{t^{2}}+2+t^{2}}=\sqrt{\left(\frac{1}{t}+t\right)^{2}}=\frac{1}{t}+t \\
\text { arc length }=\int_{\frac{1}{2}}^{1}\left(\frac{1}{t}+t\right) d t=\left.\left(\ln (t)+\frac{t^{2}}{2}\right)\right|_{t=\frac{1}{2}} ^{t=1}= \\
\left(0+\frac{1}{2}\right)-\left(-\ln (2)+\frac{1}{8}\right)=\ln (2)+\frac{3}{8}
\end{gathered}
$$

(b) At time $t=1$ the spaceship turns off its engines and continues traveling at constant velocity. Where is it located when $t=2$?

Solution: At time $t=1$ its position is $\vec{r}(1)=\left\langle 0, \sqrt{2}, \frac{1}{2}\right\rangle$ and its velocity is $\vec{r}^{\prime}(1)=\langle 1, \sqrt{2}, 1\rangle$. Its new position function $\vec{p}(t)$ satisfies $\vec{p}^{\prime}(t)=\langle 1, \sqrt{2}, 1\rangle$ and $\vec{p}(1)=\left\langle 0, \sqrt{2}, \frac{1}{2}\right\rangle$. This function is

$$
\vec{p}(t)=\left\langle 0, \sqrt{2}, \frac{1}{2}\right\rangle+(t-1)\langle 1, \sqrt{2}, 1\rangle .
$$

We can find this by knowing that we should use the tangent approximation to $\vec{r}(t)$ near $t=1$, or by integrating $\vec{p}^{\prime}(t)=\langle 1, \sqrt{2}, 1\rangle$ and using the initial condition $\vec{p}(1)=\left\langle 0, \sqrt{2}, \frac{1}{2}\right\rangle$ to solve for the constant of integration.
7. Suppose that C is a level curve of the differentiable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, and $\vec{r}: \mathbb{R} \rightarrow$ \mathbb{R}^{2} is a smooth parametrization of C.
(a) Explain how we know that

$$
\frac{d}{d t}(f(\vec{r}(t)))=0
$$

Solution: Since the value of f is constant on C, which is the range of \vec{r}, the value of $f(\vec{r}(t))$ is constant, so its derivative is zero.
(b) If $(a, b)=\vec{r}(d)$ is a point on C, what does $\vec{r}^{\prime}(d)$ tell us about C ?

Solution: It tells us the direction of a tangent vector to C at the point (a, b).
(c) Use parts (a) and (b) and the Chain Rule to prove that if $(a, b)=\vec{r}(d)$ is a point on C, and if $\left\langle\frac{\partial f}{\partial x}(a, b), \frac{\partial f}{\partial y}(a, b)\right\rangle$ is nonzero, then $\left\langle\frac{\partial f}{\partial x}(a, b), \frac{\partial f}{\partial y}(a, b)\right\rangle$ must be perpendicular to C.

Solution: To show that $\left\langle\frac{\partial f}{\partial x}(a, b), \frac{\partial f}{\partial y}(a, b)\right\rangle$ is perpendicular to C, we will show that it is perpendicular to the vector $\vec{r}^{\prime}(d)$, which is tangent to C by part (b). To show this, we will show that their dot product is zero. Using the Chain Rule:

$$
\left\langle\frac{\partial f}{\partial x}(a, b), \frac{\partial f}{\partial y}(a, b)\right\rangle \cdot \vec{r}^{\prime}(d)=\left\langle\frac{\partial f}{\partial x}(\vec{r}(d)), \frac{\partial f}{\partial y}(\vec{r}(d))\right\rangle \cdot \frac{d \vec{r}}{d t}(d)=\frac{d}{d t}(f(\vec{r}(d))) .
$$

By part (a), this is zero, which is what we needed to show.
If you prefer to use the Chain Rule in a different form:
Write $w=f(x, y)$ and $\langle x, y\rangle=\vec{r}(t)$. Then we have (evaluating everything at $x=a, y=b, t=d)$

$$
\begin{gathered}
\left\langle\frac{\partial f}{\partial x}(a, b), \frac{\partial f}{\partial y}(a, b)\right\rangle \cdot \vec{r}^{\prime}(d)=\left\langle\frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}\right\rangle \cdot\left\langle\frac{d x}{d t}, \frac{d y}{d t}\right\rangle= \\
\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}=\frac{d w}{d t}=\frac{d}{d t}(f(\vec{r}(d))) .
\end{gathered}
$$

8. Each function matches exactly one of the pictures on the next page, either a graph or a contour plot. Identify the picture that goes with each function.
(a) $f(x, y)=x^{2}+4 y^{2}$
(b) $f(x, y)=x^{2}+2 x y+y^{2}$
(c) $f(x, y)=4 x^{2}-2 y^{2}$

Solution:

(a) A. The intersection with the $x z$-plane is a parabola, and level curves are ellipses, ruling out B, C, E, F. Sketching the level curve $x^{2}+4 y^{2}=1$ rules out D, since the ellipses are the wrong shape.
(b) E. This is $(x+y)^{2}$, so the level curves are lines $x+y=c$, ruling out $\mathrm{A}, \mathrm{B}, \mathrm{C}$, D. Sketching level curves for $f(x, y)=0,1,2$ shows that the spacing rules out F .
(c) B. The level curves are hyperbolae. (Alternatively, the intersections with the coordinate planes are an upward-facing parabola, a downward-facing parabola, and the crossed lines $y= \pm \sqrt{2} x$.)

