Math 11 Fall 2016 Practice Exam I Solutions

1. TRUE or FALSE? (No partial credit; you need not show your work.)

- (a) There exists a vector v such that (2,1,2) × v = (1,-5,2).
 FALSE. (Use the dot product to check that (2,1,2) and (1,-5,2) are not orthogonal.)
- (b) For any vectors \vec{w} and \vec{v} we have $\vec{w} \times \text{proj}_{\vec{w}}(\vec{v}) = \vec{0}$ (where $\text{proj}_{\vec{w}}(\vec{v})$ denotes the vector projection).

TRUE. (The vectors
$$\vec{w}$$
 and $Proj_{\vec{w}}(\vec{v})$ are parallel, so their cross product is zero.)

- (c) Any smooth parametrization of the circle x² + y² = 1 gives unit tangent vector at (1,0) equal to T = ⟨0,1⟩.
 FALSE. (T = ⟨0,-1⟩ is also possible.)
- (d) If $\lim_{x\to 0} f(x,0) = 2$ and $\lim_{y\to 0} f(0,y) = 2$, then $\lim_{(x,y)\to(0,0)} f(x,y) = 2$. FALSE. (Checking two lines of approach is not sufficient.)
- (e) It is possible for the intersection of the graph of f with the plane x = 1 to have a horizontal tangent line at (1, 2, 4), and the intersection of the graph of f with the plane y = 2 to have a horizontal tangent line at (1, 2, 4), but for the graph of f not to have a horizontal tangent plane at (1, 2, 4). TRUE. (It may have no tangent plane at all.)
- 2. Short answer questions. (No partial credit; you need not show your work.)
 - (a) Determine whether the lines L_1 with parametric equations

$$x = 6t \quad y = 9t \quad z = -3t + 2$$

and L_2 with parametric equations

$$x = -4t - 4$$
 $y = -6t + 3$ $z = 2t$

are skew, nonparallel but intersecting, parallel, or the same line.

Solution: They are parallel. The direction vectors (6, 9, -3) and (-4, 6, 2) are parallel, since they are scalar multiples of each other. The point (0, 0, 2) is on L_1 , but it is not on L_2 . so they are not the same line. (The point on L_2 with z = 2 corresponds to t = 1, since z = 2t, but when t = 1 we have x = -8, not x = 0.)

(b) Find the arc length of the curve parametrized by $\vec{f}(t) = \langle \cos(t^2), \sin(t^2) \rangle$ for $0 \le t \le \sqrt{2\pi}$.

Solution: 2π . (The curve is the unit circle.)

(c) A moving object is traveling along the parabola $y = x^2$ in \mathbb{R}^2 , in the direction of increasing x-coordinate, at a constant speed of 2. When the object is at the point (0,0), what is its velocity?

Solution: $\vec{v} = \langle 2, 0 \rangle$. (Magnitude is speed, direction is tangent to curve.)

3. Find the area of the triangle with vertices $P_0 = (-1 - 1, 0)$, $P_1 = (0, 1, 1)$, and $P_2 = (0, 0, 3)$.

Solution: This is half the parallelogram with edges $\overrightarrow{P_0P_1}$ and $\overrightarrow{P_0P_2}$, so its area is

$$\frac{1}{2}\left|\overrightarrow{P_0P_1}\times\overrightarrow{P_0P_2}\right| = \frac{1}{2}\left|\langle 1,2,1\rangle\times\langle 1,1,3\rangle\right| = \frac{1}{2}\left|\langle 5,-2,-1\rangle\right| = \frac{\sqrt{30}}{2}$$

4. Find all points (x, y) at which the graphs of the functions $f(x, y) = x^2 - 3y^2$ and $g(x, y) = 2x + 2y^3$ have parallel tangent planes.

Solution: For the tangent plane to be parallel, the partial derivatives must be the same.

$$f_x(x,y) = 2x$$
 $f_y(x,y) = -6y$ $g_x(x,y) = 2$ $g_y(x,y) = 6y^2$.

Therefore we are looking for points at which 2x = 2 and $-6y = 6y^2$. The first equation gives x = 1 and the second gives y = 0, y = -1, so we have two solutions, (x, y) = (1, 0) and (x, y) = (1, -1).

5. Let L be the line containing the point (1, 1, 1) and perpendicular to the plane 3x + 4y - z = 6. Find the distance from the point (2, 0, 0) to the line L.

Solution: The normal vector to the plane $\vec{n} = \langle 3, 4, -1 \rangle$ is parallel to *L*. We can find the distance from P = (2, 0, 0) to *L* by letting *Q* be (1, 1, 1) and *R* be the point on *L* closest to (2, 0, 0). The distance we want is the distance between *P* and *R*, which we may write as |PR|.

In the pictured triangle, the angle at R is a right angle (since the shortest distance from P to L is the perpendicular distance), so $|PR| = |QP| \sin \theta$, where θ is the angle at Q.

$$|PR| = |QP|\sin\theta = \frac{|\vec{n}| |QP| \sin\theta}{|\vec{n}|} = \frac{|\vec{n} \times \overline{QP}|}{|\vec{n}|} =$$

$$\frac{|\langle 3, 4, -1 \rangle \times \langle 1, -1, -1 \rangle|}{|\langle -5, 2, -7 \rangle|} = \frac{|\langle -5, 2, -7 \rangle|}{|\langle 3, 4, -1 \rangle|} = \frac{\sqrt{78}}{\sqrt{26}} = \sqrt{3}$$

6. A spaceship is traveling with position function $\vec{r}(t) = \left\langle \ln(t), \sqrt{2t}, \frac{t^2}{2} \right\rangle$.

(a) How far does the spaceship travel during the time interval $\frac{1}{2} \le t \le 1$?

Solution:
$$\vec{r}'(t) = \left\langle \frac{1}{t}, \sqrt{2}, t \right\rangle$$
, so

$$\frac{ds}{dt} = \sqrt{\frac{1}{t^2} + 2 + t^2} = \sqrt{\left(\frac{1}{t} + t\right)^2} = \frac{1}{t} + t.$$
arc length $= \int_{\frac{1}{2}}^1 \left(\frac{1}{t} + t\right) dt = \left(\ln(t) + \frac{t^2}{2}\right) \Big|_{t=\frac{1}{2}}^{t=1} = \left(0 + \frac{1}{2}\right) - \left(-\ln(2) + \frac{1}{8}\right) = \ln(2) + \frac{3}{8}.$

(b) At time t = 1 the spaceship turns off its engines and continues traveling at constant velocity. Where is it located when t = 2?

Solution: At time t = 1 its position is $\vec{r}(1) = \left\langle 0, \sqrt{2}, \frac{1}{2} \right\rangle$ and its velocity is $\vec{r}'(1) = \left\langle 1, \sqrt{2}, 1 \right\rangle$. Its new position function $\vec{p}(t)$ satisfies $\vec{p}'(t) = \left\langle 1, \sqrt{2}, 1 \right\rangle$ and $\vec{p}(1) = \left\langle 0, \sqrt{2}, \frac{1}{2} \right\rangle$. This function is $\vec{p}(t) = \left\langle 0, \sqrt{2}, \frac{1}{2} \right\rangle + (t-1)\left\langle 1, \sqrt{2}, 1 \right\rangle$.

We can find this by knowing that we should use the tangent approximation to $\vec{r}(t)$ near t = 1, or by integrating $\vec{p}'(t) = \langle 1, \sqrt{2}, 1 \rangle$ and using the initial condition $\vec{p}(1) = \langle 0, \sqrt{2}, \frac{1}{2} \rangle$ to solve for the constant of integration.

- 7. Suppose that C is a level curve of the differentiable function $f : \mathbb{R}^2 \to \mathbb{R}$, and $\vec{r} : \mathbb{R} \to \mathbb{R}^2$ is a smooth parametrization of C.
 - (a) Explain how we know that

$$\frac{d}{dt}(f(\vec{r}(t))) = 0.$$

Solution: Since the value of f is constant on C, which is the range of \vec{r} , the value of $f(\vec{r}(t))$ is constant, so its derivative is zero.

(b) If $(a, b) = \vec{r}(d)$ is a point on C, what does $\vec{r}'(d)$ tell us about C?

Solution: It tells us the direction of a tangent vector to C at the point (a, b).

(c) Use parts (a) and (b) and the Chain Rule to prove that if $(a, b) = \vec{r}(d)$ is a point on C, and if $\left\langle \frac{\partial f}{\partial x}(a, b), \frac{\partial f}{\partial y}(a, b) \right\rangle$ is nonzero, then $\left\langle \frac{\partial f}{\partial x}(a, b), \frac{\partial f}{\partial y}(a, b) \right\rangle$ must be perpendicular to C.

Solution: To show that $\left\langle \frac{\partial f}{\partial x}(a,b), \frac{\partial f}{\partial y}(a,b) \right\rangle$ is perpendicular to C, we will show that it is perpendicular to the vector $\vec{r}'(d)$, which is tangent to C by part (b). To show this, we will show that their dot product is zero. Using the Chain Rule:

$$\left\langle \frac{\partial f}{\partial x}(a,b), \frac{\partial f}{\partial y}(a,b) \right\rangle \cdot \vec{r}'(d) = \left\langle \frac{\partial f}{\partial x}(\vec{r}(d)), \frac{\partial f}{\partial y}(\vec{r}(d)) \right\rangle \cdot \frac{d\vec{r}}{dt}(d) = \frac{d}{dt}(f(\vec{r}(d)))$$

By part (a), this is zero, which is what we needed to show.

If you prefer to use the Chain Rule in a different form:

Write w = f(x, y) and $\langle x, y \rangle = \vec{r}(t)$. Then we have (evaluating everything at x = a, y = b, t = d)

$$\left\langle \frac{\partial f}{\partial x}(a,b), \frac{\partial f}{\partial y}(a,b) \right\rangle \cdot \vec{r}'(d) = \left\langle \frac{\partial w}{\partial x}, \frac{\partial w}{\partial y} \right\rangle \cdot \left\langle \frac{dx}{dt}, \frac{dy}{dt} \right\rangle = \frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dy}{dt} = \frac{dw}{dt} = \frac{d}{dt} (f(\vec{r}(d))).$$

8. Each function matches exactly one of the pictures on the next page, either a graph or a contour plot. Identify the picture that goes with each function.

(a)
$$f(x,y) = x^2 + 4y^2$$

- (b) $f(x,y) = x^2 + 2xy + y^2$
- (c) $f(x,y) = 4x^2 2y^2$

Solution:

- (a) <u>A.</u> The intersection with the *xz*-plane is a parabola, and level curves are ellipses, ruling out B, C, E, F. Sketching the level curve $x^2 + 4y^2 = 1$ rules out D, since the ellipses are the wrong shape.
- (b) E. This is $(x + y)^2$, so the level curves are lines x + y = c, ruling out A, B, C, D. Sketching level curves for f(x, y) = 0, 1, 2 shows that the spacing rules out F.
- (c) <u>B</u>. The level curves are hyperbolae. (Alternatively, the intersections with the coordinate planes are an upward-facing parabola, a downward-facing parabola, and the crossed lines $y = \pm \sqrt{2} x$.)

