Maple Quick Start for Math 11

1 Installing Maple

https://caligari.dartmouth.edu/downloads/maple/

2 Integration

All this is extracted from Mathematica's Help Menu, in particular their Function Navigator.

1. First consider functions of a single variable:
(a) To compute $\int \sin (3 x) d x$,
(b) type $\operatorname{int}(\sin (3 * x), x)$;
and hit 'shift-enter' using the usual enter key, or the Enter key on the numeric keypad if your keyboard has one. Note the semicolon at the end.
(c) To compute $\int_{0}^{\pi / 2} \sin (3 x) d x$,
(d) type $\operatorname{int}(\sin (3 * x), x=0 \ldots P i / 2)$; and hit 'shift-enter'.
2. Next consider functions of two variables.
(a) To compute $\int_{0}^{2} \int_{0}^{y^{2}} \frac{1}{y^{3}+1} d x d y$,
(b) There are two ways of doing this, but one I think is clearer:
type int (int $\left.\left(1 /\left(y^{\wedge} 3+1\right), x=0 \ldots y^{\wedge} 2\right), y=0 . .2\right)$;
(c) to compute the inner integral $\int_{0}^{y^{2}} \frac{1}{y^{3}+1} d x$,
(d) type $\operatorname{int}\left(1 /\left(y^{\wedge} 3+1\right), x=0 \ldots y^{\wedge} 2\right)$;
(e) Note that integrating in the other order is not recommended:

$$
\int \frac{1}{y^{3}+1} d y=\frac{\arctan \left[\frac{-1+2 y}{\sqrt{3}}\right]}{\sqrt{3}}+\frac{1}{3} \log [1+y]-\frac{1}{6} \log \left[1-y+y^{2}\right]
$$

via partial fractions.

3 Graphing

1. Graphing a function $z=\sin (x y)$ over the rectangle $[-2,2] \times[-4,4]$ is easy:
2. Type plot3d (sin(x*y), $x=-2 \ldots 2, y=-4 \ldots 4$, axes $=$ frame);
3. Two surfaces on the same set of axes:
4. $\operatorname{Plot} 3 \mathrm{D}\left[\left\{36-\mathrm{x}^{\wedge} 2-\mathrm{y} \wedge 2, \mathrm{x}^{\wedge} 2+\mathrm{y}^{\wedge} 2\right\},\{\mathrm{x},-4,4\},\{\mathrm{y},-4,4\}\right]$
5. A contour plot for when your surfaces are not functions of the same two variables, for example the cylinders $y=x^{2}$ and $z=y^{2}$.
6. with(plots): (shift-enter) [You could put this as the first line in your file] implicitplot3d(\{y = x^2, $\left.z=x^{\wedge} 2\right\}, x=-3 . .33, y=0.4, z=0.4$, axes $=$ frame);
