Math 11, Multivariable Calculus Written Homework 9

- 1. Evaluate the surface integral $\iint_S \sqrt{1 + x^2 + y^2} \, dS$, where S is the helicoid with vector equation $\mathbf{r}(u, v) = u \cos v \, \mathbf{i} + u \sin v \, \mathbf{j} + v \, \mathbf{k}, \ 0 \le u \le 1, \ 0 \le v \le \pi$.
- 2. (Chapter 16.7, #39) Find the center of mass of the hemisphere $x^2 + y^2 + z^2 = a^2$, $z \ge 0$, if it has constant density.
- 3. (Chapter 16.8, #17) A particle moves along line segments from the origin to the points (1,0,0), (1,2,1), (0,2,1), and then back to the origin under the influence of the force field F = ⟨z², 2xy, 4y²⟩. Find the work done in two separate ways: (a) by directly calculating this line integral, and (b) by using Stokes' Theorem with a suitable choice of surface S.
- 4. (Chapter 16.8, #18) Evaluate

$$\int_{C} (y + \sin x) \, dx + (z^2 + \cos y) \, dy + x^3 \, dz,$$

where C is the curve $\mathbf{r}(t) = \langle \sin t, \cos t, \sin 2t \rangle, \ 0 \le t \le 2\pi$. (Hint: Observe that C lies on the surface z = 2xy.)

- 5. (Chapter 16.9, #18) Let $\mathbf{F} = \langle z \tan^{-1}(y^2), z^3 \ln(x^2 + 1), z \rangle$. Find the flux of \mathbf{F} across the part of the paraboloid $x^2 + y^2 + z = 2$ that lies above the plane z = 1 and is oriented upwards.
- 6. (Chapter 16.9, #24) Use the Divergence Theorem to evaluate

$$\iint_{S} (2x + 2y + z^2) \, dS,$$

where S is the sphere $x^2 + y^2 + z^2 = 1$.