Math 11, Multivariable Calculus
 Written Homework 6

1. (Ch 15.1: 17,18)
(a) Show that if f is a constant function of two variables (so $f(x, y)=k$ for some constant k) and $R=[a, b] \times[c, d]$, then

$$
\iint_{R} k d A=k(b-a)(d-c)
$$

(b) Use part (a) to show that

$$
0 \leq \iint_{R} \sin (\pi x) \cos (\pi y) d A \leq \frac{1}{32}
$$

where $R=[0,1 / 4] \times[1 / 4,1 / 2]$.
2. (Ch 15.2: 36) Find the average value of $f(x, y)=e^{y} \sqrt{x+e^{y}}$ over the rectangle $R=$ $[0,4] \times[0,1]$.
3. (Ch 15.3: 54) Evaluate the following integral by interchanging the order of integration:

$$
\int_{0}^{8} \int_{\sqrt[3]{y}}^{2} e^{x^{4}} d x d y
$$

4. (Ch 15.3) In evaluating a double integral over a region D , a sum of iterated integrals was obtained as follows:

$$
\iint_{D} f(x, y) d A=\int_{0}^{2} \int_{0}^{\sqrt{y}} f(x, y) d x d y+\int_{2}^{4} \int_{y-2}^{\sqrt{y}} f(x, y) d x d y
$$

Sketch the region D and express the double integral as an iterated integral with reversed order of integration.
5. (Ch 15.7: 16) Evaluate the triple integral $\iiint_{T} x y z d V$, where T is the solid tetrahedron with vertices $(0,0,0),(1,0,0),(1,1,0),(1,0,1)$.
6. (Ch 15.7: 28) Sketch the solid whose volume is given by the following iterated integral, and compute the value of that volume:

$$
\int_{0}^{2} \int_{0}^{2-y} \int_{0}^{4-y^{2}} d x d z d y
$$

