Math 11, Multivariable Calculus
 Written Homework 4

1. (14.6 \#64a) The plane $y+z=3$ intersects the cylinder $x^{2}+y^{2}=5$ in an ellipse. Find parametric equations for the tangent line to this ellipse at the point $(1,2,1)$.
2. (14.7 \#47) Find the volume of the largest rectangular box in the first octant with three faces in the coordinate planes and one vertex in the plane $x+2 y+3 z=6$.
3. (14.7 \#52) A rectangular building is being designed to minimize heat loss. The east and west walls lose heat at a rate of 10 units $/ m^{2}$ per day, the north and south walls at a rate of 8 units $/ m^{2}$ per day, the floor at 1 unit $/ m^{2}$ per day, and the roof at a rate of 5 units $/ m^{2}$ per day. Each wall must be at least 30 m long, the height must be at least 4 m , and the volume must be exactly $4000 \mathrm{~m}^{3}$.
(a) Find and sketch the domain of the heat loss as a function of the lengths of the sides.
(b) Find the dimensions that minimize the heat loss, checking both the critical points and the boundary.
(c) Could you design a building with even less heat loss if the restrictions on the lengths of the walls were removed?
4. (14.8 \#21) Find the extreme values of $f(x, y)=e^{-x y}$ on the domain $x^{2}+4 y^{2} \leq 1$.
5. (14.8 \#37). Use Lagrange multipliers to provide an alternate solution to problem 2.
