V63.0123-1 : Calculus III. Sample Midterm1

You have 60 minutes. Please find potentially useful equations on back.

1. [10 points]

In a spaceship an astronaut throws a ball from the location $(1,1,1)$ with velocity $(2,-1,-1)$. Because there is no gravity the ball travels in a straight line! A nearby wall of the spaceship is defined by $x-2 y+z-4=0$
(a) At what location does the ball hit the wall?
(b) Find the angle between the path of the ball and the surface of the wall (you can leave as a numeric expression to be evaluated).
2. [12 points]

A three-dimensional object is defined by $x-\sin y \cos z=0$ in the domain $y \in[0, \pi]$ and $z \in[0, \pi / 2]$.
(a) Sketch the object.
(b) Sketch the curve formed where this object intersects the plane which passes through the origin and is perpendicular to the vector $(0,-1,1)$.
(c) Find a parametric equation for this curve.
3. [8 points]

Find the curvature κ of the curve $y=a x^{2}, z=0$, at the origin. In which direction is the normal vector \mathbf{N} at this point?
4. [10 points]

Given 3 points $A(0,0), B(0,10), C(3,4)$ in \mathbb{R}^{2}, find
(a) an equation for the line passing A and perpendicular to $B C$,
(b) the area of the triangle defined by vertices $A B C$.
5. [10 points]

A curve is defined by $x(t)=r t-r \sin t$ and $y(t)=r-r \cos t$, in the domain $t \in[-\pi, \pi]$.
(a) Find the velocity and speed as a function of t.
(b) Find the distance along the curve.
(c) Is the curve smooth? Please explain your answer.

$$
\begin{align*}
\sin (\theta+\phi) & =\sin \theta \cos \phi+\cos \theta \sin \phi \\
\cos (\theta+\phi) & =\cos \theta \cos \phi-\sin \theta \sin \phi \\
\frac{d}{d x} \sin x & =\cos x \\
\frac{d}{d x} \cos x & =-\sin x \\
\frac{d}{d x} \tan x & =\sec ^{2} x \\
\frac{d}{d x} \sin ^{-1} x & =\frac{1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x} \cos ^{-1} x & =-\frac{1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x} \tan ^{-1} x & =\frac{1}{1+x^{2}} \\
\text { surface area of revolution } & =\int_{a}^{b} d t 2 \pi y(t) \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} \\
\kappa & =\frac{\left|\mathbf{T}^{\prime}\right|}{\left|\mathbf{r}^{\prime}\right|}=\frac{\left|\mathbf{r}^{\prime \prime} \times \mathbf{r}^{\prime}\right|}{\left|\mathbf{r}^{\prime}\right|^{3}} \\
\text { spherical coords: } x & =\rho \sin \phi \cos \theta \\
y & =\rho \sin \phi \sin \theta \\
z & =\rho \cos \phi \tag{1}
\end{align*}
$$

