V63.0123-1 : Calculus III. Sample Midterm2

You have 60 minutes. Non-graphing calculators and a single side of letter paper equations are allowed.

1. [12 points]

Let $f(x, y)=\frac{x}{y}+\frac{y}{x}$.
(a) What is the domain of f ?
(b) Compute ∇f at a general point (x, y).
(c) Show that $\nabla f(x, y)$ is always perpendicular to $\mathbf{r}=(x, y)$.
(d) Does $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ exist? If so, compute the limit. If not, explain why.
2. [10 points]

Find the integral of $f(x, y, z)=x$ over the three-dimensional domain bounded by the planes $z=0$ and $x+z=1$ and the parabolic cylinder $x=y^{2}$.
3. [8 points]

Find the x coordinate of the center of mass of a lamina occupying the region $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 1, x \geq 0\right\}$ with constant density.
4. [10 points]

If $f=x y+y z+z x$, with $x=s t, y=e^{s t}$ and $z=t^{2}$, find $\partial f / \partial s$ and $\partial f / \partial t$ at the coordinates $(s, t)=(0,1)$.

5. [10 points]

Find and categorize the critical points of $f(x, y)=x^{2} y+y^{2}-y$. Find the value of f at any local extrema. Use what you have found to help you sketch a contour plot of $f(x, y)$, with the critical points shown. [Hint: you may want to plot the contour line(s) $f=0$ first].

Practise problems from Stewart book (note exam may also have non-Stewart style problems, but will be mainly Stewart-style). Also make sure you understand HW4-8.
15.1: 9, 27, 29, 31, 39.
15.2: 7, 9 .
15.3: 25, 45, 47, 53, 67, 79.
15.4: 3, 13, 17.
15.5: 9, 11, 19, 43.
15.6: 21, 23, 25, 29, 35.
15.7: 7, 9, 33, 37, 47.
15.8: 5, 9, 19.

15 Review (p.994): Concept check 1, 6, 7, 15, 17.
16.1: 13.
16.2: 17, 29.
16.3: 7, 11, 17, 27.
16.4: 15, 21, 23, 31.
16.5: 3, 5, 11.
16.6: 7, 9, 19.
16.7: 7, 19, 45.
16.8: 13, 19, 23.

16 Review (p.1068): Concept check 2a-c, 3, 6 .

