V63.0123-1 : Calculus III. Midterm2

Mon Apr 7. You have 60 minutes. Non-graphing calculators and a single side of letter paper equations are allowed. 6 questions, continued on reverse. You do not have to attempt them in order.

1. [6 points]

Let $f(x, y, z)$ equal the distance from (x, y, z) to the origin.
(a) Compute the function $\partial f / \partial x$ at a general point (x, y, z). Let's call this function $g(x, y, z)$.
(b) Is the function g continuous at the origin? If so, give its limit. If not, explain why not.
2. [9 points]

Given $f(x, y)=1+\ln \left(\frac{x^{2}+y}{3}\right)$,
(a) Find $L(x, y)$, the linear approximation to $f(x, y)$ at the point $(x, y)=$ $(1,2)$.
(b) Use this approximation to estimate $f(0.99,2.01)$.

3. [11 points]

Find the extreme value(s), and their location(s), for the function $f(x, y, z)=$ $2 x^{2}+y^{2}-z^{2}-2 y$ constrained to the surface of the unit sphere $x^{2}+y^{2}+z^{2}=$ 1.
4. [4 points]

If a function $u(x, y)$ obeys the partial differential equation $u_{x x}+u_{y y}=0$ (called Laplace's equation), is it possible for u to have a local maximum or local minimum at some point (x, y) ? Explain your answer. (You may assume the second derivatives are not all equal to zero).
5. [10 points]

Evaluate the integral of $f(x, y, z)=z$ over the domain E which is the region $x \geq 0$ bounded by the planes $z=0, z=x, y=1$, and the parabolic cylinder $y=x^{2}$.

6. [10 points]

Find the surface area of the part of the cylinder $y^{2}+z^{2}=1$ which falls within the cylinder $x^{2}+y^{2}=1$, and has $z \geq 0$. [Hint: use polar coordinates in the domain in the $x y$ plane. Only 2 points are available for evaluating the final θ integral, so if stuck don't waste time on it, just leave it as a definite integral. The identity $\frac{1}{2}(1-\cos \theta)=\sin ^{2}(\theta / 2)$ will help.]

