Math 11 Fall 2004
 Multivariable Calculus
 for Two-Term Advanced Placement First-Year Students
 Second Midterm Exam

Wednesday, November 10, 3:30-4:45

Your name (please print):

Instructions: This is a closed book, closed notes exam. Use of calculators is not permitted. You are allowed to bring one letter-size sheet of paper with any data you want written on it. You must justify all of your answers to receive credit, unless instructed otherwise in a given problem. On the multiple choice questions, only the answer you mark on the scantron form will be counted and justifications can be minimal.

You have one hour and fifteen minutes to work on all $\mathbf{1 5}$ problems. Please do all your work in this exam booklet.

The Honor Principle requires that you neither give nor receive any aid on this exam.

Grader's use only

1-10: Multiple Choice: /50
11. \qquad /10
12. \qquad /10
13. \qquad /10
14. /10
15. /10

Total: /100

(1) The area of the surface of the part of the cylinder $x^{2}+y^{2}=1$ that lies toward the positive x-axis from the (y, z)-plane and is bounded by the planes $z=1$ and $z=5$ is equal to:
(a): 8π
(b): 4π
(c): $4 \pi^{2}$
(d): 3π.
(2) A cardboard box without a lid is to have a volume of $32 \mathrm{~cm}^{3}$. The dimensions of the box for which the amount of cardboard required to construct such a box is minimal are:
(a): $32^{\frac{1}{3}} \times 32^{\frac{1}{3}} \times 32^{\frac{1}{3}}$
(b): $2 \times 2 \times 8$
(c): $4 \times 4 \times 2$
(d): $4 \times 8 \times 1$.
(3) The triple integral $\iiint_{E} x^{2} z d V$ over $E=[-1,1] \times[-1,1], \times[-1,1]$ is equal to
(a): 0;
(b): 12
(c): -3
(d): 15 .
(4) Let D be a unit disk $x^{2}+y^{2} \leq 1$. One can conclude that $\iint_{D} e^{x^{2004}+y^{2004}} d A$ is in between
(a): 29 and 40;
(b): -1 and $-\frac{1}{2}$;
(c): π^{3} and $\pi^{3} e$;
(d): 0 and $e^{2} \pi$.
(5) The average value of $f(x, y, z)=3 x^{2}$ over $B=[0,2] \times[0,2] \times[0,2]$ is
(a): 32;
(b): 4;
(c): 18;
(d): 23.
(6) Let D be a disk $(x-1)^{2}+y^{2} \leq 1$. Then $\iint_{D}\left(x^{2}+y^{2}\right) d A$ is equal to
(a): $\int_{1}^{2} \int_{-\sqrt{1-(x-1)^{2}}}^{\sqrt{1-(x-1)^{2}}} x^{2}+y^{2} d y d x$;
(b): $\int_{0}^{1} \int_{0}^{2 \pi} r^{3} d \theta d r$;
(c): $\int_{0}^{1} \int_{0}^{2 \pi} r^{2} d \theta d r$;
(d): $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{2 \cos \theta} r^{3} d r d \theta$.
(7) Let $C(t)=(\cos t, \sin t, 1), 0 \leq t \leq 2 \pi$ be a path. The line integral $\int_{C} y d x-x d y+0 d z$ is equal to
(a): $8^{\frac{1}{3}}$
(b): 2π;
(c): -2π;
(d): 16π.
(8) Let $C(t)=(\cos t, \sin t, 1), 0 \leq t \leq 2 \pi$ be a path, and let $\mathbf{F}(\mathbf{x}, \mathbf{y}, \mathbf{z})=\mathbf{x i}+\mathbf{y j}+\mathbf{z k}$ be a vector field. The line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is equal to:
(a): 0
(b): 2π
(c): $2 \pi(\mathbf{i}+\mathbf{j}+\mathbf{k})$
(d): $\pi 8^{\frac{1}{3}}$.
(9) Let E be the solid that is the part of the sphere $x^{2}+y^{2}+z^{2} \leq 2$ that lies inside of the cone $z \geq \sqrt{x^{2}+y^{2}}$. Then $\int_{E} e^{x^{2}+y^{2}+z^{2}} d V$ is equal to
(a):

$$
\int_{0}^{1} \int_{1}^{\sqrt{2}} \int_{0}^{2 \pi} e^{r^{2}+z^{2}} r d \theta d z d r
$$

(b):

$$
\int_{-\sqrt{2}}^{\sqrt{2}} \int_{-\sqrt{2-x^{2}}}^{\sqrt{2-x^{2}}} \int_{1}^{\sqrt{2-x^{2}-y^{2}-z^{2}}} e^{x^{2}+y^{2}+z^{2}} d z d y d x
$$

(c):

$$
\int_{0}^{\frac{\pi}{4}} \int_{0}^{2 \pi} \int_{0}^{\sqrt{2}} e^{\rho^{2}} \rho^{2} \sin \phi d \rho d \theta d \phi
$$

(d):

$$
\int_{0}^{\frac{\pi}{4}} \int_{0}^{2 \pi} \int_{0}^{\sqrt{2}} e^{\rho^{2}} \rho d \rho d \theta d \phi
$$

(10) The volume of the solid that is the common part of the solid cylinder $x^{2}+y^{2} \leq 1$, the cone $z \geq \sqrt{x^{2}+y^{2}}$ and that is below the $z=1$ plane is
(a): $\frac{\pi}{3}$
(b): $\int_{0}^{1} \int_{0}^{1} \int_{0}^{2 \pi} r^{2} \sin \theta d \theta d z d r$
(c): $\int_{0}^{3} \int_{0}^{1} \int_{0}^{2 \pi} r d \theta d z d r$
(d): $\int_{0}^{1} \int_{0}^{1} \int_{0}^{\pi} r d \theta d z d r$
(11) Find the minimal distance from the point $(1,1,0)$ to the surface $z^{2}=x y+\frac{12}{9}$.
(12) Evaluate the integral by reversing the order of integration $\int_{0}^{1} \int_{x^{2}}^{1} x^{3} \cos \left(y^{3}\right) d y d x$.
(13) Let E be the part of the solid ball $x^{2}+y^{2}+z^{2} \leq 1$ located above the $z=0$ plane. Evaluate $\iiint_{E}\left(x^{2}+y^{2}+z^{2}\right) d V$
(14) Let E be the part of the solid cylinder $x^{2}+y^{2} \leq 1$ located above $z=1$ and below $z=4$. Write $\iiint_{E} x d V$ as

$$
\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} \int_{u_{1}(x, z)}^{u_{2}(x, z)} x d y d z d x
$$

for some $g_{1}(x), g_{2}(x), u_{1}(x, z), u_{2}(x, z)$.
(15) Find the absolute maximum and the absolute minimum of $f(x, y)=x+y^{2}$ over the disk $x^{2}+y^{2} \leq 1$.

