V63.0123-1 : Calculus III. Sample Final. Spring 2003

You have 110 minutes. Non-graphing calculators and a double-sided letter paper of equations are allowed. You must answer 7 of the 8 questions. Please indicate at the top which question you did NOT attempt.

1. [10 points]

Given the planar parametric curve $x=e^{t}-t, y=4 e^{t / 2}$, find a) the arc length in the range $-1 \leq t \leq 1$, and b) the curvature at $t=1$.
2. [10 points]

Find a parametric curve $\mathbf{r}(t)$ which represents the intersection of the cone $z=\sqrt{x^{2}+y^{2}}$ and the plane $z=1+y$.
3. [10 points]

Find the integral of $e^{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}$ inside the part of the sphere $x^{2}+y^{2}+z^{2} \leq$ 1 which lies in the first octant (i.e. $x \geq 0, y \geq 0, z \geq 0$).
4. [10 points]

A scalar field in three dimensions is given by $f(\mathbf{r})=r^{n}$ where $r=|\mathbf{r}|$.
(a) Find $\nabla^{2} f$.
(b) For what value of n is $\nabla^{2} f=0$ everywhere?
5. [10 points]

Given the vector field $\mathbf{F}=(z, 1, x)$,
(a) show whether \mathbf{F} is conservative or not.
(b) evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ along the parametric curve C given by $\mathbf{r}(t)=$ $\left(2^{t}, 3^{t}, 4^{t}\right)$ with t increasing from 0 to 1 . [Hint: Fundamental Theorem].
6. [10 points]
(a) For the vector field $\mathbf{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$, and a three-dimensional region E, prove that

$$
\operatorname{Volume}(E)=\frac{1}{3} \oiint_{S} \mathbf{F} \cdot d \mathbf{S},
$$

where S is the outward-oriented boundary surface of E.
(b) Using this, find the volume of a sphere of radius 1.
7. [10 points]

A wire in bent into the curve $x-y^{2}=0$ between $(0,0)$ and $(1,1)$, and has density function $\left.x / \sqrt{(} 1+4 y^{2}\right)$. Find the location of the center of mass of the wire.
8. [10 points]
S is the conical surface $x^{2}+y^{2}-z^{2}=0$, with $0 \leq z \leq 1$, oriented upwards.
(a) What is the surface area of S ?
(b) What is the flux through S of the field $\mathbf{F}=\left(x^{3}+x y^{2}, y x^{2}+y^{3}, z\right)$?

Practise problems from Stewart book, on material before Midterm1 (HW1-3) and since Midterm2 (HW9-11).
11.1: 5, 9.
11.2: 9, 15, 33.
11.3: 7.
13.4: 15, 25, 41.
13.5: 7.
13.6: 1.
13.7: 51, 57.
14.1: 17, 29.
14.2: 13, 15, 27, 29, 47.
14.3: 11,21 (just use $z=0$ and regular formula), 25 .
14.4: 11.
17.1: 25, 27.
17.2: 3, 5, 7, 11, 31.
17.3: 5, 7, 11, 19, 27, 33.
17.4: 3, 9, 19.
17.5: 5, 17, 31.
17.6: 1, 17, 23.
17.7: 7, 17, 25.
17.8: 1, 5, 13.
17.9: 9.

17 Review (p.1152): Concept check all except 4b, 12b. True-False Quiz all.

