V63.0123-1 : Calculus III. Final. Spring 2003

You have 110 minutes. Non-graphing calculators and a double-sided equation sheet are allowed. You only need answer 7 of the 8 questions. Please indicate at the top which one you did NOT attempt.

1. [10 points]

Find the critical points of $f(x, y)=x^{2}+y^{2}+x^{2} y+4$. For each point found specify if it is a local minimum, local maximum, or saddle point.
2. [10 points]

For a general 3d vector function $\mathbf{r}(t)$, prove the following two (unrelated) facts. [As usual, the prime symbol means t-derivative].
(a) $\frac{d}{d t}\left(\mathbf{r}^{\prime} \times \mathbf{r}\right)=\mathbf{r}^{\prime \prime} \times \mathbf{r}$.
(b) $\quad \frac{d}{d t}|\mathbf{r}|=\frac{1}{|\mathbf{r}|} \mathbf{r} \cdot \mathbf{r}^{\prime}$. [Hint: components, tree of dependence]
3. [10 points]

Find the volume that lies inside both the sphere $x^{2}+y^{2}+z^{2}=4$ and the cylinder $x^{2}+y^{2}=1$.
4. [10 points]
S is the surface of the hemisphere $x^{2}+y^{2}+z^{2}=9$ with $z \geq 0$, oriented upwards, combined with the disc $x^{2}+y^{2} \leq 9$ lying in the plane $z=0$, oriented downwards. Find the flux through S of the vector field $\mathbf{F}=\left(z, y x+z, z^{2} / 6+y\right)$. [Hint: Divergence Theorem].
5. [10 points]

Find $\int_{C} \frac{1}{2} y^{2} \sin x d x+(1-y \cos x) d y$ where C is the planar curve defined parametrically by $x(t)=\pi t / 2$ and $y(t)=\pi t^{3} / 2$, with t starting at 0 and ending at 1. [Hint: Fundamental Theorem of Line Integrals].
6. [10 points]
C is the boundary curve of the piece of the plane $x+y+z=1$ which lies in the first octant (i.e. the region $x \geq 0, y \geq 0, z \geq 0$), traversed in a
counter-clockwise sense when viewed from above. Compute $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ for the field $F=x z \mathbf{i}+\left(y^{2}-\frac{1}{2} z^{2}\right) \mathbf{j}+z^{2} \mathbf{k}$. [Hint: Stokes].
7. [10 points]

The curve C is defined by $x=t^{3} / 3, y=t^{2} / 2$, with domain $t \in[0,1]$.
(a) Find the arc length of C.
(b) Evaluate the line integral $\int_{C} f d s$ of the function $f(x, y)=1 / \sqrt{1+2 y}$.
8. [10 points]
C is composed of three segments traversed in a clockwise sense: the straight line from $(0,0)$ to $(0,2)$, the quarter circle from there to $(2,0)$, and the straight line returning to $(0,0)$. Evaluate $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ for the field $\mathbf{F}=(1-$ $\left.x^{2} y\right) \mathbf{i}+y \mathbf{j}$. [Hint: Green's Theorem].

