Calculus III - Midterm - March 20, 2002

1. Let $z=f\left(x^{2}-y^{2}\right)$ for some differentiable function f. Show that

$$
y \frac{\partial z}{\partial x}+x \frac{\partial z}{\partial y}=0
$$

(Hint: Let $\left.u=x^{2}-y^{2}\right)(\mathbf{1 5} \mathbf{p t s})$
2. Find an equation of the plane tangent to the surface $x^{2} y+y^{2} z+z^{2} x=3$ at the point $(1,1,1)$. (Hint: gradient) (15 pts)
3. Let $f(x, y)=\sqrt{x y}$. Find a linear approximation to f of the form $L(x, y)=a x+b y+c$ at the point $(1,4)$. Then evaluate $L(1.1,4.1)$ to find an approximate value for $\sqrt{(1.1)(4.1)}$. (15 pts)
4. The equation of a surface is given in the cylindrical coordinates to be $z=4-r, 0 \leq \theta \leq 2 \pi$. Sketch the portion of the graph of this surface that lies above the $x y$ plane. ($\mathbf{1 5} \mathbf{~ p t s) ~}$
(Hint: First plot the surface $z=r$, then $z=-r$, and finally $z=4-r$.)
5. Let $f(x, y)=\frac{x}{y}+\frac{y}{x}$. What is the domain of f ?
(a) Show that in its domain, f is constant on any line that passes through the origin.
(b) Compute the gradient $\vec{\nabla} f$ at a given point (r, s) and show that it is perpendicular to the vector $\overrightarrow{\mathbf{v}}=(r, s)$. Can you deduce the result in (a) directly from this?
(Hint: What is the value of the directional derivative of f along $\overrightarrow{\mathbf{v}}$?)
(c) Does $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ exist? If yes, compute the limit. If not, give your reasoning.
(20 pts)
6. A point particle moves according to the vector function $\overrightarrow{\mathbf{r}}(t)=\left(e^{t} \cos t, e^{t} \sin t\right)$, starting at time $t=0$.
a) Compute the initial velocity and speed of this particle.
b) Show that this particle crosses the coordinate axes when t is an integer multiple of $\frac{\pi}{2}$ and when this happens, the trajectory makes an angle of 45 degrees with the coordinate axis it crosses.
c) Make a rough sketch of the trajectory.
d) Compute the distance that this particle covers between $t=0$ and $t=2$.

(20 pts)

Extra credit:

7. Find an equation of the plane defined by the triangle with vertices $A(1,1,1), B(2,0,0)$, and $C(0,2,0)$. Sketch this triangle. ($10 \mathbf{p t s}$)
