Midterm for Calculus III(Fall 2002) November 13, 2002

minutes total; PICK AND MARK CLEARLY 5 out of 6 problems – 150 points total with 30 points each. *Problems NOT ordered according to difficulty!

1. Use Lagrange multipliers to find the maximum and minimum values of

$$f(x,y) = x^2 y,$$

subject to the constraint

$$x^2 + y^2 = 1.$$

2. Find the volume of the solid enclosed by the paraboloids

$$z = x^2 + y^2$$
 and $z = 16 - x^2 - y^2$.

3. Find the total mass of the solid tetrahedron with vertices (0,0,0), (1,0,0),

(0, 2, 0), (0, 0, 3) and density function $\rho(x, y, z) = x^2 + y^2$.

 x^2

4. Find the area of the surface defined by

$$z = x^2 + \frac{3}{2}y^2,$$

and bounded by $4x^2 + 9y^2 = 36$. 5. Compute the triple integral

$$\int\limits_{+y^2+z^2 \le 1} (x-z)^2 \, dV$$

6. For a rectangular region $\{0 \le x \le 2, 0 \le y \le 1\}$, a point P is radomly marked.

The probability desnity function is proportional to $y^2 e^x$. Find this density function. Find the probability that P falls into the left half ($\{0 \le x, y \le 1\}$). GOOD LUCK!

=1440