Midterm for Calculus III(Fall 2002)

November 13, 2002
minutes total; PICK AND MARK CLEARLY 5 out of 6 problems 150 points total with 30 points each. \quad Problems NOT ordered according to difficulty!

1. Use Lagrange multipliers to find the maximum and minimum values of

$$
f(x, y)=x^{2} y
$$

subject to the constraint

$$
x^{2}+y^{2}=1
$$

2. Find the volume of thesolid enclosed by the paraboloids

$$
z=x^{2}+y^{2} \quad \text { and } \quad \mathrm{z}=16-\mathrm{x}^{2}-\mathrm{y}^{2}
$$

3. Find the total mass of the solid tetrahedron with vertices $(0,0,0),(1,0,0)$, $(0,2,0),(0,0,3)$ and density function $\rho(x, y, z)=x^{2}+y^{2}$.
4. Find the area of the surface defined by

$$
z=x^{2}+\frac{3}{2} y^{2}
$$

and bounded by $4 x^{2}+9 y^{2}=36$.
5 . Compute the triple integral

$$
\int_{x^{2}+y^{2}+z^{2} \leq 1}(x-z)^{2} d V
$$

6. For a rectangular region $\{0 \leq x \leq 2,0 \leq y \leq 1\}$, a point P is radomly marked.

The probability desnity function is proportional to $y^{2} e^{x}$. Find this density function. Find the probability that P falls into the left half $(\{0 \leq x, y \leq 1\})$.

GOOD LUCK!

