$$
=1440
$$

Midterm for Calculus III(Fall 2002)
 October 7, 2002

60 minutes total; PICK AND MARK CLEARLY 5 out of 6 problems150 points total with 30 points each.
*Problems NOT ordered according to difficulty!

1. Define

$$
\begin{gathered}
r(x, y)=\sqrt{x^{2}+y^{2}} \\
f(x, y)=\exp \left(-\frac{1}{r(x, y)}\right) ; \quad(x, y) \nLeftarrow(0,0)
\end{gathered}
$$

a) Compute $\left.f_{x}(3,4)(20 \mathrm{pts}) ; \mathrm{b}\right)$ Find $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ and give your reasons (10 pts).
2. Find the straight line that is perpendicular to

$$
P=\{(x, y, z): 2 x+3 y+4 z=1\}
$$

and passes through $A(2,3,4)(15 \mathrm{pts})$; and find the distance between A and $P(15$ pts). 3. Find the arc length of the path $\mathbf{c}(t)=\left(\sin ^{2} t, \cos ^{2} t\right)$ fot $0 \leq t \leq \pi / 2(30$ pts). 4. Find the linear approximation for

$$
f(x, y)=\sqrt{20-x^{2}-7 y^{2}}
$$

at $(2,1)$, and use it to approximate $f(2.05,0.98)(20 \mathrm{pts})$; also find the equation of the tangent plane of $\{z=f(x, y)\}$ (as a surface in 3 -space) at $(2,1,3)(10 \mathrm{pts})$. 5. Given three points $A(0,0), B(0,10), C(3,4) \in R^{2}$, Find a) linear equation of the line passing A and perpendicular to $B C(15 \mathrm{pts})$; b) Area of the triangle $\Delta_{A B C}(15 \mathrm{pts})$. 6. (30 pts)For $(x, y, z) \neq(0,0,0)$, define

$$
\begin{gathered}
r(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}} \\
f(x, y, z)=1 / r
\end{gathered}
$$

Prove that

$$
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}=0
$$

GOOD LUCK!

