=1440

Final for Calculus III(Fall 2002) December 18, 2002

100 minutes total; PICK AND MARK CLEARLY 6 out of 7 problems; all the problems are of equal value. *Problems NOT ordered according to difficu

1.a) Find the equation for the plane going through three points A(0,1,1), B(1,0,1) and C(1,1,0); b) Find the angle between AC and AB.

2. With the constraint $x^2 + y^2 + z^2 = 1$, find the maximum value of $f(x, y, z) = x^3 + y^3 + 2z^3$.

3. Find the volume of the solid inside both the cylinder $x^2 + y^2 = 4$ and the ellipsoid $4x^2 + 4y^2 + z^2 = 64$.

4. a) For a vector field $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, and Ω a 3-dimensional region, prove

$$Vol(\Omega) = \frac{1}{3} \int \int_{\partial \Omega} \mathbf{F} \cdot \mathbf{dS},$$

where $\partial \Omega$ is the boundary of Ω with the compatible orientation; b) Using a), find the volume of a 3-dimensional ball of radius 1.

5. For $\mathbf{F} = e^x \mathbf{i} + e^{-x} \mathbf{j} + e^z \mathbf{k}$, compute the following line integral

$$\int_C \mathbf{F} \cdot \mathbf{dr},$$

where C is the boundary curve of the part of the plane x + y + z = 1 in the first octant, with counterclockwise orientation as viewed from above. (Hint: Stokes' Theorem).

6. Compute the surface area of the part of the cylinder $x^2 + z^2 = a^2$ that lies inside of the cylinder $x^2 + y^2 = a^2$.

7. Compute $\int_C yz dx + xz dy + xy dz$, where *C* consists of line segments from (0,0,0) to (100,100,200), from (100,100,200) to (2002,2003,0). (Hint: fundamental theorem of line integrals)

GOOD LUCK!