Final for Calculus III(Fall 2002)

December 18, 2002
100 minutes total; PICK AND MARK CLEARLY 6 out of 7 prob-
lems; all the problems are of equal value. \quad *Problems NOT ordered according to difficu
1.a) Find the equation for the plane going through three points $A(0,1,1)$, $B(1,0,1)$ and $C(1,1,0) ; \mathrm{b})$ Find the angle between $A C$ and $A B$.
2. With the constraint $x^{2}+y^{2}+z^{2}=1$, find the maximum value of $f(x, y, z)=$ $x^{3}+y^{3}+2 z^{3}$.
3. Find the volume of the solid inside both the cylinder $x^{2}+y^{2}=4$ and the ellipsoid $4 x^{2}+4 y^{2}+z^{2}=64$.
4. a) For a vector field $\mathbf{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$, and Ω a 3 -dimensional region, prove

$$
\operatorname{Vol}(\Omega)=\frac{1}{3} \iint_{\partial \Omega} \mathbf{F} \cdot \mathbf{d S}
$$

where $\partial \Omega$ is the boundary of Ω with the compatible orientation; b) Using a), find the volume of a 3 -dimensional ball of radius 1 .
5. For $\mathbf{F}=e^{x} \mathbf{i}+e^{-x} \mathbf{j}+e^{z} \mathbf{k}$, compute the following line integral

$$
\int_{C} \mathbf{F} \cdot \mathbf{d r}
$$

where C is the boundary curve of the part of the plane $x+y+z=1$ in the first octant, with counterclockwise orientation as viewed from above. (Hint: Stokes' Theorem).
6. Compute the suraface area of the part of the cylinder $x^{2}+z^{2}=a^{2}$ that lies inside of the cylinder $x^{2}+y^{2}=a^{2}$.
7. Compute $\int_{C} y z d x+x z d y+x y d z$, where C consists of line segments from $(0,0,0)$ to $(100,100,200)$, from $(100,100,200)$ to $(2002,2003,0)$. (Hint: fundamental theorem of line integrals)

GOOD LUCK!

