NAME: $\qquad$
NAME: $\qquad$
Name: $\qquad$
Name:
Consider the experiment of throwing two dice and observing the ordered outcomes. Then consider the events

- Event $A$, the sum of the two outcomes is even.
- Event $B$, the sum of the two outcomes is 6 .

You can use this table to help yourself with the computations:

| $(1,1)$ | $(1,2)$ | $(1,3)$ | $(1,4)$ | $(1,5)$ | $(1,6)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $(2,1)$ | $(2,2)$ | $(2,3)$ | $(2,4)$ | $(2,5)$ | $(2,6)$ |
| $(3,1)$ | $(3,2)$ | $(3,3)$ | $(3,4)$ | $(3,5)$ | $(3,6)$ |
| $(4,1)$ | $(4,2)$ | $(4,3)$ | $(4,4)$ | $(4,5)$ | $(4,6)$ |
| $(5,1)$ | $(5,2)$ | $(5,3)$ | $(5,4)$ | $(5,5)$ | $(5,6)$ |
| $(6,1)$ | $(6,2)$ | $(6,3)$ | $(6,4)$ | $(6,5)$ | $(6,6)$ |

1. What is the probability of event $B$ occurring?
$\qquad$
$\qquad$
$\qquad$
2. What is the probability of event $B$ occurring if you know that event $A$ occurred?
$\qquad$
$\qquad$
$\qquad$
3. What is the probability of event $B$ occurring if you know that event $A$ did not occur?
$\qquad$
$\qquad$
$\qquad$

The probability of an event $B$ happening if an event $A$ happened, is called the conditional probability of $B$ given that $A$ has occurred and is denoted by $P(B \mid A)$. In general this probability is

$$
P(B \mid A)=\frac{n(A \text { and } B)}{n(A)}
$$

4. If a father of two told you that at least of one his children is a male, what are the odds that the other one is a female?
$\qquad$
$\qquad$
$\qquad$
5. What is the probability that rolling three dice the sum is 11 if you know that the product of the first two outcomes is 4 ?
$\qquad$
$\qquad$

The previous formula can be written as

$$
P(B \mid A)=\frac{n(A \text { and } B)}{n(A)}=\frac{n(A \text { and } B) / n(S)}{n(A) / n(S)}=\frac{P(A \text { and } B)}{P(A)}
$$

6. In a town, $70 \%$ of the men are employed. The probability that a man will commit a crime is $10 \%$, and the probability that a man is employed, given he will commit a crime, is $5 \%$. A man is selected by chance and is employed. What is the probability that he will commit a crime?
$\qquad$
$\qquad$
$\qquad$
From the previous, the following rule can be deduced.
Multiplication rule If $A$ and $B$ are events in some sample space, then

$$
P(A \text { and } B)=P(A) \cdot P(B \mid A)
$$

7. What is the probability that spinning the roulette (the one with 38 numbers) you get for three times in a row a number in between 1 and 6 , such that the product of the first two numbers is 4 and the sum of the three numbers is 11 ?
$\qquad$
$\qquad$
$\qquad$

## Bayes Rule

The previous formula can be written in a symmetric way as

$$
P(B) \cdot P(A \mid B)=P(A \text { and } B)=P(A) \cdot P(B \mid A)
$$

This leads to the famous Bayes theorem

$$
P(A \mid B)=\frac{P(A) \cdot P(B \mid A)}{P(B)}
$$

A typical application of Bayes theorem is in medical tests. Suppose you perform an HIV test on a patient, for screening purposes, and the following is true about the test.

- If a tested patient has HIV, the test returns a positive result $99 \%$ of the time
- If a tested patient does not have HIV, the test returns a positive result $1 \%$ of the time

Suppose also that on average $0.1 \%$ of the patients have HIV. Call $A$ the event of having HIV and $B$ the event of being tested positive.
8. Write down and compute the following:

- $P(B \mid A)=$ $\qquad$
- $P(B \mid \bar{A})=$ $\qquad$
- $P(A)=$ $\qquad$
- $P(B)=$ $\qquad$

9. If the patient is tested positive, what are the odds that the patient has HIV?
$\qquad$
$\qquad$
$\qquad$
10. If the patient is tested negative, what are the odds that the patient does not have HIV?
$\qquad$
$\qquad$
$\qquad$
11. Would you suggest the test for sale? If not, what parameters should have been different in the medical test?
$\qquad$
$\qquad$
$\qquad$
