NEUKIRCH, EXERCISE I.4.9

MATH 105

Let \mathcal{O} be a domain in which every nonzero ideal can be factored into a (unique) product of prime ideals, and let K be its field of fractions. We will show that \mathcal{O} is a Dedekind domain.
(a) A fractional ideal \mathfrak{a} of \mathcal{O} is a nonzero \mathcal{O}-submodule of K such that there exists nonzero $d \in \mathcal{O}$ such that $d \mathfrak{a} \in \mathcal{O}$. A fractional ideal \mathfrak{a} is invertible if there exists a fractional ideal \mathfrak{b} such that $\mathfrak{a b}=\mathcal{O}$. Show that if a fractional ideal is invertible, then the inverse is unique and it is equal to

$$
\mathfrak{a}^{-1}=\{x \in K: x \mathfrak{a} \subseteq \mathcal{O}\} .
$$

(b) Show that any prime factor of a principal ideal is invertible, and that any factorization of an ideal into invertible ideals is unique.
(c) Show that every nonzero prime ideal of \mathcal{O} is invertible, and conclude that every nonzero fractional ideal of \mathcal{O} is invertible.
(c1) Let $p \in \mathfrak{p}$ be nonzero, and conclude that $\mathfrak{q} \subseteq(p) \subseteq \mathfrak{p}$ with \mathfrak{q} invertible.
(c2) Let $a \in \mathfrak{p} \backslash \mathfrak{q}$, and consider the factorization of the ideals $\mathfrak{q}+a \mathcal{O}$ and $\mathfrak{q}+a^{2} \mathcal{O}$. Show that every such prime factor contains \mathfrak{q}, so we can consider these factorizations in the quotient ring $\mathcal{O} / \mathfrak{q}$. Conclude by unique factorization that $\mathfrak{q}+a^{2} \mathcal{O}=$ $(\mathfrak{q}+a \mathcal{O})^{2}$.
(c3) From

$$
\mathfrak{q} \subseteq \mathfrak{q}+a^{2} \mathcal{O}=(\mathfrak{q}+a \mathcal{O})^{2} \subseteq \mathfrak{q}^{2}+a \mathcal{O}
$$

show that

$$
\mathfrak{q} \subseteq \mathfrak{q}^{2}+a \mathfrak{q}
$$

and then that equality holds.
(c4) From the invertibility of \mathfrak{q}, derive a contradiction; conclude that $\mathfrak{q}=\mathfrak{p}$ and thus \mathfrak{p} is invertible.
(d) Show that \mathcal{O} is integrally closed. [Hint: if $\alpha \in K$ is integral, then the ring $\mathcal{O}[\alpha]$ is a fractional ideal of \mathcal{O} and $\alpha \mathcal{O}[\alpha] \subseteq \mathcal{O}[\alpha]$.]
(e) Let $\mathfrak{a}, \mathfrak{b}$ be fractional ideals of \mathcal{O}. Show that $\mathfrak{a} \supseteq \mathfrak{b}$ if and only if there exists a fractional ideal \mathfrak{q} such that $\mathfrak{b}=\mathfrak{q a}$. [Hint: Reduce to the case where $\mathfrak{a}, \mathfrak{b} \subseteq \mathcal{O}$. Argue by induction on the number of prime factors dividing \mathfrak{a}.]
(f) Conclude that \mathcal{O} is Noetherian and every prime ideal is maximal.

