NEUKIRCH, EXERCISE I.4.9

MATH 105

Let \mathcal{O} be a domain in which every nonzero ideal can be factored into a (unique) product of prime ideals, and let K be its field of fractions. We will show that \mathcal{O} is a Dedekind domain.

(a) A fractional ideal \mathfrak{a} of \mathcal{O} is a nonzero \mathcal{O} -submodule of K such that there exists nonzero $d \in \mathcal{O}$ such that $d\mathfrak{a} \in \mathcal{O}$. A fractional ideal \mathfrak{a} is *invertible* if there exists a fractional ideal \mathfrak{b} such that $\mathfrak{ab} = \mathcal{O}$. Show that if a fractional ideal is invertible, then the inverse is unique and it is equal to

$$\mathfrak{a}^{-1} = \{ x \in K : x \mathfrak{a} \subseteq \mathcal{O} \}.$$

- (b) Show that any prime factor of a principal ideal is invertible, and that any factorization of an ideal into invertible ideals is unique.
- (c) Show that every nonzero prime ideal of \mathcal{O} is invertible, and conclude that every nonzero fractional ideal of \mathcal{O} is invertible.
 - (c1) Let $p \in \mathfrak{p}$ be nonzero, and conclude that $\mathfrak{q} \subseteq (p) \subseteq \mathfrak{p}$ with \mathfrak{q} invertible.
 - (c2) Let $a \in \mathfrak{p} \setminus \mathfrak{q}$, and consider the factorization of the ideals $\mathfrak{q} + a\mathcal{O}$ and $\mathfrak{q} + a^2\mathcal{O}$. Show that every such prime factor contains \mathfrak{q} , so we can consider these factorizations in the quotient ring \mathcal{O}/\mathfrak{q} . Conclude by unique factorization that $\mathfrak{q} + a^2\mathcal{O} = (\mathfrak{q} + a\mathcal{O})^2$.
 - (c3) From

$$\mathfrak{q} \subseteq \mathfrak{q} + a^2 \mathcal{O} = (\mathfrak{q} + a\mathcal{O})^2 \subseteq \mathfrak{q}^2 + a\mathcal{O}$$

show that

$$\mathfrak{q} \subseteq \mathfrak{q}^2 + a\mathfrak{q}$$

and then that equality holds.

- (c4) From the invertibility of \mathfrak{q} , derive a contradiction; conclude that $\mathfrak{q} = \mathfrak{p}$ and thus \mathfrak{p} is invertible.
- (d) Show that \mathcal{O} is integrally closed. [Hint: if $\alpha \in K$ is integral, then the ring $\mathcal{O}[\alpha]$ is a fractional ideal of \mathcal{O} and $\alpha \mathcal{O}[\alpha] \subseteq \mathcal{O}[\alpha]$.]
- (e) Let $\mathfrak{a}, \mathfrak{b}$ be fractional ideals of \mathcal{O} . Show that $\mathfrak{a} \supseteq \mathfrak{b}$ if and only if there exists a fractional ideal \mathfrak{q} such that $\mathfrak{b} = \mathfrak{q}\mathfrak{a}$. [Hint: Reduce to the case where $\mathfrak{a}, \mathfrak{b} \subseteq \mathcal{O}$. Argue by induction on the number of prime factors dividing \mathfrak{a} .]
- (f) Conclude that \mathcal{O} is Noetherian and every prime ideal is maximal.