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Instructions : This is an open book open notes take home exam. You can also use any printed matter
you like. Use of calculators is not permitted.
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write the time you have finished working on the exam. You must justify all of your answers to
receive credit.
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1. Let (X,M, µ) be a space with a positive measure, such that µ(X) = 1. Assume moreover that
for every A ∈ M with µ(A) 6= 0 there exists B ∈ M with B ⊂ A such that 0 < µ(B) < µ(A).
Either prove that there always has to exist E ∈ M with µ(E) = 1

2
or construct an example

when this is not so. Hint: you may want to use the Zorn’s Lemma.



2. Let X, Y be vector spaces over R. Let || · ||X,1, and || · ||X,2 be equivalent norms on X. Let || · ||Y,1

and || · ||Y,2 be equivalent norms on Y. Let S : X → Y be a linear operator that is bounded
with respect to the norms || · ||X,1 and || · ||Y,1. Let T : Y → X be a linear operator that is
bounded with respect to the norms || · ||Y,2 and || · ||X,2. Either prove that the composition
T ◦ S : (X, || · ||X,1)→ (X, || · ||X,1) is continuous or find an example when this is false.



3. a Prove the following statement or give an example when it is false. Let (R2, || · ||) be a two
dimensional normed vector space. Then the closed unit ball B centered at the origin
B = {~x : ||~x|| ≤ 1} is a convex set.

b Prove the following statement or give an example when it is false. Let R2 be the vector space
and let B be a convex closed set, then B = {~x : ||~x|| ≤ 1} for some norm || · || on R2.



4. Let X = N be the set of positive integer numbers equipped with the power set σ-algebra P(N).
Let µ be the positive measure on P(N) defined by µ(E) =

∑
e∈E

1
e2 . Let g ∈ L3(µ) be a function.

For f ∈ L3(µ) define φg(f) =
∫

X
fgdµ. Either prove that φg : L3 → C is a well-defined bounded

linear functional, or prove that this is false.



5. Let L be the Lebesgue σ-algebra on R and let µ-be the Lebesgue measure. Let ν1 and ν2 be
the positive measures on L defined by dν1 = exdµ and dν2 = e−xdν1. Compute

∫
[0,1]

cos(x)dν2.

Show all the steps.



6. Let A ⊂ R2 be the set of all pairs of numbers (x0, y0) such that there exists a nonzero finite
degree polynomial P (x, y) with rational coefficients satisfying P (x0, y0) = 0. Either prove that
A is an element of the Borel σ-algebra BR2 or show that this is not the case.



7. Let X = [0, 1] and let L,m be the restrictions of the Lebesgue σ-algebra and measure to X.
Let A ⊂ [0, 1] be the set of all numbers that are a root of some degree three polynomial with
integer coefficients. Is it true that there is a compact set K ⊂

(
([0, 1]× [0, 1]) \ (A× A)

)
such

that (m×m)(K) > 1
2
? Hint: you might want to use the fact that a closed subset of a compact

set is compact and that the product of compact sets is compact.



8. Let (M,M, µ) be a complete measure space. Let {fn}∞n=1 be a sequence of functions in L∞

that converges to f in the normed space L∞. Let {gn}∞n=1 be a sequence of functions in L1 that
converges to g in the normed space L1. Prove or disprove that the sequence fngn converges to
fg in L1.



9. Let X = [0, 1], Y = [0, 1] be spaces equipped with the restrictions of the Lebesgue σ-algebra.
Let µ and ν be the restrictions of the Lebesgue measure to the spaces X and Y respectively.
Let K ⊂ [0, 1] be the standard Cantor set, and let Kc be its compliment in [0, 1]. Prove that
the function f(x, y) = sin(x+y)χK(x)χKc(y) is measurable and integrable over

(
X×Y, µ×ν

)
.

Compute
∫

X×Y
f(x, y)d(µ× ν).



10. Let X be a set and E ⊂ P(X) be a subset of the power set. Prove that the σ-algebra generated
by E is equal to the union of all the σ-algebras generated by F , where F ranges over all the
countable subsets of E . See Exercise 5 page 24.


