Midterm, Math 103, Fall 06

Marius Ionescu

Due: Monday, November 6

The first five problems are from our textbook. Good luck and start working on the midterm soon! And remember that I root for you!

- 1. Problem 3 on page 48.
- 2. Problem 4 on page 48.
- 3. Problem 10 on page 48.
- 4. Problem 13 on page 52.
- 5. Problem 14 on page 52.
- 6. Let μ be a finitely additive measure defined on a σ -algebra of sets, \mathcal{U} , contained in a space X. Suppose that $\mu(X) < \infty$ and suppose also that μ has the property that for all sequences of sets F_n in \mathcal{U} such that $F_{n+1} \subset F_n$ for all n we have that $\mu(F) = \lim \mu(F_n)$, where $F = \bigcap_{n=1}^{\infty} F_n$. Show that μ is a measure.
- 7. True or false? If true, prove; if false, give a counter example. Every bounded measurable function of the interval [0,1] in \mathbb{R} is the uniform limit of step functions.
- 8. Let f be the function defined by the formula

$$f(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x \ge 0 \end{cases}$$

so that f is a right-continuous nondecreasing function on \mathbb{R} . Let μ_f^* be the outer measure determined by f. Show that a subset of \mathbb{R} is a $\bar{\mu}_f$ -null set if and only if it does not contain 0. What are the $\bar{\mu}_f$ -measurable sets?

- 9. If E is any (Lebesque-)measurable subset of \mathbb{R} such that m(E) = 1, where m denotes the Lebesque measure, show that there is a measurable subset $A \subset E$ such that m(A) = 1/2. Find another subset B of \mathbb{R} , measurable and containing E such that m(B) = 2.
- 10. Find a Borel set $E \subset \mathbb{R}$ such that $0 < m(E \cap J) < m(J)$ for every closed interval J. (*m* is the Lebesque measure).