
MATH 101: GRADUATE LINEAR ALGEBRA
WORKSHEET, DAY #1

Let F be a field. An F -vector space is an abelian group V under + with additive

identity 0 equipped with a scalar multiplication

F × V → V

(a, x) 7→ ax

compatible with +: for all a, b ∈ F and x, y ∈ V , we have

a(x+ y) = ax+ ay, (a+ b)x = ax+ bx, (ab)x = a(bx), and 1x = x.

Let V be a vector space over F . Let v1, . . . , vn ∈ V . A linear combination of v1, . . . , vn is

The set of all vectors w which are linear combinations of v1, . . . , vn forms a

W ⊆ V , and we say that W is by v1, . . . , vn.

A linear relation among v1, . . . , vn is a linear combination which is equal to zero, i.e.,

The vectors v1, . . . , vn are called if there is no nonzero linear re-

lation among the vectors, i.e., if c1v1+· · ·+cnvn = 0 then ; other-

wise v1, . . . , vn are called . By convention, the empty set is con-

sidered to be , and the span of the empty set is .
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Two vectors v1, v2 have no nonzero linear relation if and only if either

or .

An ordered set B = {v1, . . . , vn} of vectors that is linearly independent and spans V is

called a of V ; for example, for F n = {(a1, . . . , an) : ai ∈ F} we

may take

Lemma. The set B is a basis for V if and only if every w ∈ V can be written uniquely as a

Proposition. Let L = {v1, . . . , vn} ⊆ V be a linearly independent ordered set, and let v ∈ V .

Then the ordered set {v1, . . . , vn, v} is linearly independent if and only if

Proposition. For any finite set S which spans V , there exists a subset B ⊆ S which is a

basis for V .

Proof. Suppose that S = {v1, . . . , vn} and that S is not linearly independent. Then

�

Lemma. Let V be a vector space with a finite basis. Then any spanning set of V contains a

basis, and any set L can be extended by adding elements

of V to get a basis.
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Corollary. Suppose V has a finite basis B with #B = n ∈ Z≥0. Then any set of linearly

independent vectors has elements, and any spanning set has

elements.

Proof. Let L be a linearly independent set of vectors. By the lemma,

�

Corollary. If V has a finite basis then any two bases of V have the same cardinality.

Proof.

�

Let V be a vector space. Then the dimension of V is defined to be

and is denoted dimF V , and V is said to

be over F .

If F is a finite field with #F = q, then a vector space of dimension n over F has

elements.

A function φ : V → W is an F -linear map or a

if

.

Let φ : V → W be F -linear. If there exists an F -linear inverse ψ : V → W , then we say φ is

an ; it is actually enough to check that φ is .
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Theorem. Let V be a vector space of dimension n. Then V ' F n. In particular, any two

vector spaces of the same finite dimension are isomorphic.

Proof. Let v1, . . . , vn be a basis for V . Define the map

φ : F n → V

φ(a1, . . . , an) = a1v1 + · · ·+ anvn.

�

Theorem. Let V be a finite-dimensional vector space over F and let W be a subspace of V .

Then the quotient V/W is a vector space with

dim(V/W ) = ,

Proof. Since V is finite-dimensional, so is W because

. LetW have dimensionm and let w1, . . . , wm

be a basis for W . We extend this basis to a basis w1, . . . , wm, vm+1, . . . , vn of V . Then the

projection map V → V/W maps each wi to and therefore has image spanned

by vm+1 +W, . . . , vn +W ; these vectors are linearly independent because

. So

dim(V/W ) = . �

Corollary. Let φ : V → W be a linear transformation. Then

dimV = dim kerφ+ dim img φ.
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We also say that kerφ is the of φ and dim kerφ is the

. The dimension of img φ = φ(V ) is called the

.

Corollary. Let φ : V → W be a linear transformation of vector spaces of the same finite

dimension n. Then the following are equivalent:

(a) φ is an isomorphism;

(b) φ is injective;

(c) φ is surjective.

Proof.

�
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