MATH 101: GRADUATE LINEAR ALGEBRA WEEKLY HOMEWORK #6

Problem W6.1. Let R be a commutative ring, let $S \subset R$ be a multiplicatively closed set containing 1, and let $S^{-1}R = R[S^{-1}]$ be the localization at S. Let $\phi \colon R \to S^{-1}R$ be the ring homomorphism $r \mapsto r/1$.

(a) Let $I \subseteq R$ be an ideal. Then I is an R-module, so we have defined $S^{-1}I \subseteq S^{-1}R$, and

$$S^{-1}I = \{a/s : a \in I, s \in S\}.$$

Show that $S^{-1}I$ is an ideal in $S^{-1}R$. Show that $S^{-1}I = S^{-1}R$ if and only if $I \cap S \neq \emptyset$.

- (b) Show that every ideal $I' \subseteq S^{-1}R$ is of the form $I' = S^{-1}I$ for an ideal $I \subseteq R$.
- (c) Show that there is a bijection between the *prime* ideals of $S^{-1}R$ and the prime ideals of R disjoint from S.

Problem W6.2.

(a) Let R be a Euclidean domain with norm N. Let

$$m = \min(\{N(a) : a \in R, a \neq 0\}).$$

Show that every nonzero $a \in R$ with N(a) = m is a unit in R. Deduce that a nonzero element of norm zero in R is a unit; show by an example that the converse of this statement is false.

(b) Let F be a field and let R = F[[x]]. Show that R is Euclidean. What does part (a) tell you about R^{\times} ? What are the irreducibles in R, up to associates?

Problem W6.3. Let R be a domain and let M be an R-module. Elements $x_1, \ldots, x_n \in M$ are R-linearly independent if whenever $a_1x_1 + \cdots + a_nx_n = 0$ with $a_i \in R$, then $a_1 = \cdots = a_n = 0$.

The rank of M is the maximal number of R-linearly independent elements of M.

- (a) Suppose that M has rank n and that x_1, \ldots, x_n is any maximal set of R-linearly independent elements of M. Let $N = Rx_1 + \cdots + Rx_n$ be the R-submodule generated by x_1, \ldots, x_n . Prove that N is isomorphic to R^n and that the quotient M/N is a torsion R-module. [Hint: Show that the map $R^n \to N$ which sends the *i*th standard basis vector to x_i is an isomorphism of R-modules.]
- (b) Prove conversely that if M contains a submodule N that is free of rank n (i.e., N ≅ Rⁿ) such that the quotient M/N is a torsion R-module then M has rank n. [Hint: Let y₁,..., y_{n+1} be any n+1 elements of M. Use the fact that M/N is torsion to write r_iy_i as a linear combination of a basis for N for some nonzero elements r_i of R. Use an argument like Proposition 12.1.3 to show that the r_iy_i, and hence also the y_i, are linearly dependent.]

Date: Assigned Friday, 3 November 2017; due Friday, 10 November 2017.

(c) Let $R = \mathbb{Z}[x]$ and let M = (2, x) be the ideal generated by 2 and x, considered as a submodule of R. Show that $\{2, x\}$ is not a basis of M. Show that the rank of M is 1 but that M is not free of rank 1.

Problem W6.4.

- (a) Let $N \leq \mathbb{Z}^2$ be the submodule generated by (2,4) and (8,10). Write \mathbb{Z}^2/N as a product of cyclic groups.
- (b) Let R be a PID. Let $M \subseteq \mathbb{R}^n$ be an R-submodule such that

$$#(R^n/M) = [R^n : M] = p$$

where $p \in \mathbb{Z}$ is prime and p is a nonzerodivisor in R. Show that M is free of rank n and there is a basis x_1, \ldots, x_n of R^n and $q \in R$ such that $M = Rx_1 \oplus \cdots \oplus Rqx_n$ and [R:(q)] = p.

Problem W6.5.

- (a) Prove that two 2×2 matrices over F which are not scalar matrices are similar if and only if they have the same characteristic polynomial.
- (b) Prove that two 3×3 matrices are similar if and only if they have the same characteristic and minimal polynomials. Give an explicit counterexample to this assertion for 4×4 matrices.

Problem W6.6. Find all similarity classes of 6×6 matrices over \mathbb{Q} with minimal polynomial $(x+2)^2(x-1)$. [It suffices to give all lists of invariant factors and write out some of their corresponding matrices.]