MATH 101: GRADUATE LINEAR ALGEBRA WEEKLY HOMEWORK \#6

Problem W6.1. Let R be a commutative ring, let $S \subset R$ be a multiplicatively closed set containing 1 , and let $S^{-1} R=R\left[S^{-1}\right]$ be the localization at S. Let $\phi: R \rightarrow S^{-1} R$ be the ring homomorphism $r \mapsto r / 1$.
(a) Let $I \subseteq R$ be an ideal. Then I is an R-module, so we have defined $S^{-1} I \subseteq S^{-1} R$, and

$$
S^{-1} I=\{a / s: a \in I, s \in S\}
$$

Show that $S^{-1} I$ is an ideal in $S^{-1} R$. Show that $S^{-1} I=S^{-1} R$ if and only if $I \cap S \neq \emptyset$.
(b) Show that every ideal $I^{\prime} \subseteq S^{-1} R$ is of the form $I^{\prime}=S^{-1} I$ for an ideal $I \subseteq R$.
(c) Show that there is a bijection between the prime ideals of $S^{-1} R$ and the prime ideals of R disjoint from S.

Problem W6.2.

(a) Let R be a Euclidean domain with norm N. Let

$$
m=\min (\{N(a): a \in R, a \neq 0\}) .
$$

Show that every nonzero $a \in R$ with $N(a)=m$ is a unit in R. Deduce that a nonzero element of norm zero in R is a unit; show by an example that the converse of this statement is false.
(b) Let F be a field and let $R=F[[x]]$. Show that R is Euclidean. What does part (a) tell you about R^{\times}? What are the irreducibles in R, up to associates?

Problem W6.3. Let R be a domain and let M be an R-module. Elements $x_{1}, \ldots, x_{n} \in M$ are R-linearly independent if whenever $a_{1} x_{1}+\cdots+a_{n} x_{n}=0$ with $a_{i} \in R$, then $a_{1}=\cdots=$ $a_{n}=0$.

The rank of M is the maximal number of R-linearly independent elements of M.
(a) Suppose that M has rank n and that x_{1}, \ldots, x_{n} is any maximal set of R-linearly independent elements of M. Let $N=R x_{1}+\cdots+R x_{n}$ be the R-submodule generated by x_{1}, \ldots, x_{n}. Prove that N is isomorphic to R^{n} and that the quotient M / N is a torsion R-module. [Hint: Show that the map $R^{n} \rightarrow N$ which sends the ith standard basis vector to x_{i} is an isomorphism of R-modules.]
(b) Prove conversely that if M contains a submodule N that is free of rank n (i.e., $N \cong R^{n}$) such that the quotient M / N is a torsion R-module then M has rank n. [Hint: Let y_{1}, \ldots, y_{n+1} be any $n+1$ elements of M. Use the fact that M / N is torsion to write $r_{i} y_{i}$ as a linear combination of a basis for N for some nonzero elements r_{i} of R. Use an argument like Proposition 12.1.3 to show that the $r_{i} y_{i}$, and hence also the y_{i}, are linearly dependent.]
(c) Let $R=\mathbb{Z}[x]$ and let $M=(2, x)$ be the ideal generated by 2 and x, considered as a submodule of R. Show that $\{2, x\}$ is not a basis of M. Show that the rank of M is 1 but that M is not free of rank 1 .

Problem W6.4.
(a) Let $N \leq \mathbb{Z}^{2}$ be the submodule generated by $(2,4)$ and $(8,10)$. Write \mathbb{Z}^{2} / N as a product of cyclic groups.
(b) Let R be a PID. Let $M \subseteq R^{n}$ be an R-submodule such that

$$
\#\left(R^{n} / M\right)=\left[R^{n}: M\right]=p
$$

where $p \in \mathbb{Z}$ is prime and p is a nonzerodivisor in R. Show that M is free of rank n and there is a basis x_{1}, \ldots, x_{n} of R^{n} and $q \in R$ such that $M=R x_{1} \oplus \cdots \oplus R q x_{n}$ and $[R:(q)]=p$.

Problem W6.5.

(a) Prove that two 2×2 matrices over F which are not scalar matrices are similar if and only if they have the same characteristic polynomial.
(b) Prove that two 3×3 matrices are similar if and only if they have the same characteristic and minimal polynomials. Give an explicit counterexample to this assertion for 4×4 matrices.

Problem W6.6. Find all similarity classes of 6×6 matrices over \mathbb{Q} with minimal polynomial $(x+2)^{2}(x-1)$. [It suffices to give all lists of invariant factors and write out some of their corresponding matrices.]

