MATH 101: GRADUATE LINEAR ALGEBRA WEEKLY HOMEWORK \#3

Problem W3.1. Let V, W be finite-dimensional inner product spaces.
(a) Let $\phi: V \rightarrow V$ be a self-adjoint linear operator. Recall that $\psi: V \rightarrow V$ is positive semidefinite if $\langle\psi(x), x\rangle \geq 0$ whenever $x \neq 0$. Show that ϕ is positive semidefinite if and only if all of the eigenvalues of ϕ are nonnegative.
(b) Now let $\phi: V \rightarrow W$ be linear. Show that $\phi^{*} \phi$ and $\phi \phi^{*}$ are positive semidefinite.
(c) Show that $\operatorname{rk}\left(\phi^{*} \phi\right)=\operatorname{rk}\left(\phi \phi^{*}\right)=\operatorname{rk}(\phi)$.

Problem W3.2. Let $V=\mathbb{R}^{n}$ be the standard inner product space. Let

$$
S=\left\{x \in V:\|x\|^{2}=1\right\}
$$

be the $(n-1)$-dimensional sphere in V.
(a) Suppose that $x, y \in S$ have $\langle x, y\rangle=0$. Show that $\cos (t) x+\sin (t) y$ lies on S for all $t \in \mathbb{R}$.
(b) Let $\phi: V \rightarrow V$ be a self-adjoint linear map. By vector calculus, the function $x \mapsto\langle x, \phi(x)\rangle$ achieves a maximum at some point $p \in S$: briefly explain why. Let $y \in S$ satisfy $\langle p, y\rangle=0$. Consider the function

$$
f(t)=\langle\cos (t) p+\sin (t) y, \phi(\cos (t) p+\sin (t) y)\rangle .
$$

Show that $\langle p, \phi(y)\rangle=0$.
(c) Let $W=\operatorname{span}(\{p\})$. Show that W^{\perp} is ϕ-invariant and then conclude that W is ϕ-invariant. Conclude that p is an eigenvector!
(d) Parlay the argument of (c) into an inductive proof that V has an orthonormal basis of vectors that are eigenvectors for ϕ.
[Note: This argument inductively gives a different "physical" or "geometric" proof that ϕ has an orthonormal basis of eigenvectors: we find an eigenvector by maximizing ϕ on the sphere!]
Problem W3.3. In each part, let $\phi: V \rightarrow V$ be the projection on the subspace W_{1} along the subspace W_{2}, where $V=W_{1} \oplus W_{2}$.
(a) Show that ϕ is an orthogonal projection (i.e., $W_{2}=W_{1}^{\perp}$) if and only if $\|\phi(x)\| \leq\|x\|$ for all $x \in V$. [Hint: Let $w_{1} \in W_{1}$ and $w_{2} \in W_{2}$ be nonzero and $c \in \mathbb{R}$, and let $w=c w_{1}+w_{2}$. Show that

$$
2 c \operatorname{Re}\left\langle w_{1}, w_{2}\right\rangle+\left\|w_{2}\right\|^{2} \geq 0
$$

If $\left\langle w_{1}, w_{2}\right\rangle \neq 0$, derive a contradiction by a choice of c; conclude that $\left\langle w_{1}, w_{2}\right\rangle=0$ for all w_{1}, w_{2}.]
(b) What can you conclude if ϕ is unitary? [So don't confuse a projection that is orthogonal with an orthogonal projection!]
(c) Suppose that ϕ is normal over $F=\mathbb{C}$. Prove that ϕ is an orthogonal projection.

[^0]Problem W3.4. Let $\phi, \psi: V \rightarrow V$ be normal operators on a finite-dimensional complex inner product space V. Suppose that $\phi \psi=\psi \phi$. Prove that there exists an orthonormal basis for V consisting of (simultaneous) eigenvectors for ϕ and ψ.

[^0]: Date: Assigned Wednesday, 4 October 2017; due Wednesday, 11 October 2017.

