MATH 101: GRADUATE LINEAR ALGEBRA WEEKLY HOMEWORK \#2

Problem W2.1. Let $\phi: V \rightarrow W$ be an F-linear map, and let $\phi^{*}: W^{*} \rightarrow V^{*}$ be the dual map, defined via pullback. Show that

$$
\operatorname{img} \phi^{*}=\operatorname{ann}(\operatorname{ker} \phi)
$$

Problem W2.2. Let V be a finite-dimensional vector space over a field F, and let W_{1}, W_{2} be subspaces.
(a) Prove that $W_{1}=W_{2}$ if and only if $\operatorname{ann}\left(W_{1}\right)=\operatorname{ann}\left(W_{2}\right)$.
(b) Show $\operatorname{ann}\left(W_{1}+W_{2}\right)=\operatorname{ann}\left(W_{1}\right) \cap \operatorname{ann}\left(W_{2}\right)$ and $\operatorname{ann}\left(W_{1} \cap W_{2}\right)=\operatorname{ann}\left(W_{1}\right)+\operatorname{ann}\left(W_{2}\right)$.

For a heightened sense of self-satisfaction, you could make it clear in your argument where you actually use that V is finite-dimensional. Which of the statements are still true when V is infinite-dimensional?
Problem W2.3. Let V, W be F-vector spaces, let $v_{1}, \ldots, v_{n} \in V$ be linearly independent, and let $w_{1}, \ldots, w_{n} \in W$ be arbitrary. Suppose that

$$
\sum_{i=1}^{n} v_{i} \otimes w_{i}=0 \in V \otimes_{F} W
$$

Show that $w_{i}=0$ for all $i=1, \ldots, n$. Conclude that $v \in V$ and $w \in W$ have $v \otimes w=0$ if and only if $v=0$ or $w=0$.
Problem W2.4. In class, we showed that the tensor product is characterized by a universal property. Perhaps the simplest situation of a universal property is the following.

Let X, Y be sets. The cartesian product $X \times Y$ has its two projection maps:

Show that the product $X \times Y$ is universal in this respect: for every set Z and maps

of sets, there exists a unique map $h: Z \rightarrow X \times Y$ such that the diagram

commutes.
Problem W2.5. Let F be a field, let V be a finite-dimensional F-vector space, and let $T: V \times V \rightarrow F$ be a nondegenerate symmetric bilinear form. Let $W \subseteq V$ be a subspace.

Define

$$
W^{\perp}=\{v \in V: T(v, W)=0\}=\{v \in V: T(v, w)=0 \text { for all } w \in W\}
$$

(a) Show that the map

$$
\begin{aligned}
V & \rightarrow V^{*} \\
v & \mapsto T_{v}=T(v,-)
\end{aligned}
$$

maps W^{\perp} isomorphically to $\operatorname{ann}(W)$.
(b) Deduce that $\operatorname{dim} V=\operatorname{dim} W+\operatorname{dim} W^{\perp}$.
(c) Suppose that $\left.T\right|_{W \times W}$ is nondegenerate (accordingly, we say that W is a nondegenerate subspace under T). Show that $V=W \oplus W^{\perp}$. In this case, we say W^{\perp} is the orthogonal complement of the nondegenerate subspace W.
(d) Define the orthogonal projection onto W (as a linear operator on V). Let $V=\mathbb{R}^{3}$ have the standard inner product and let

$$
W=\left\{(x, y, z) \in \mathbb{R}^{3}: x+y+z=0\right\} .
$$

Compute the matrix of the orthogonal projection onto W with respect to the standard basis.

