MATH 101: GRADUATE LINEAR ALGEBRA WEEKLY HOMEWORK #1

Problem W1.1. Let V be a finite-dimensional vector space over a field F, and let $\phi: V \to V$ be an F-linear endomorphism of V.

- (a) Show that there exists $m \ge 0$ so that $\operatorname{img}(\phi^m) \cap \ker(\phi^m) = \{0\}$.
- (b) Now suppose that $\phi^2 = 0$. Show that the rank of ϕ is at most $(\dim V)/2$, and that there is a(n ordered) basis β for V such that $[T]_{\beta}$ has the block form

$$\begin{pmatrix} O & A \\ O & O \end{pmatrix}$$

i.e., has zeros in all blocks except possibly the upper right-hand corner.

Problem W1.2. Let V, W be finite-dimensional vector spaces over a field F, and let $\phi: V \to W$ be an F-linear map.

- (a) Show that there exists a basis β of V and a basis γ of W such that $[\phi]^{\gamma}_{\beta}$ is diagonal with diagonal entries in $\{0, 1\}$. What does the number of 1s along the diagonal tell you about ϕ ?
- (b) Suppose now that W = V. Recalling the result from daily homework, show that there exists a basis β of V such that the conclusion of (a) holds for $[\phi]_{\beta}$ if and only if $\phi^2 = \phi$.

Problem W1.3. Suppose char $F \neq 2$. Let V be an F-vector space. Recall that $\phi \in$ End_F(V) is a projection if $\phi^2 = \phi$.

Let $\phi, \psi: V \to V$ be projection maps.

- (a) Show that $\phi + \psi$ is a projection if and only if $\phi \psi = \psi \phi = 0$ if and only if $\operatorname{img} \phi \subseteq \ker \psi$ and $\operatorname{img} \psi \subseteq \ker \phi$.
- (b) If $\phi + \psi$ is a projection, show that $\operatorname{img}(\phi + \psi) = \operatorname{img}(\phi) \oplus \operatorname{img}(\psi)$ and $\operatorname{ker}(\phi + \psi) = \operatorname{ker}(\phi) \cap \operatorname{ker}(\psi)$.

Problem W1.4. Let V be an F-vector space with $n = \dim_F V < \infty$. Let $A, B \subseteq V$ be F-subspaces with $a = \dim A$ and $b = \dim B$ and suppose V = A + B. Let

$$S = \{ f \in \operatorname{End}_F(V) : f(A) \subseteq A, \ f(B) \subseteq B \}.$$

Observe that $S \subseteq \operatorname{End}_F(V)$ is an F-subspace, and then express dim S in terms of n, a, b.

Problem W1.5. Let V, W be finite-dimensional F-vector spaces, let $X \subseteq W$ be an F-subspace, and let $\phi: V \to W$ be F-linear. Prove that

 $\dim \phi^{-1}(X) \ge \dim V - \dim W + \dim X.$

Date: Assigned Friday, 15 September 2017; due Friday, 22 September 2017.