MATH 101: GRADUATE LINEAR ALGEBRA WEEKLY HOMEWORK \#1

Problem W1.1. Let V be a finite-dimensional vector space over a field F, and let $\phi: V \rightarrow V$ be an F-linear endomorphism of V.
(a) Show that there exists $m \geq 0$ so that $\operatorname{img}\left(\phi^{m}\right) \cap \operatorname{ker}\left(\phi^{m}\right)=\{0\}$.
(b) Now suppose that $\phi^{2}=0$. Show that the rank of ϕ is at most $(\operatorname{dim} V) / 2$, and that there is a(n ordered) basis β for V such that $[T]_{\beta}$ has the block form

$$
\left(\begin{array}{ll}
O & A \\
O & O
\end{array}\right)
$$

i.e., has zeros in all blocks except possibly the upper right-hand corner.

Problem W1.2. Let V, W be finite-dimensional vector spaces over a field F, and let $\phi: V \rightarrow$ W be an F-linear map.
(a) Show that there exists a basis β of V and a basis γ of W such that $[\phi]_{\beta}^{\gamma}$ is diagonal with diagonal entries in $\{0,1\}$. What does the number of 1 s along the diagonal tell you about ϕ ?
(b) Suppose now that $W=V$. Recalling the result from daily homework, show that there exists a basis β of V such that the conclusion of (a) holds for $[\phi]_{\beta}$ if and only if $\phi^{2}=\phi$.
Problem W1.3. Suppose char $F \neq 2$. Let V be an F-vector space. Recall that $\phi \in$ $\operatorname{End}_{F}(V)$ is a projection if $\phi^{2}=\phi$.

Let $\phi, \psi: V \rightarrow V$ be projection maps.
(a) Show that $\phi+\psi$ is a projection if and only if $\phi \psi=\psi \phi=0$ if and only if $\operatorname{img} \phi \subseteq \operatorname{ker} \psi$ and $\operatorname{img} \psi \subseteq \operatorname{ker} \phi$.
(b) If $\phi+\psi$ is a projection, show that $\operatorname{img}(\phi+\psi)=\operatorname{img}(\phi) \oplus \operatorname{img}(\psi)$ and $\operatorname{ker}(\phi+\psi)=$ $\operatorname{ker}(\phi) \cap \operatorname{ker}(\psi)$.

Problem W1.4. Let V be an F-vector space with $n=\operatorname{dim}_{F} V<\infty$. Let $A, B \subseteq V$ be F-subspaces with $a=\operatorname{dim} A$ and $b=\operatorname{dim} B$ and suppose $V=A+B$. Let

$$
S=\left\{f \in \operatorname{End}_{F}(V): f(A) \subseteq A, f(B) \subseteq B\right\}
$$

Observe that $S \subseteq \operatorname{End}_{F}(V)$ is an F-subspace, and then express $\operatorname{dim} S$ in terms of n, a, b.
Problem W1.5. Let V, W be finite-dimensional F-vector spaces, let $X \subseteq W$ be an F subspace, and let $\phi: V \rightarrow W$ be F-linear. Prove that

$$
\operatorname{dim} \phi^{-1}(X) \geq \operatorname{dim} V-\operatorname{dim} W+\operatorname{dim} X
$$

