MATH 101: ALGEBRA I

 HOMEWORK, DAY \#25Problem 25.1. Let M be the \mathbb{Z}-module generated by $x_{1}, x_{2}, x_{3}, x_{4}$ subject to the relations

$$
\begin{aligned}
x_{1}+3 x_{2}-9 x_{3} & =0 \\
x_{1}+3 x_{2}+3 x_{3}+12 x_{4} & =0 \\
2 x_{1}+4 x_{2}+2 x_{3}+24 x_{4} & =0
\end{aligned}
$$

Give an explicit isomorphism of M to a direct sum of cyclic abelian groups. What are the invariant factors and elementary divisors of $\operatorname{Tor}(M)$?
Problem 25.2. Let R be a PID. Let $a, b \in R$, not both zero. Write $(a, b)=(g)$ for $g \in R$, so that there exist $x, y \in R$ such that $a x+b y=g$. Show that $(x, y)=R$.

