MATH 101: GRADUATE LINEAR ALGEBRA DAILY HOMEWORK \#21

Problem 21.1. Let R be a commutative ring such that $\mathfrak{a}=R \backslash R^{\times}$is an ideal. Show that \mathfrak{a} is the unique maximal ideal in R.

Problem 21.2. Let $R=\mathbb{Z}[\sqrt{-5}]=\{a+b \sqrt{-5}: a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$ be the subring generated by 1 and $\sqrt{-5}$. Let $\mathfrak{a}=(2,1+\sqrt{-5}) \subseteq R$, and let $\mathfrak{p} \subseteq R$ be a prime ideal.
(a) Show that \mathfrak{a} is prime.
(b) Show that $\mathfrak{p} \cap \mathbb{Z}$ is a nonzero prime ideal.
(c) If $2 \notin \mathfrak{p}$, show that $\mathfrak{a}_{(\mathfrak{p})}=R_{(\mathfrak{p})}$.
(d) If $2 \in \mathfrak{p}$, show that $\mathfrak{p}=\mathfrak{a}$ and that $\mathfrak{a}_{(\mathfrak{p})}=(1+\sqrt{-5}) R_{(\mathfrak{p})}$.
(e) Conclude that $\mathfrak{a}_{(\mathfrak{p})}$ is locally free.

